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We consider the extended trust region subproblem (eTRS) as the minimization of an indefinite 

quadratic function subject to the intersection of unit ball with a single linear inequality constraint. 

Using a variation of the S-Lemma, we derive the necessary and sufficient optimality conditions for 

eTRS. Then, an SOCP/SDP formulation is introduced for the problem. Finally, several illustrative 

examples are provided. 
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1. Introduction 

 

Consider the following extended trust region subproblem (eTRS) 

 

min 𝑥𝑇𝐴𝑥 + 2𝑎𝑇𝑥  

s. t.        ‖𝑥‖2 ≤ 1   (1) 

               𝑏𝑇𝑥 ≤ 𝛽,  

 

where 𝐴𝑇 = 𝐴 ∈ ℝ𝑛×𝑛 is indefinite, 𝑎, 𝑏 ∈ ℝ𝑛 and 𝛽 ∈ ℝ. Since 𝐴 is indefinite, this is a nonconvex 

optimization problem and semidefinite programming (SDP) relaxation is not tight in general. If 𝑏 =
0 and 𝛽 = 0, then eTRS reduces to the well-known trust region subproblem (TRS) which is the key 

subproblem in solving nonlinear optimization problems [4]. Although TRS is a nonconvex problem, 

it enjoys strong duality and exact SDP relaxation exists for it [5]. However, the following classical 

SDP relaxation is not exact for eTRS as it will also be shown in the numerical results section: 

 

min 𝐴 ∙ 𝑋 + 2𝑎𝑇𝑥  

     s. t.   trace(𝑋) ≤ 1,    

   𝑏𝑇𝑥 ≤ 𝛽, (2) 

   𝑋 ≽ 𝑥𝑥𝑇 .  

 

First, the authors of [11] studied eTRS and proposed an exact SOCP/SDP (Second order cone 

program/Semidefinite program) formulation for it. Due to the importance of eTRS also in solving 

general nonlinear optimization problems, several variants of it have been the focus of current research 
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[1, 2, 3, 6, 7, 9]. Beck and Eldar [1] studied eTRS under the condition that dim(Ker(𝐴 − 𝜆1𝐼)) ≥ 2, 

which is equivalent to 

 

λ1 = 𝜆2, (3) 

 

where λ1 and λ2 are the two smallest eigenvalues of 𝐴. Under this condition, they showed the 

necessary and sufficient optimality conditions for eTRS: 

 

(i) 2(𝐴 + 𝜆𝐼)𝑥 = −(2𝑎 + 𝜇𝑏), 
(ii) (𝐴 + 𝜆𝐼) ≽ 0, 
(iii) 𝜆(‖𝑥‖2 − 1) = 0,       𝜇(𝑏𝑇𝑥 − 𝛽) = 0, 
(iv) 𝜆, 𝜇 ≥ 0. 

 

Jeyakumar and Li [7] showed that dim(Ker(𝐴 − 𝜆1𝐼𝑛)) ≥ 2, together with the Slater's condition 

ensures that a set of combined first and second-order Lagrange multiplier conditions are necessary 

and sufficient for the global optimality of eTRS and consequently for strong duality. In [6], the authors 

improved upon the dimension condition by Jeyakumar and Li under which eTRS admits an exact 

semidefinite relaxation. They provided the following condition: 

 

rank([𝐴 − 𝜆1𝐼𝑛 𝑏]) ≤ 𝑛 − 1. (4) 

 

It should be noted that TRS has at most one local-nonglobal minimum (LNGM) [8], which is a 

candidate for the optimal solution of eTRS if it is feasible. An efficient algorithm for computing 

LNGM is given in [10]. All the above rank conditions guarantee that the global solution of eTRS does 

not happen at the LNGM of TRS. Most recently, in [2] the authors derived the SOCP/SDP 

reformulation of [11] by a different approach and extended it to the cases where more than one linear 

constraint exist. Here, using a variant of the S-Lemma, we first derive the necessary and sufficient 

optimality conditions for eTRS leading to an SOCP/SDP formulation. Then, we establish that our 

derived formulation is the dual of the formulation given in [2, 11]. Finally, we present several 

numerical examples illustrating various cases of the optimal solution of eTRS. 

