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On Optimality Conditions via Weak Subdifferential and
Augmented Normal Cone

A. P. Farajzadeh!”, P. Cheraghi®

In this paper, we investigate relation between weak subdifferential and augmented normal cone.
We define augmented normal cone via weak subdifferential and vice versa. The necessary
conditions for the global maximum are also stated. We produce preliminary properties of
augmented normal cones and discuss them via the distance function. Then we obtain the augmented
normal cone for the indicator function. Relation between weak subifferential and augmented
normal cone and epigraph is also explored. We also obtain optimality conditions via weak
subdifferential and augmented normal cone. Finally, we define the Stampacchia and Minty solution
via weak subdifferential and investigate the relation between Stampacchia and Minty solution and
the minimal point.
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1. Introduction

A convex set having a supporting hyperplane at each boundary point turns to central notion in
convex analysis, namely subgradient of a possible nonsmooth even extended real valued function [4,
5]. Subgradient plays a key role in the derivation of optimality conditions and duality results. Since a
nonconvex set has no supporting hyperplane at each boundary point, the notion of subgradient has
been generalized by most researchers to optimality conditions for nonconvex problems. For more
study, see [3, 4]. The various of different subdifferentials can be divided into 2 large groups:

o “simple” subdifferentials, and
e “strict” subdifferentials.

A simple subdifferential is defined at a given point and it does not take into account “differential”
properties of a function in its neighborhood. Simple subdifferential are not widely used directly
because of rather poor calculus. Contrary to simple subdifferentials, strict subdifferentials incorporate
differential properties of a function near a given point.

The notion of weak subdifferential, as a generalization of the classical subdifferential, was
introduced by Azimov and Gasimov [1, 2]. It uses explicitly defined supporting conic surfaces instead
of supporting hyperplanes. The main reason for difficulties arising in passing from the convex
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analysis to the nonconvex one is that the nonconvex cases may arise in many different forms, each of
which may require a special approach. The main ingredient is the method of supporting the given
nonconvex set. Subgradients play important roles in the derivation of optimality conditions and
duality results. The first canonical generalized gradient was introduced by Clarke [4, 5]. He applied
the generalized gradient systematically to nonsmooth problems in various problems. Since a
nonconvex set has no supporting hyperline at each boundary point, the notion of subgradient has been
generalized by most researchers to optimality conditions for nonconvex problems [4, 5, 14]. By using
the notion of subgradients, a collection of zero duality gap conditions for a wide class of nonconvex
optimization problems was derived [1, 2]. Augmented normal cone via weak subdifferential was
defined by Kasimbeyli and Mammadov [13]. Here we give some important properties of augmented
normal cones via weak subdifferentials. By using the definition and properties of the weak
subdifferential, as described in [9, 10, 11, 12], we stablish results on connection with augmented
normal cones and weak subdifferential for nonsmooth and nonconvex problems.

The remainder of our work is organized as follows. The definitions and preliminaries of weak
subdifferential and augmented normal cone are provided in Section 2. In Section 3, we state some
useful properties of augmented normal cones, and then prove some results connecting augmented

normal cones and weak subdifferentials for nonsmooth and nonconvex problems in Section 4. Section
5 provides relations between the Stampacchia and Minty solution and the minimal point.

2. Preliminaries

Let X be a real normed space and let X* be the topological dual of X. By ||-||, we denote the norm
of X and by (x*, x), the value of the linear functional x* € X* at the pointx € X. Let® # S c X.

Definition 2.1. [11, 12] Let f: X — R be a function and x € X be a given point. The set
of ) ={x"€X*: (Vx €X) f(x) — f(X) = (x",x — %)}

is called the subdifferential of f at x € X.

The next definition generalizes the notion of subdifferential.
Definition 2.2. [11, 12] Let f: X — R be a function and X € X be a given point. A pair (x*,¢c) €
X* x R*, where R* is the set of nonnegative real numbers, is called the weak subgradient of f at x €
X if the following inequality holds:

(Vx €X) f(x)—f(x) = (x"x —x)—cllx —x]|.

