[Downloaded from iors.ir on 2026-02-03]

Iranian Journal of Operations Research
Vol. 9, No. 2, 2018, pp. 31-48

Intelligent Mapping

A. Fathollahzadeh?

This paper is directed to the question of how to model and design an efficient tool for the
intelligent mapping which is based on both dynamic and efficient storage of data and soft
computing. The former is performed by our method that learns how to store, search and delete
the data. After pointing out the limitation of the crisp evaluation of the distance between two
points, we argue in favor of soft computing which is based on the extension of metric space to
interval one and then to the fuzzy metric. A-Star algorithm is used to illustrate our model along
with the injection of competitive data structures.

Keywords: Automata, Classification, Possibility and necessity measures, A-star.

Manuscript was received on 13/09/2018, revised on 21/11/2018 and accepted for publication on 28/11/2018.

1. Introduction

Classical map matching determines which road a vehicle is on, based on inaccurate measured
locations, such as GPS points, where 10 nearest road segments in a radius of 200 meters are
searched. This approach uses the observation probability.

Among the drawbacks of this approach, we can mention twofold limitations. The first one is the
static storage of data, where there is no way to insert a new data; e.g., it is not rare to observe a new
building in a location just in a period of two months, or the destruction of an existing house, etc.
The second one is the poor performance of the hard computing which often make guiding search
impossible.

The contribution of this paper is an aid to the realization of the intelligent mapping along with
the following properties:

e Acceptable time's query.
o Flexible software for being injected in the final engine using Galileo.

Here, flexible means how efficient the collection of information associated with locations can be
done. In particular, how these data, i.e., both locations and information associated with locations,
called hereafter, for short, keys and key-values, respectively, can efficiently and dynamically be
stored along with the data transmitted by Galileo which is the global navigation satellite system is
being created by the European Union through the European Space Agency.

The rest of this paper is organized as follows. Section 2 describes how multiple key-values (for
short, values) of the same key can be collected efficiently. Then how to learn for storing, searching
and deleting dynamically all the data is outlined in Section 3. Using soft computing along with the
extension of metric space to interval one and then to the fuzzy metric being advocated by a method

1 Artificial Intelligence Group, University of Tabriz, Tabriz, Iran, Email: abfzadeh@gmail.com.
Part of this work is done in the University of CentraleSupelec, France.

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

32 Fathollahzadeh

which provides a unique data structure is the theme of Section 4. The A-star algorithm being used to
design the tool along with the injection of competitive data structures is described in Section 5. The
paper ends with concluding remarks in Section 6.

2. Efficient and Dynamic Collection of Key-values

In intelligent mapping, we may have the same location with two or more geographical
indications, such as two ones which are situated in Iran and France, respectively:

Gul-Tapé {30,91}
Saint-Colombe {05,16,17,21, 25,33, 35,40,46,50,69,76,77,89}

where each number indicates a particular geographical department in the mentioned country. In
other words, we have to deal with the homographs (h), i.e., a word defined over a finite alphabet
associated with two or more values.

In the statistic community parlance [2, 3], building dynamic homographs of large data can be
viewed as an important part of the factor selection. Factor selection is always a difficult task just as
in general model selection of the machine learning, statistic, etc. For this purpose, we need a more
robust method, thereby helping to reduce the model uncertainty.

In addition to the traditional approaches such as the aggregation in a linear form defined by the
full truth or the true model in terms of factor [20], we have identified a new challenging task that
improves upon the quality of factor selection with respect to the elimination of the redundancy. This
is done by the injection of our homograph method [6] into the factor selection which is based on the
efficient collection of homographs to reduce the redundancy. For instance, let us consider the word
“in” in Table 1.

Table 1. Reducing the redundancy via homograph. ‘?” stands for unknown value. Left: Input with 7
entries, Right: Output with 4 entries including 2 homographs (h,s) and 2 sets of homograph-values

(hy,S).

In prep in {?, {adj, adv}, prep}
for prep for {adj, adv}

In of {prep}

Of prep = good {prep}

In {adv, adj}

good prep

In {adj, adv}

As appears from the left part of Table 1, we may except to find any permutation of any subset of
a set with n elements. The maximum number of the subsets of S, plus S, is based on the following
two theorems [6].

Theorem 2.1. The number of permutations of n distinct objects taken r at a time, denoted by B,

where repetitions are not allowed, is given by B = (nr_”ry.