 

2. Global Optimality Conditions for eTRS  
 

We define the dual cone of 𝑆 as 𝑆∗ = {𝑦 ∶ ⟨𝑦, 𝑥⟩ ≥ 0,   ∀𝑥 ∈ 𝑆}. The following proposition, which 

is a variant of the S-Lemma, plays a key role in the proof of the optimality conditions. 

 

Proposition 2.1. Let 𝑓, 𝑔: ℝ𝑛 → ℝ be quadratic functions with 𝑔(𝑥) = 𝑥𝑇𝐴𝑔𝑥 + 𝑎𝑔
𝑇𝑥 + 𝑐𝑔, 𝑏 ∈ ℝ𝑛, 

and 𝛽 ∈ ℝ. Moreover, assume that 𝑔(𝑥) is convex and there exists an 𝑥̅ ∈ ℝ𝑛 such that 𝑏𝑇𝑥̅ < 𝛽 and 

𝑔(𝑥̅) < 0. Then, the following two statements are equivalent: 

 

1. The system 

 

𝑓(𝑥) < 0, 
𝑔(𝑥) ≤ 0, 
𝑏𝑇𝑥 ≤ 𝛽, 
𝑥 ∈ ℝ𝑛, 

 

is not solvable. 
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2. There is a nonnegative multiplier 𝑦 ≥ 0, a scalar 𝑢0 ∈ ℝ and a vector 𝑢 ∈ ℝ𝑛 such that 

 

𝑓(𝑥) + 𝑦𝑔(𝑥) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽) ≥ 0, ∀𝑥 ∈ ℝ𝑛, 

𝑢 ∈ {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑇𝐴𝑔𝑥 ≤ 0, 𝑎𝑔
𝑇𝑥 ≤ 0}

∗
, 

(
𝑢0

𝑢
) ∈ {(

𝑥0

𝑥
) ∶  𝑥0 = −1, 𝑔(𝑥) ≤ 0, 𝑐𝑔 + 𝑎𝑔

𝑇𝑥 ≤ 0}
∗
. 

 

Proof. See [11, Corollary 7]. 

 

Corollary 2.1. If 𝑔(𝑥) = ‖𝑥‖2 − 1, then item 2 in Proposition 1 is equivalent to 

 

𝑓(𝑥) + 𝑦𝑔(𝑥) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽) ≥ 0, ∀𝑥 ∈ ℝ𝑛, 

(
−𝑢0

𝑢
) ∈ 𝐿𝑛+1 

 

where 𝐿𝑛+1 is the Lorentz cone defined as follows: 

 

𝐿𝑛+1 = {𝑥 = (𝑥0; 𝑥̅) ∈ ℝ𝑛+1 | ‖𝑥̅‖ ≤ 𝑥0}. 
 

In the following theorem, we give the optimality conditions for eTRS.  Our proof follows the idea 

of [7]. 

 

Theorem 2.1. Suppose that the strict feasibility constraint holds for eTRS, i.e., 

 

∃𝑥 ∈ ℝ𝑛   with   ‖𝑥̂‖2 − 1 < 0, 𝑏𝑇𝑥̂ − 𝛽 < 0. 
 

Moreover, let 𝑥∗ be a feasible point for eTRS. Then, 𝑥∗ is a global minimizer of eTRS if, and only if, 

there exist 𝜆0 ∈ ℝ+ and (−𝑢0, 𝑢) ∈ 𝐿𝑛+1 such that the following conditions hold: 

 

• (i) (2𝐴 + 2𝜆0𝐼 + 𝑏𝑢𝑇 + 𝑢𝑏𝑇)𝑥∗ = −(2𝑎 − 𝛽𝑢 − 𝑏𝑢0),  
• (ii) 𝜆0(‖𝑥∗‖2 −  1) = 0, (𝑢𝑇𝑥∗ − 𝑢0)(𝑏𝑇𝑥∗ − 𝛽) = 0, 
• (iii) (2𝐴 + 2𝜆0𝐼 + 𝑏𝑢𝑇 + 𝑢𝑏𝑇) ≽ 0. 