The set

f(X) ={(x"c) EX" XR" : (Vx € X) f(x) - f(X) = (x",x — %) — cllx — xII}

of all weak subgradients of f at x € X is called the weak subdifferential of f atx € X. If 0" f(x) #
@ then £ is said to be weakly subdifferentiable at x.
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Remark 2.1. [3] It is clear that when f is subdifferentiable at X, then f is also weakly
subdifferentiable at x ; that is, if x* € df (x) then by the definition of weak subgradient we get
(x*,c) € 3V f(x), for every c = 0. But the converse may fail (consider f(x) = —|x|, X = R).

The next definition is used in the sequel.
Definition 2.3. [8] Let f: X — R. If there is a continuous linear map f'(x): X — R with the property

o LEFN—F @@
lIkll-0 Al '

then f'(x):X —» R is said to be Fréchet derivative of f at x € X and f is called the Fréchet
differentiable at x.

Remark 2.2. [3] It follows from Definition 2.2 that the pair (x*,¢) € X* x R* is a weak
subdifferential of f at X € X if and only if a continuous (super linear) concave function g: X — R,
defind by g(x) = f(X) + (x*,x — x) — c|lx — X||, x € X, satisfies

(vxeX) glx) <f(x) and g(x) = f(x).

This condition means that g supports f from below. Hence, it follows that if f is weakly
subdifferentiable at x and (x*,c) € ¥ f(x), then the graph of function g becomes a supporting
surface to the epigraph of £ on X at the point (&, f(x)).

For the gradient of g at x, that is Vg (x), we can obtain

L cx-®
Vg(x) =x —m.

and for the norm of Vg(x), we get
IVg@Il < llx*Il + c.

In fact, we get the bounded of the norm of Vg (i), which will be useful in estimating the subgradients
for finding the extremal points of a nonsmooth function.

Theorem 2.1. [11] Let the weak subdifferential of f: X — R at x be nonempty. Then, the set 0" f (i)
is closed and convex.
3. Main Results

Here we first recall the definition of augmented normal cone as given in [13] and then state our
main results.

Definition 3.1. The set

Ne(X) ={x"€eX";(x*",x—x)<0, Vx€eS}
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is called a normal cone to S at x.
Definition 3.2. The set
N&(x) = {(x*,c) eX* xR ;(x*,x—x)—c|lx—x|| <0, Vx €S}

is called an augmented normal cone to S at x. Note that if there exists x* € X* such that (x*,0) €
N& (%), then x* € Ng(X).

Remark 3.1. From the definitions of normal and augmented normal cones, we have
x* € Ng(X) = (x%,¢) € N§ (%), VYc > 0.
Remark 3.2. For (x*,c¢) € N&(x) with |[x*|| < ¢, the inequality (x*,x —X) —c|lx —x|| <0 is
obviously satisfied for all x € X. An augmented normal cone consisting of only such elements is
called trivial and denoted by N™ (). Obviousely,
NE&? (%) € N&(%).
Example 3.1. Let X = S, X € X. Then, we have

N& (@) = Ng(x) ={(x*c) e X* xR*; (x*,x —X) —cllx — x]| <0, (Vx€S)}
={(x",c) € X* x R¥; |Ix"|| < ¢} = NfT" ().

Proposition 3.1. Let ¢; < c¢,. Then, we have
(x*,c1) € N& (%) = (x7, c;) € N¢'(X).
Proof. Let (x*, c;) € N§'(x). Then, by definition of augmented normal cone, we have
(x*,x —x)—cqllx — x| <0, Vx € S.
So, by assumption ¢; < c,, we obtain
(x*,x —X) — c,||lx — x|]| <0, Vx € S.

Therefore, (x*, c;) € N&(x) and the result is at hand. Since for any x € S, we have (0,0) € N (X),
the augmented normal cone is a nonempty and uncountable set. [ ]

Proposition 3.2. The set N (x) is a closed convex cone
Proof. The proof directly follows from the definition of N& (x). [ ]
Proposition 3.3. (x*, ¢) € N&(x) if and only if the function g: X — R, defined by

g(x) = (x",x —x) — cllx — x|,

satisfies
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gx) <0 (Vx€s), gx)=0.