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 33

Table 2. #m: The number of the permutations of a set S with n elements. The symbols v" and v
denote insignificant and impossible, respectively. The impact of #m on the calculation of the
maximum number of the sets and the subsets of S, max(#h,,n) is obvious, e.g., for S = {a, b, c},

max(#h,,3) =1+3 + 3!+ 3! = 16.

n | #m mi/sec | bi/sec tr/sec
10 | 3628800 v v v

11 | 39916800 seconds | v v

12 | 479001600 minutes | ¥ v

13 | 6227020800 hours | seconds | ¥

14 | 87178291200 day minutes | ¥

15 | 1307674368000 weeks | minutes | seconds
16 | 20922789888000 Month | hours seconds
17 | 355687428096000 Years | days minutes
18 | 6402373705728000 v month | hours
19 | 121645100408832000 | v 4 days

20 | 2432902008176640000 | v v month

Theorem 2.2. The maximum number of the subsets of S with n elements, including the empty set

and S is denoted by max((#piny, n)), Where repetitions are not allowed, is: max(#pip,,n) =1 +
n n
=1 ()"

Note that processing a permutation often, as in our case, costs much more than generating it.
Table 2 shows the situation is even worse for the calculation of max(#h,,, n).

We have designed a linear-time algorithm [6] for this task. Table 3 shows the result of our
algorithm applied to the classification a geographical domain in 13 classes, where each class has the
same number of alternated department-codes (e.g., {59, 60}).

2.1.Main Algorithm

The main algorithm of building dynamic homograph (bdh) operates in six modes: insertion,
deletion, retrieval, save, restore and dump (i.e. to show the contents of the data structures).

A string is a sequence of zero or more symbols from an alphabet Sigma. The length of a string x
is denoted by |x|. We will treat string as array in the C programming language. So x[0] shall denote
the first character of x, x[1] its second character, etc.

Table 3. Construction of 1408 new sets of French City and Villages.

Cardinal | Total Example Cardinal | Total Example
2 805 Abancourt 9 11 Montigny
3 279 Fours 10 5 Le Pin
4 98 Artigues 11 3 Saint-Loup
5 56 Vaux 12 2 Beaulieu
6 21 Castillon 13 2 Sainte-Marie
7 14 Mons 14 1 Sainte-Colombe
8 11 Bagneux 15 0

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

34 Fathollahzadeh

For any n € N, let [n] = {0,1, ...,n — 1}. The input is a user-file of the following (customary)
form: f = {(k;,v;) | i € [n]}, where each (k;, v;) represents an entry with strings k; and v; standing
for a key and key-value (for short value), respectively. Hereafter, word, string and key is used
interchangeably.

The preprocessing phase of the main algorithm has 2 steps. The first step outputs f;, the
temporary file f, = {(k;,v;)|j € [n'],n’ <n} which identifies possible missing values and
eliminates possible empty entries of f. The second step re-sizes f; for obtaining the output, namely
the temporary dictionary noted by t ;.. Since the best hash table sizes are powers of two, so we
compute TSize (i.e., the size of ty;.), by invoking the function RoundUpPow2, which rounds up
to the next highest power 2 of n’. For not to do slow operation of modulo a prime, we used 32(N)-
bits based of the Jenkins hash function [9] noted by JenkinsHash to hash a variable-length key into
a 32-bit value. Since t,;.; contains at most TSize = RoundUpPow2 (n') keys, to optimize yet the
hash function, another function, namely, Ilog2U32 is invoked which uses De Bruijn logarithmic
index to compute the log base 2 of an N-bit integer in O(Ig(N)) operations with multiply and
lookup.

Below, we describe the processing of the first (insert) mode. We write pg;.; to refer to the
permanent dictionary which may be empty (i.e., no previous file has been submitted to bdh) or
acquired by past or multiple uses of the above modes.

Let k € tgic.. We write v, and v, to refer to the values of pg;c, and tg;.., respectively. Assume
Daict 1S empty. If k is a homograph, then the function PSUB(v,) is invoked to form v, the output
set, and the pair (k, vp) is stored into pg;c¢. If not, only (k, v,.) is stored into pg;ct-

450

n n’ Ticks | Seconds ,
1640 | 1571 | 3772 0.004 3’”
5802 5802 9701 0.010
9675 | 7256 | 13785 0.014 e

25273 | 25247 | 35567 0.036
32715 | 32052 | 42979 0.043
30323 | 32082 | 52105 0.052 -
53668 | 46330 | 72751 0.073
287872 | 212115 | 421609 | 0.422)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Sizes of the input files in KB

Figure 1. Time measures

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 35

Algorithm 1: Insertion algorithm.

Input: key (k), value (v.) and pgjc-
Output: Update pdict

1 h <+ JenkinsHash (k), vg ¢ Ddict[h)-value, P < vg.q, Q vc.g;

2 if (P=0) then

3 L pdict[h].value < (Q > 1)7 PSUB (v.):v.;

4 else

5 if (P=1)and (Q =1)) then

6 datay + ve.datal0], datas < vy.datal0]

7 if (data) #g datas) then

8 v.data + (data; <g datas)? data; + datas:datas + datay;
9 \» v.q 2, pdict[h].value « v;

10 else

11 L v.q + P+ Q, v.data < v..data + vg.data, pdict[h].value < PSUB (v)

12 function ConsTreap (v) Removes any duplicate.