In this case, we get

Vo) ., c(x—x)
X)) =X ——————.
g Il — <
Proof. Consider g(x) = (x*,x — X) — c||[x — X|| to investigate the result. [ ]

The next proposition states the necessary condition for a global maximum.
Proposition 3.4. Let f: X — R be a function that attains a global maximum at x. Then, we have
Y f(x) c NE'™(x) c NE(%).
Proof. If 0¥ f(x) # @, then there exists a pair (x*, ¢) such that
fe)—f(x) =(x"x—%) —cllx—x|l, Vx€X.

With the assumption that f attains a global maximum at x, we have

(x*,x—x)—cl|lx — x|| <0, Vx € X.
So,
lx*|l < ¢,
and we have (x*,¢) € Nf(x) and the proof is complete by noting N{™ (%) c N&(%). n

Corollary 3.1. Let f: X — R be a function that attains a global minimum at x. Then, we have
0 (=f(®) € N ().
The following example shows that the inclusion in Proposition 3.1 can be a proper inclusion.
Example 3.2. Let X = R, f(x) = —|x|. Then, we have
0¥f(0) ={(a,c); lal <c—1}
and
N (0) = {(a,¢); |al < c}.

Therefore, 3% f (%) # NE™ (), and we note that f has a global maximum at x = 0. The converse of
Proposition 3.1 may not be true. Consider the next example.

Example 3.3. Let
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_ (0, x€eqQ
fo={1 Jeo

Then,
9¥f(0) = Ny™(0) = {(a,¢); lal < ¢},
while f attains a global minimum at x = 0.
Proposition 3.5. Let f: X — R be a function that attains a global minimum at x. Then, we have
NZ(x) c 0¥ f(%).
Proof. Let (x*, ¢) € N¢(x). Then, we have
(x*,x —xX)—cl|lx — x| <0, VxE€EX.
Since f attains a global minimum at X, then we obtain
fx)—f(x) =0, VxeX,
from which, we get
fX)—fx) =" x —x)—cllx — x]| <0, Vx€EX,

so that (x*, c) € ¥ f(x), and the proof is complete. [ ]

The next proposition states a link between weak subdifferential of f, —f and augmented normal
cone at x for the function attaining a global minimum at x. This is a necessary condition for
optimality.
Proposition 3.6. Let f: X — R be a function that attains a global minimum at x. Then, we have

0 (—f (%)) c NE(x) c a¥f(x).
Proof. The proof directly follows from Corollary 3.2 and Proposition 3.3. ]
Corollary 3.2. Let f be a constant function. Then, we have
N{ (%) = 0¥ f(%) = 0™ (~f (D))

Proof. The proof follows from Propositions 3.4. ]

As a particular case, consider the weak subdifferentiability of an indicator function. Let 85 be an
indicator function of a set S < X such that

0, xeSs
0, 0.W.

85(x) = {
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Kasimbeily [10] generalized the well-known theorem in convex analysis that states a relationship
between the subdifferential of the indicator function and the supporting hyperplane of a convex set.
Here, generalize that result by presenting a relationship between the weak subdifferential of the
indicator function of any set and the augmented normal cone.
Proposition 3.7. Let &5 be an indicator function of a set S < X. Then, we have
N&(x) = 0% d5(x).

Proof. Assume (x*, ¢) € Né(x). Therefore, we have

(', x—x)—cllx—x|| <0, VxE€S.

We know that

SS(X) — 85(.72) = 0, Vx € S,
65(.76')—55()?) = o, Vxesﬂ

so that we obtain
Os(x) — 6s(X) = (x*,x — X) — c|lx — X||, Vx € X,
that is, (x*,c) € 8% d5(x). Conversely, if (x*,c) € ¥ ds(x), then we have
Os(x) — 6s(X) = (x*,x — X) — c|lx — X||, Vx € X.
If x € S, then we obtain
0s(x) — 85(x) = 0,
and consequently,
(', x—%X)—cllx—x|| <0, Vx€S.
This means (x*, ¢) € Ng'(x), and the proof is complete. [
In the sequel, we state some properties of the augmented normal cone.
Proposition 3.8. Let S; © S,. Then, we have
Ng (%) © N¢ (%).
Proof. Assume that (x*, c) € Ng (x). Then,
(x"x—x)—cl|llx—x|| <0, Vx€S,.
Since S§;  S,, we obtain

(x", x—xX)—cllx—x|| <0, Vxe€S;.
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that is, (x*, ¢) € Ng' (x) and the proof is complete. [ ]

Remark 3.3. With the last proposition, if S; = S, then we have Ng (x) = Ng, (). But the converse
may not be true. Consider the next example.

Example 3.4. Let S; = [0,1], S, = [0,2]. Then

Ng (0) = Ng. (0) = {(a,c) : @ < c},
while S; # S,.
Proposition 3.9. N&'(x) = N& ¢(%).

Proof. Since S c ¢l S, N§ s(X) c N (x). Conversely, for any x € cl S, there exists {x,,} c S such
that x,, — x. Now, assume (x*,c¢) € Ng' (%), so that

(x*, %, —Xx)—c|lx, —x|| <0, Vx, €S.
By taking the limit inferior of both sides of the last inequality when n — oo, we have
x*,x—x)—cl|lx—x| <0, Vx € clS,
which means that (x*, ¢) € Ng (%), and the proof is complete. [ ]
Proposition 3.10. Let S be a cone. Then,
N&(Ax) = N& (%), v 1i>0.
Proof. It follows from the hypothesis that
(x*,c) ENy(Ax) & (x", Ax —Ax) —c ||Ax —Ax[| <0 (VxE€EYS)
SA{xx—x)—cllx —x|) <0 (Vx€S)
& (x%,¢) € N (%).
This completes the proof. [ ]
Proposition 3.11. Let S;,S, € X, 5, N S, # @. Then,
Ng ys, (X) = Ngt (X) N Ng, (%) < Ng. s, ().
Proof. Suppose that (x*, ¢) € N s, (). Then
' x—%)—cllx— x| <0, Vx €S, US,,
and so we have
x*,x—x)—cllx— x| <0, Vx € Sy,

and
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(x*,x —x)—c|lx— x| <0, Vx € S,,
which means (x*, c¢) € Ng: () N Ng. (x). Also, we obtain
(x*,x —x)—c|lx— x| <0, Vx€E€S; NS,

and the last inclusion is at hand. Conversely, assume that (x*, c¢) € Ng! (x) n Ng, (). Then, we have

(x*,x—%)—cl|lx— x| <0, Vx € S,
and
(' x—%X)—cllx— x| <0, Vx € S,,
to get
(' x—%X)—cllx— x| <0, Vx €S, US,,
so that (x*, ¢) € N s, (%), to complete the proof. [ ]

The following example shows that the converse of the last inclusion may not be true.
Example 3.5. Let X = R, S; = {0,1}, S, = {0, 2}, x = 0. Then we have
Ng: (%) =Ng,(¥) ={(e,c) ERXR:a < c},
while N¢ (x) = R2.
Remark 3.4. Since S; N S, c §;, S5, by Proposition 3.11, we have
Ng: (), Ng: (X) < N¢ (¥) n Ng: (%),

so that

Ng, (X) N Ng, (%) < N¢|ns, (%),
and similarly,

Ng: (%) U Ng. (x) < Nt s, (3.
Proposition 3.12. Let S = 5, NS, # @. Then,

Ng (%) + Ng, () © N&'(%).

Proof. Assume that (x1,c;) € Ng. () and (x3 , c;) € Ng. (). Therefore,

(x,x=X)—cllx—xll<0, Vxes,
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(x3,x —X) — c,|lx — x| <0, Vx € S,.
Now, forany x € S = S; N S,, we obtain
(] +x5,x—%x)—(c; +c)llx — x|| <0, Vx €S,

that is, (x1 + x3,¢; + ¢3) € N§ (%) and the proof is complete.

The next example shows that the converse of the last inclusion may fail.
Example 3.6. Let X = R, S; = {0,1}, S, = {0, 2}, x = 0. Then, we have

Ng (x) =Ng, () ={(e,c) ERXR:a <c},
while N&(x) = R?.
Proposition 3.13. Let S = S§; + S,, X = x; + X5, X; € S;, i = 1,2. Then,
Ng' (%) = Ng (X) n Ng., (%).
Proof. Assume (x*, ¢) € N¢(x). Then, we have
(x5 x—x)—cl|lx — x| <0 (Vx €Y5),
and we get
(", (xp +x) — (X +56)) —cll(x; +x) — (X, + %) <0, VxES=5+S5,.