13 begin

14 half = (v.q)/2, data + v.data

15 if (v.¢ =1) then return (CreateNode (data[0]))

16 vi.data < data, vi.q < hal f; i.e. Split the data in half
17 vo.data < data + half, va.q < v.q — hal f;
18 return (Union (ConsTreap (v1), ConsTreap (v2)))

When pg;c: is not empty, lines 5-11 of Algorithm 1 shows how p,;. can properly be maintained
depending on v, and v,.. If both v,, and v, are simple and distinct strings, then in lines 6-10 the
sorted concatenation of v, and v, without using treaps [1] is used. Otherwise, the function
PSUB(v,) is invoked in line 13.

Each call of PSUB uses the operation Union. Given two treaps tr; and tr,, Union (try,try)
returns a treap tr that is the union of the two of them. To maintain the heap order, the root of ¢tr has
the largest priority. Let v be the key of tr. Union splits the other treap by v into a less-than v and
greater-than treap with values greater than v, and possibly a duplicate node with a value equal to v.
Then recursively it finds the union of the left child of tr and the less-than treap and the union of the
right child of tr and the greater-than treap. The results of the two unions of operations becomes the
left and right subtrees of tr, respectively.

Algorithm 2: Union(trl, tr2).

if (tr1l = NULL) or (tr2= NULL) then return ((trl)? trl:tr2);

if (trl.priovity < tr2.priority) then root = trl, trl = tr2, tr2 = root;
duplicate < Split(&left. &right,tr2.trl.value);

trl.left < Union(trl.left,left), trl.right <— Union(trl.right,right)
return (trl):

5L U SR

The operation Split destructively splits the treap tr into two treaps: the “left treap” is a treap
with key-values less than “value” and the “right treap” is a treap with values greater than “value”.

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

36 Fathollahzadeh

Split searches down the treap in key-value order to find the root of the subtreap that contains key-
values that are too large (small) to be in the left (right) subtreap (then changes direction of the
search). Split makes this subtreap the other branch of right (left) subtreap. This subtreap in turn has
nodes that are too small (large) and need to be moved back to where the subtreap was taken, and so
on until it reaches a leaf or a node with the same key as “values”. Split returns either the leaf
(NULL) or this node. The expected time to split two treaps into two treaps of size n and m is
O(lgn + 1gm). Figure 1 reports the time measures done on 8 input files of large data, where there
were neither the set of key-values, missing key-values nor the commentary texts.

3. Learning How to Store

For the application of large-scale dictionaries two major problems have to be solved: fast lookup
speed and compact representation. Using automata we can achieve fast lookup by determinization
and compact representation by minimization. For providing information for the recognized words one
can use the transducers (i.e., automata with outputs) [15, 19].

Finite-state transducers can be used to map a language onto a set of values. We have introduced an
alternate representation [7] for such a mapping, consisting of associating a finite-state automaton
accepting the input language with a decision tree representing the output values. The advantages of
this approach are that it leads to more compact representations than transducers, and that decision
trees can easily be synthesized by machine learning techniques. We have proposed a competitor to the
transducers [7, 5] which combines automata and machine learning theories with the following desired
properties:

1. The number of the states (and hence the transitions) representing the input language of our
method is less as compared to the transducers.

2. In constructing transducers, we have to represent every transition by a data structure of at least
two fields: one for the symbol representing the transition, another for the label-value (for short,
label) associated with the symbol. So, in order to properly calculate the outputs, the label set
needs to have the algebraic structure e.g., semiring in the case of weighted automata [15, 19].
In our approach the transitions are not labeled with outputs; the cost of exploring the automata
is low.

3. In most applications (e.g., those of using part of speech tagging) there may be (many) identical
output values. When you use the transducers there is no guarantee to save the amount of space
for the identical information, whereas in our approach such economy is allowed.

In order to explain intuitively the benefits of our method, we give a very simple example as
following. Let V = {Asia, Europa} be the output values of three following countries: K =
{Iran, Iraq, Ireland}. In order to determine the output values of any element of K one can learn the
decision tree based on the mutual information; if the key (of K) ends with ‘n/q’ then retrieve ‘Asia’}
else ‘Furopa’.

An acyclic finite-state automaton: a graph of the form g = (Q, %, 8, qo, F), where Q is a finite set
of states, q, is the start state, F € Q is the accepting states. § is a partial mapping §:Q X Z - Q

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 37

denoting transition. For a € X, the notation §(q, a) =L is used to mean that 6 (g, @) is undefined. The
extension of the partial § mapping with x € £* is a function 6*: Q X * — Q and defined as follows:

5*(q.e) = q 5(0.9).%) (@.)
. _ (6%(8(q,@),x), 1f8(q,a) #1L
5*(q, ax) _{L, otherwise.

The property 6* allows fast retrieval for variable-length strings and quick unsuccessful search
determination. The pessimistic time complexity of 6* is O(|x|) with respect to a string x. A finite
automaton is said to be (ng,n,) —automaton if |Q| = ng and |E| = n;, where E denotes the set of
the edges (transitions) of g.

Table 4. Left: The profit trend of 10 restaurants where CP, HB and CK stand for competition,
Hamburger and Chelo-Kabab (Iranian food), respectively. Right: Its compressed form. the strings
of three first columns of each row of the left Table is compressed in one string using the first
character of each string (e.g., “old” is transformed into ‘0”).

Age CP Type || Profit String || Value
old no CK v onC v
midlife yes CK v myC v
midlife no HB mnH

old no HB v onH v
new no HB nnf

new no CK nnC

midlife no CK mnC

new yes CK nyC

midlife no HB v mnH v
old yes CK A oyC v

3.1. More lllustrations

The framework for learning the output language of an input language is described in [5, 7]. In this
subsection, we only illustrate that method using another example. A decision tree (dt) is a direct
acyclic graph of nodes and arcs. At each node, a simple test is made; at the leaves a decision is made
with respect to the class labels (values associated with a word in our case).

Example: The left part of Table 4 shows the data for 10 restaurants using four attributes. One can find
out the attribute age is the best to be selected at first; this indicates that it is most likely that a decision
can be made quickly if one first asks for the age of a restaurant. If the answer to this question is ‘new’
or ‘old’, then the profit can be predicted by ‘up’ or ‘down’, respectively. If the answer is “midlife’,
then another question must be posed, about the presence of competition. After this answer is known,
the profit trend can be determined.

Figure 4 shows the data structure of a node of m-ary decision. The first field contains a
nonnegative integer, say i for 0 < i < £, where ¢ denotes the length of the longest word(s) of the
input language. If i = 0, this means that the node is a leaf one, otherwise the node is an internal one
(including the root node). The second filed represents either a best string or the output value. The third
filed is m-pointers to other nodes, each indicating which node has to be followed in the tree when
searching the output value.

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

38 Fathollahzadeh

Y 1: omn
(0] m n

(U : dou‘n) (2 : y-n) (U : -up)

" 1\ PR
'\2/ y \1.1/ ! (: dou*n)n (O : up)
Figure 2. A (6,10) automaton for recognizing Figure 3. Learned m-ary decision tree of the
ten keys of the right part of Table4. right part of Table 4.

e——1—= Input-string—position to be tested
*— 1= Set of learned m-symbols

1K
v

First child m-th child
Figure 4. Node of m-ary decision tree.

A decision tree (dt) is a direct acyclic graph of nodes and arcs. At each node, a simple test is
made; at the leaves a decision is made with respect to the class labels (values in our case). The dt is
introduced in the machine learning (ML) community [13].

At the top of this tree expressed by Figure 4, by way of three rules situated in the right one can see
the attribute age; this indicates that it is most likely that a decision can be made quickly if one first
asks for the age of a restaurant. If the answer to this question is ‘new’ or ‘old’, then the profit can be
predicted by ‘down’ or “up', respectively. If the answer is ‘midlife’, then another question must be
posed, about the presence of the competition. After this answer is known, the profit trend can be
determined.

3.2. Compact Representation of Homographs

As we have mentioned the advantage of our method compared to the transducers for storing the
keys and their values are saving the space and gaining time. In this subsection, first the formal
definition of the transducer [15] is given, then an example is used to illustrate the advantages of our
method.

Formally, a finite transducer T is a 6-tuple (Q, %, T, I, F, &) [14] such that @ is a finite set, the set of
states, X is a finite set, called the input alphabet, T" is a finite set, called the output alphabet, I is a
subset of Q, the set of initial states, F is a subset of Q, the set of final states; and § € Q X (2 U {€}) X
(T U {e€}) x Q (where € is the empty string) is the transition relation. We can view (Q, §) as a labeled
directed graph, known as the transition graph of T the set of vertices is Q, and (q, a, b,r) € § means
that there is a labeled edge going from vertex q to vertex r. We also say that a is the input label and b
the output label of that edge.

The extended transition relation §™ is defined as the smallest set such that § < 6, (q,€,€,q9) € §*
for all g € Q, and whenever (q,x,y,r) € 6" and (r,a,b,s) € § then (q,xa,yb,s) € §*. Figure 5

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 39

shows the transducer of the following input which is first compacted by bdh in a compact file for
being represented by a graph of (13,16).

cabba xxxxx
cabba {rxzax, xtzyr, reyyr}

cabca yzxxy ,
cabca {yzaxay. yzyyy}

cabba xtzyx ==
cabca yzyyy

cabba xxyyx
Input: 5 entries Output: Two homographs

Figure 6 shows that our solution is competitive along with an easy usage. That is to say, given x
(i.e. user-string), if it can be spelled out by the unlabeled automaton of the input language (K), then
use the decision tree to output its value, else return nil witness for failure i.e., x € K.