From the last inequality, with x, = X, and x; = X, respectively, we obtain

(x*, 21 = x1) —cllx; — x| <0, Vx € Sy = (x*,¢) € Ng. (%1),
(x*, x5 — X3) — cllxz — %[ <0, Vx €S, = (x7,¢) € Ng. (x3).

And if we follow the stages of the above argument conversely, the proof is complete.
Proposition 3.14. Let $ = S X S, £ = (%, %). Then,
NE@) ={((x",y"),c) eX* X X* x R* : ((x* +¥%),2c) € N& (D)}
Note that ||(x, VI = llx]| + |y, forall x,y € X.
Proof. It follows from the hypothesis that
(" y),c) ENER) & ((x,y), (. x) =R) —cll(,x) =R <0 V(x,x) €S

S X" +y,x—x)—2c|lx—x|]| <0 VxeS
© (x"+y",2c) € N'(%),

to complete the proof.
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Proposition 3.15. Let X = X; X X5, 8 =8, X Sy, X = (¥1,%,), X; €S; € X;, i = 1,2. Then,
n(N&(®) = m (N&(®)) x 7 (NE (%)),
Proof. We have the following inequalities:

(" y™),¢) € N&(®) & ((x",y"), (x4, %5) — (%1, 55)) — cll (1, %5) = (£, ) S O V(xp,x,) €S
& (x",x1 — %) —cllx; —x%|| <0 Vx; €S,
(¥ x; = %) —cllx, =%l <0 Vx; €S,
= ((x*, c),(y", c)) € Ng. (%) X Ng. (x3).

4. Augmented Normal Cones and Weak Subdifferentials

Kruger [14] used another approach to define the normal cone based on first considering the Fréchet
subdifferential of the distance function. Recall that the distance function to S is defined by

dg(x) = yiggllx =yl

We generalize this approach for augmented normal cones related by weak subdifferential in the sequel.
Contrary to the indicator function whose weak subdifferential can be used for defining the augmented
normal cone, the distance function is Lipschitz continuous. This makes it more convenient in some
situations.
Proposition 4.1. 0¥ dg(x) € {(x*,c) € N¢(x) : ||x|| < c + 1}.
Proof. Suppose that (x*, ¢) € d¥ds(x). Then, we have

de(x) —dg(%) = (x*,x —x)—cl|lx — x|| Vx€EX.
For x € S, we obtain

x*,x—x)—cllx — x|| <0, Vx €S,

and therefore, (x*, ¢) € N$ (k). For x & S, we have

l|lx — x| = irelgllx =yl =ds(x) =2 {(x",x —x)—cllx — x|| Vx¢&S5,
y

and thus,
(x*,x—x) < (c+ D|lx— x|, Vx & S.
From the above inequalities, for any x € X we obtain

(x*x—x)<(c+Dllx — x|, Vx € X,
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and consequently,

lx*|| < c+ 1.

Remark 4.1. If we investigate the normal cone related by subdifferential, then we obtain
0ds(x) © {x" € Ns(%) : [Ix|l < 1}.

This is a similar result found by Kruger [14] for the Fréchet subdifferential. The following example
shows that the converse of the inclusion may fail.

Example 4.1. Consider S = [0, 1], x = 0. Then, we have
ovds(0) = 0, {(x*,c) e NEO): |Ix|| <c+ 1} # 0.
It follows from Proposition 3.8 that an augmented normal cone is a particular case of a weak
subdifferential. The converse is also true: the weak subdifferential of an arbitrary function can be

equivalently defined through the augmented normal cone to its epigraph. Recall that the epigraph of f
is the set

epi f ={(w,p) EXXR: f(w) < u}k

The following result shows the relationship between weak subdifferential of f and the augmented
normal cone related by epi f.

Proposition 4.2. The followings hold

o If(x*,c) €Yf(®), then ((x*,—1),c) € N&,; 1 (%, f ().
o Ifu=f(x)and ((x*,2),c) € N5y s (% 1), then |A] < c.