Examples: Consider x = onC along with g the unlabeled automaton of Figure 2. Invoking §*(0, x)
confirms that x € K where K is the keys of Table 3. So, its decision tree shown in Figure 4 is used to
output the value of x. As in case of the homograph, let x = cabba. Similar to the previous example,
via Figure 6, the value {xxxxx, xtzyx, xxyyx} is returned.

bh:y 0 c:y

Figure 5. Transducer: g = (13,16). Source: A. Figure 6. Our alternative: A (6,6)-automaton

Kempe, Xerox Research Center Europe [11]. along with one decision rule. based on colored-
transitions ie., if b, =b’ then
{xxxxx, xxyyx, xtzyx}, else {yzxxy,yzyyy},
where b, denotes the second character from
right to left of any key (of input language)
which is already recognized by this automaton.

4. A-Star

A-star algorithm [17, 18] is used in path finding and graph traversal, which is the process of
finding an efficiently directed path between multiple points, called “nodes”. It enjoys a widespread
use due to its performance and accuracy.

A-star has been studied extensively by researchers along with several variants [10] formulated
in terms of exact weighted graphs (e.g., Figure 7 (a): starting from a specific node of a graph, it
constructs a tree of paths starting from that node, expanding paths one step at a time, until one of
its paths ends at the predetermined goal node. At each iteration of its main loop, A-star needs to
determine which of its partial paths to expand into one or more longer paths. It does so based on an

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

40 Fathollahzadeh

estimate of the cost (total weight) still to go to the goal node. Specifically, A-star selects the path
that minimizes f(n) = g(n) + h(n), where n is the last node on the path, g(n) is the cost of the
path from the start node to n, and h(n) gives an heuristic estimating the cost of the cheapest path
from n to the goal. The heuristic is problem-specific. The traveling salesman problem (TSP) is the
problem of finding a minimal cost closed a tour that visits each location once. Below, using Figure
7 (a), a description of how g and h of TSP can be calculated is provided.

4.1. Computing g and h
For the algorithm to find the actual shortest tour, the heuristic function must be admissible,

meaning that it never over estimate the actual cost to get to the nearest goal node.
S1 S1

Figure 7. Exact and inexact costs.

Typical implementations of A-Star use a priority queue to perform the repeated selection of
minimum (estimated) cost nodes to expand. This priority queue is known as the open set or fringe.
At each step of the algorithm, the node with the lowest f(x) value is removed from the queue, the
f and g values of its neighbors are updated accordingly, and these neighbors are added to the
queue. The algorithm continues until a goal node has a lower f value than any node in the queue
(or until the queue is empty). The f value of the goal is then the length of the shortest path, since h
at the goal is zero in an admissible heuristic.

Given the graph g = (S, A), where S and A denote the set of vertices and edges, respectively,
first, we compute the minimal costs arriving at each vertex of g, along with vertices, denoted by
TMC. Table 5 (a) shows the calculation using the costs of Figure 7 (a).

Table 5. Minimal costs arriving at each vertex of Figure 7.

So | S1 | S2 | S3 | Sa So Sq Sy S3 Sy
22211 12,31 111,31 1131 | [L,2] | [1,2]
(a) (b)
Table 6. Evaluations of two optimal circuits of Figure 7.
Path glh|f Path g h f
S0S1 2 16| 8 S0S1 [2,3] | [5,10] | [7,13]
505152 4 14| 8 505152 [3,6] | [4,7] |[7,13]
50515254 6 |3]9 50515254 [5,10] | [3,5] | [8,15]
S0S1S284S3 | 7 | 2| 9 5051525453 [6,12] | [2,3] | [8,15]
S0S1S25453 | 111 0 | 11 50515254535 | [8,16] 0 [8,16]

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 41

(@) (b)

Let s, € S. We write assoc(s,, TMC) which returns c, the minimal cost arriving at c,. The
minimal cost for traversing from the node n = (so,s;, -+, s;) to n' = (o, i+, sj, Sx) Where
(sj,sx) € A and sy € (s, ..., 57) is f(n') = g(n') + h(n') calculated as follows: g(n') = o +
o+ Gk ZVSxe{si,m,s,-,sk} Cx, Where ¢, = assoc(s,, TMC).

Sop=0+0
Sy [E‘.I:‘-'-:.N+ 4.7 So b4+ 6
Sap 144 Syt 545 S3p6+5 Sap6+5 Siv6+4
| | |
b';sl,"{i-f—:) -94[‘#{5—'1 .S‘QL‘-'T—F-'; b';sl'ti-f—g
| | I |
S;e7T+2 S;p 7+ S04+ 2 Spe8+42
| | |
i Spell+10 O S 12 + |
deadend nogood |
O
5.:] =040
S;_; 2] l— T 4'_'-?'_1

5w

Figure 8. Search tree for graph of Figure 7 (a). The departure vertex is S,.

Table 6 (a) shows the costs of some paths of the search for solving TSP of Figure 7 (a) shown
in Figure 8, where the traversal order is depth-first. The minimal cost is 11. Notice the benefit of
using the TMC in A-Star leading to not explore the entire tree which may be dramatically large.
This is the reason why the classical map matching based on hard computing (e.g. Dijkstra's
algorithm [4]) has serious limitations as mentioned earlier in the first paragraph of the introductory
Section.

5. Soft Computing: Extension of Fuzzy Costs

In the case when the costs are fuzzy intervals, we must answer the three following questions:

o What will be the strategy of choosing a node (state) to develop?
o What will be the criteria for stopping the procedure?
o What will be the result at termination?

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

42 Fathollahzadeh

The choice of a state can be reduced to the problem of comparing fuzzy intervals n; =
[f(nj),f(nj)], for j = 1,2,...,p, where ny, ...,n, are the candidate states in development at the
current moment (node). We are looking for the state having the smallest evaluation. When p = 2,

we have to compare the relative position of the two intervals. So we naturally get four possible
ranking criteria that indicate if n, is the state to be developed instead of n,:

Ci:f(np) 2 f(ny) Crif(np) 2 f(ny)
Csif(nz) = 7(“1) C4:]_C(n2) = z(nﬂ

If C; is checked, despite the inaccuracy, we are sure that the evaluation of n, is better than that
of n,. On the other hand, if criterion C, is verified, we only know there is a possibility that n, has
the smallest evaluation. When the criteria C, and C5 are checked simultaneously, we can write

Coz = i (£ (), F(ny) |, [f (1), F(m2)]) = [£ (), F)]

where min is the minimum operation applied at the intervals. The min operation allows one to
define selection criterion C,5 intuitively satisfying and being less strong than C;. The selection
criteria are naturally ordered according to their strengths [12]:

= (C,=> C
6ol 826

In practice, it is suggested to select the node by applying the criteria in the order indicated by the
implications above. Only C, and C5 are naturally not ordered; we will choose priority C, if we think
that the smallest values of f(n,) and f(n,) are more plausible than larger values. In the general
case, where there are p > 2 states, we will be brought back to compare the evaluation of each n;

with min[f (ny)), (f (n,)] , for k # j, that is to say, with the smallest of the other assessments,

using the five criteria in order suggested given above.

5.1. Classical Intervals

We consider the same problem of TSP, as given previously, but considering the costs being
imprecise, that is to say that, for example, the duration of the journey connecting the cities is only
imperfectly known. The function g(n) is simply obtained by summing respectively the lower and
upper bounds of the imprecise costs [Eu El-j] along the way corresponding to the state n. The
function h(n) is a sum of pre-calculated intervals for each vertex of the city graph (S, A) For the top
i, we have

[hi!ﬁi] = rr’lTn[gU,EU], for (l,]) € A,
and for n = s¢s; ... ;5 We have

KW= Y

1¢{50,51,--+Sk}

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 43

R(n) = Z B,

IE{SOrsll""Sk}

The ranges [h(n), h(n) | of our example are provided by Table 5 (b). Table 6 (b) shows the
states developed using the five criteria Cy, C,3, C,, C3, Cy.

The complete trace of A-star algorithm applied to the data of Figure 7 (b) is given in Table 8,
where the column number represents the order of development of the different states. The
development of (sys,5,5,54) Was considered in the 7th stage. But in this case, no successor state
has been produced, whereas, the state 9 (sy5,54535,) produces one that leads to the optimal circuit
in the sense of C,; which is chosen the stop criterion. Note that the algorithm provides the
Hamiltonian path and the cost of terminal state is [8,16], which is the result of the min operation
on the ten candidate states, precisely the son of state 9 (see Table 8). Note that if we had been
content with the C, criterion to stop, the research would have developed only 9 summits.

Table 7. Evaluation of an optimal circuit of the right graph of Figure 7 according to C,3 criterion.

Path g h f
S0S1 [2,3] | [5,10] | [7,13]
505152 [3,6] | [4,7] | [7,13]
50515254 [5,10] | [3,5] | [8,15]
5051525453 [6,12] | [2,3] | [8,15]
50515254535 | [8,16] 0 [8,16]
Table 8. Trace of the computation of f corresponding to the data of Figure 7 (b).
n° | Path g h f n° | Path g h f
1 |sg 9 | 5051525453 [6,12] [2,3] | [8,15]
2 | 5981 [2,3] | [5,10] | [7,13] 505152545350 | [8,16] 0 [8,16]
3 | 505152 [3,6] [4,7] | [7,13] 10 | spS3S, [4,7] [4,8] | [8,15]
4 | 5083 [2,4] | [5,11] | [7,15] 11 | 50535251 [5,10] [3,5] | [8,15]
5 | SoS3S4 [3,6] [4,9] | [7,15] 5053525154 [8,14] [2,3] | [10,17]
50535452 [5,10] | [3,6] | [8,16] 12 | 50514 [5,7] [4,8] | [9,13]
S0S3S451 [6,10] | [3,6] | [9,16] 13 | 57515453 [6,9] [3,6] | [9,15]
6 | 505153 [5,9] [3,5] | [8,14] 14 | sps, [4,5] [5,10] | [9,15]
7 | S95152538, | [6,11] | [2,3] | [8,14] 15 | 50528, [5,8] [4,7] | [9,15]
8 | 5515254 [5,10] | [3,5] | [8,15] 50525154 [8,12] [3,5] | [11,17]
9 16 | 5051545352 [8,12] [2,3] | [10,15]