Proof. Suppose that (x*, ¢) € ¥ f(%). Then, we have
f@-f@ = x——clx -z, vxex
so that
(G, =1), (e = %, f) = f®)) < ellx -
and
cllx = %l < cllx = x|+ clf @) - F@.
Now, we know that
cllx = T +clf )~ F@I =cl|(x -5 f@) — fF@)|l,  vxeX.

Therefore, with the above inequalities, we get
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(-1, (x =% f)—f@)) < c|(x—%fx) - FG)|, VvxeX
and so ((x*,—1),¢) € N5y ¢ (%, f(X)).
Next, suppose that ((x*, 1), ¢) € N,; (%, ). Then, we have
(x5, (x—xFu—w)<cllx—xu—ull, V(xu)€epif.
Setx = %, u = f(¥). Then,
Af @) =) < clf ) —ul,
and therefore,
1+a(f(x) - <0,

so that with u > f(x), we have

Similarly, from
(D, —xu—-—p)<cllx—xu—wl, Vu €epif,
and u = f(x), we have
(D, (x—xu — f@))<c|[(x-%xu- @) v uw eepif.
For arbitrary e > 0, we set x = X, u = f(x) + €, and therefore
Ae < clel,

so that A < ¢, and the desired result is at hand. [

5. Stampacchia and Minty Solution via Weak Subdifferential

Here, we first consider the variational inequalities of the Stampacchia type in terms of the weak
subdifferentials as follows:
(Stampacchia-0™): Find x € K such that for any x € K, there exists (x*, c) € 8" f (x) such that

(x,x—x)—cllx—x| = 0.

Proposition 5.1. Let K be a nonempty convex subset of a linear normed space X and let x be a
Stampacchia-d" solution. Then, x is also a minimal point of the variational optimality problem.

Proof. To the contrary, suppose that x is not a minimal point of the variational optimality problem.
Then, there exists ¥ € K such that
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fG) - f&) <o.
Now, for every (x*,c) € 8% f(x), we have
f)—f(x) = (x*,x—x)—cllx — x|, Vx € X.
Specially for x = %, we obtain
0> f(®) - f(x) = (x", % —x)—cllx —xI|,
and therefore,
(x",x—x)y—cllx—x|l <0,
which is a contradiction to the fact that x is a solution of the Stampacchia-d". ]
Next, consider the variational inequalities of the Minty type in terms of the weak subdifferentials
as follows:
(Minty-0"): Find x € K such that for any x € K and (x*,¢) € 3% f(x),
(x*, x —XxX)+cllx—x| =0.

Proposition 5.2. Let K be a nonempty convex subset of a linear normed space X and let x be a
minimal point of the variational optimality problem. Then, X is also a Minty-d" solution.

Proof. Suppose that x is a minimal point of the variational optimality problem. Then, for every x €
K and (x*,c) € 0¥ f(x), by the definition of weak subdifferential, we have

f) —fx) =" x—x)—cl|x — x|, VX € X.
Specially for ¥ = x, we have
f@) —f(x)=(xx—x)—cllx—x|, VxeX.
Using the assumption, we obtain
0= (x"x—x)—cllx— x|
Therefore, we have
(x*,x—x)+cllx—x]| =0,
which means that x is a Minty-d" solution. |
Remark 5.1. The converse of Proposition 5.2 may not be true. Consider the following example.
Example5.1. Let X = K = R, and

1, x=0,
f(x)={0, x # 0.
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Obviously, ¥ = 0 is not a minimal point of f(x). But, x is a Minty-0" solution. Indeed, for x # 0,
we have

0vf(x) ={(x"c): |x"| <c}
Therefore,

L (& +ox, x>0,
(x*, % — x) + c||x xll—{(x*_c)x, x <0,

and which is the nonnegative. Therefore, X = 0 is a Minty-d" solution.

Proposition 5.3. Let K be a nonempty convex subset of a linear normed space X and let x be a
Stampacchia-0" solution. Then, x is also a Minty-a" solution.

Proof. Combine the results of Theorem 5.1 and 5.2.

Remark 5.2. Example 5.1 also shows that the converse of Theorem 5.3 may not hold.
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