In the case of the commercial traveler, the selection on the criterion C, (resp. C3) clearly returns
to lead the algorithm only on the coefficients ¢;; (resp. c;;), that is, we get back to the case of
accurate data. In particular, if the optimal solution obtained by each of these selection criteria
correspond to a Hamiltonian path, then this Hamiltonian path is optimal in the sense of criterion
C,3, and it is provided by A-star extended to imprecise data, provided that we adopt C,5 as stop
criterion. This is what happens in the example. Note that in this example, an optimal solution in the
sense of the criterion C; does not exist; the children states are 16 and 9, respectively. (s951525,54)
and (s(s;1545352) have incomparable terminal states in the sense of C;.

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

44 Fathollahzadeh

5.2. Fuzzy Costs

According to Zadeh [21], a fuzzy interval is a fuzzy convex quantity, i.e., the membership
function is quasi-convex:

Yu, v, vw € [u,v], to(w) = min (,uQ (W), ug (v)) ,

where i, is a fuzzy amount, i.e., up: R — [0,1]. At the current moment of the development of the
search graph, we have p candidate states n;, n, ..., n,,, €ach n; (i = 1, ..., p) being associated with a

fuzzy interval f(n;) which restricts the possible values of the function £ (n;). A suggestion to select
the state to develop is to choose n; as

fn) = rﬁTnf(nj), for j=1,p.

It is clear that such a state does not exist and in this case any state can be selected. In addition,
the above formula is relatively strong, since it amounts to applying the criterion C,5 to all couples

a—CutSf(nj), j =1,p.

Another approach is to measure how much an evaluation is smaller than another according to the
criteria C; — C,. The min operation offers no way to carry out such a quantification. This will be
obtained using the four comparison indices of the fuzzy intervals.

In the case of usual intervals, each of these criteria may be verified or not. For the fuzzy
assessments, these criteria will be more or less verified (see 5.3 below):

o (; will be evaluated by Nec(z(nz) > f(ny))
e (, will be evaluated by Nec(i(nz) > f(nl))

e (5 will be evaluated by Pos(f (n,) > f(n,))
e C, will be evaluated by Pos(f (n,) > f(n,))

The criteria C; and C5 are stricter: > instead of > for consistency with the ratings is used. Note
that if the membership functions are continuous, this change has no effect. In the case of p
developmental states, we compute for each state n; the four indices

e PSE(f(n,)), Possibility of over classing,

e PS(f(n))), Possibility of strict over-classification,
e NSE(f(n;)), Need for over-classing,

e NS(f(n;)), Need for strict over-ranking,

expressing how much f(n;) is smaller than the other evaluations, in the sense of C;, C,, C5 and C,.
If there are more than one, we search among these states for one that maximizes NSE f(n;), and so
on, by checking

NS (f(n)) < NSE(f(n)) <PSE(f(ny)
NS (f(n)) <Ps(f(n)) <PSE(f(ny))

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 45

The criterion for stopping the procedure can be chosen in two ways: Either (1) a terminal state is
selected; and (2) in addition to (1), checking a condition on one of the indices: E €

{NS,NSE,PS,PSE} in the form E (f(ni)) > 6, where 9 is a fixed threshold.

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

46 Fathollahzadeh

1
/T T2
/| e
0 ’!] ! A\ - [/}

x1 al b1 y1
Figure 9. P and N are the possibility and necessity measures, respectively.

5.3. Possibility and Necessity Measures

The meaning of the verification of C; — C,, evoked above in the case of fuzzy assessments, are
implemented using the possibility and necessity measures.

Let ®© and P(0) be the non-empty set involving all possible events and the power set of 0,
respectively. VA € P(0), 3 non-negative number, possibility measure, noted by Pos(A) satisfying
the followings:

e Pos(@)=0,Pos(®) =1,
e VA BE€EPO ACSB - Pos(A) < Pos(B),
o UyPos(Ag) = SupiPos(Ay).

The counterpart of the possibility measure of A is the necessity, Nec(4) = 1 — Pos(A°), which
is defined on (0, P(®), Pos) as follows:

Nec(®@) =0, Nec(®) =1
Pos(A) = Nec(A)

Pos(A) =1 - Nec(4) = 0; and
Nec(A) > 0 - Pos(4) = 1.

Let q; = [aq, by, 91,d4] and q, = [ay, by, g2, d;] be two trapezoidal representations of two
fuzzy assessments, where, [a,b] is the support, g and d denote the left and right margins,
respectively. Then, Pos(q,, q,) is calculate as follows:

(0, if (ay + a; = max{a,, a:})
0, if (az > @) A (g2 = dy =0)
0, if (a1 > a;) A (g1 =d, =0)
= a,—b
(91, q2) = 4 born(2 1), ifa, > a;
dy + 9
a; — b .
kborn(n), ifa; > a,

where born(x) = max(0,x — 1), a; = b, —a; and a, = b; — a,. Figure 9 illustrates the values
of the possibility and necessity measures.

Note that we have used the unique data structure, namely the trapezoidal representation for
dealing the cost of fuzzy terms (e.g., [a, b, g, d]), the classical intervals (e.g., [a, b] by [a, b, 0,0]),
and the numbers (e.g., a by [a, a, 0, 0]).

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

Intelligent Mapping 47

6. Conclusions Remarks

We presented two major tasks for an intelligent mapping: dealing with homographs which
abound in any operational tool, and how to maintain and update large data. The implementation
made in the programming language C showed that the performance of our method is not only
acceptable but it can be injected into an operational system. The method can be extended to deal
with the constraints (e.g. eating the fish in a good restaurant while visiting a region) formulated by
user. Taking into account various kinds of data structures used in the soft computing for the
purpose of comparison is useful work to be done.

Acknowledgment

Many thanks to the Editor-in-chief of the Iranian Journal of Operations Research for his
valuable helps that improves the readability of this paper.

References

[1] Blelloch, G.E. and Reid-Miller, M. (1998), Fast set operations using treaps. In
Proceedings of 10th SPAA.

[2] Burnham, K.P. and Anderson, D.R. (2002), Model selection and multimdoal inference: A
practical information-theoretic approach, New York: Springer.

[3] Dawid, A.P. (1984), A present position and potential developments: Some personal views.
StatisticaltTheory, The prequential approach (with discussion), J.R. Statistical Soc. A.,
147, 178-292.

[4] Dijkstra, E. W. (1959), A note on two problems in connexion with graphs, Numerische
Mathematik, 1: 269-271.

[5] Fatholahzadeh, A. (2005), Learning the morphological features of a large set of words,
Journal of Automata, Languages and Combinatorics, 10(5/6), 5/6, 655-669.

[6] Fatholahzadeh, A. (2016), Building incremental homographs of big data, First
International Workshop on Big Data Mathematical and Statistical Tools for Life Science,
May 14-20, Amirkabir University of Teheran-IPM, Tehran,

[7] Fatholahzadeh, A. (2003), Implementation of dictionaries via automata and decision trees,
In: Champarnaud, J.M. and Maurel D. (Eds), Lecture Notes in Computer Science 2608,
Implementation and Application of Automata, Springer-Verlag, Berlin Heidelberg, 95-
105.

[8] Fredman, M. L. and Tarjan, R. E. (1987), Fibonacci heaps and their uses in improved
network optimization algorithms, Journal of the Association for Computing Machinery,
34(3): 596--615.

[9] Jenkins, B., “Jenkins hash coding”, http://burtleburtle.net/bob/c/lookup3.c, May 2006.

[10] Hart, P.E., Nilsson, N. J. and Raphael, B. (1968), A Formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics SSC4. 4 (2), 100-107.

[11] Kempe, A. (2000), Factorizations of ambiguous finite-state transducer, International
Conference on Implementation and Application of Automata}, 157-164.

[12] Prade, H. and Dubois D. (1985), Théorie des possibilités, applications & la représentation
des connaissances en informatique, Masson, 978-2-225-80579-0.

[13] Quinlan, R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann.

[14] Maurel, D. and Daciuk J., (2006), Les transducres & sorties variables, In: Proceedings of

http://iors.ir/journal/article-1-587-en.html

[Downloaded from iors.ir on 2026-02-03]

48

[15]

[16]
[17]

(18]

[19]

[20]

[21]

Fathollahzadeh

TALN, Leuve, Belgium, 237-245.

Maurel, D. and Guenthner F. (2005), Automata and Dictionaries, Individual author and
King's College, London.

Mitchel, T.M. (1993), Machine Learning, Mc Graw-Hill.

Nilsson, N. J. (1980), Principles of Artificial Intelligence, Palo Alto, California: Tioga
Publishing Company.

Russell, S. and Norvig, P. (2009) Artificial Intelligence: A Modern Approach (3rd ed.),
Prentice Hall.

Yu, S. (1997), Regular languages. In: Rozenberg, G. and Salomma, A. (Eds), Handbook
of formal languages, Vol. 1, Word, Language, Grammar, Springer Science & Business
Media.

Xu, M. and Golay, M.W. (2006), Data-guided combination by decomposition and
aggregation, J. Machine Learning, 63(1), 43-67.

Zadeh, L.A. (1978), PRUF-a meaning representation language for natural, Int. J. Man-
Machine Studies, 10, 395-460.

http://iors.ir/journal/article-1-587-en.html
http://www.tcpdf.org