 

Proof. [Necessity] Let 𝑥∗ be a global minimizer of eTRS. Then, the following system of inequalities 

has no solution: 

 

𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝛾 < 0, 
‖𝑥‖2 − 1 ≤ 0, 

𝑏𝑇𝑥 ≤ 𝛽, 
 

where 𝛾 = −(𝑥∗𝑇𝐴 𝑥∗ + 2𝑎𝑇𝑥∗). Thus, by Proposition 2.1 there exist 𝜆0 ≥ 0 and a vector (𝑢0; 𝑢) ∈

ℝ𝑛+1 such that 

 

𝑥𝑇𝐴𝑥 + 2𝑎𝑇𝑥 + 𝛾 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽) ≥ 0, ∀𝑥 ∈ ℝ𝑛 

 

and 𝑢𝑇𝑥 − 𝑢0 ≥ 0, ∀𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖2 ≤ 𝛿2. Let 𝑥 = 𝑥∗. Then, we have 

 

𝜆0(‖𝑥∗‖2 −  1) + (𝑢𝑇𝑥∗ − 𝑢0)(𝑏𝑇𝑥∗ − 𝛽) ≥ 0. 
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Now, as 𝑥∗ is feasible for eTRS, 𝜆0 ≥ 0, and (𝑢𝑇𝑥∗ − 𝑢0) ≥ 0 it follows that 

 

𝜆0(‖𝑥∗‖2 −  1) = 0,   (𝑢𝑇𝑥∗ − 𝑢0)(𝑏𝑇𝑥∗ − 𝛽) = 0. 
 

Let 

 

ℎ(𝑥) = 𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽). 
 

Then, obviously 𝑥∗ is a global minimizer of ℎ, and so ∇ℎ(𝑥∗) = 0 and ∇2ℎ(𝑥∗) ≽ 0, i.e., 

 

 (2𝐴 + 2𝜆0 𝐼 + 𝑏𝑢𝑇 + 𝑢𝑏𝑇)𝑥∗ = −(2𝑎 − 𝛽𝑢 − 𝑏𝑢0), 
(2𝐴 + 2𝜆0𝐼 + 𝑏𝑢𝑇 + 𝑢𝑏𝑇) ≽ 0. 

 

Thus, all conditions (i), (ii) and (iii) hold. 

 

[Sufficiency] If the optimality conditions hold, then from (ii) we see that 

 

ℎ(𝑥) = 𝑥𝑇𝐴𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽) 

 

is convex. Moreover, from condition (i), we have ∇ℎ(𝑥∗) = 0 and therefore, 𝑥∗ is a global minimizer 

of ℎ. Thus, for the given 𝜆0 and (𝑢0; 𝑢) in the optimality conditions and for any feasible solution of 

eTRS, we have 

 

𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 ≥ 𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽)            

                             ≥ 𝑥∗𝑇𝐴 𝑥∗ + 2𝑎𝑇𝑥∗ + 𝜆0(‖𝑥∗‖2 −  1) + (𝑢𝑇𝑥∗ − 𝑢0)(𝑏𝑇𝑥∗ − 𝛽) 

= 𝑥∗𝑇𝐴𝑥∗ + 2𝑎𝑇𝑥∗.                                                        
 

This implies that 𝑥∗ is a global minimizer of eTRS. ∎ 

 

Theorem 2.2. Suppose that there exists 𝑥̅ ∈ ℝ𝑛 with ‖𝑥̅‖2 −  1 < 0 and 𝑏𝑇𝑥̅ − 𝛽 < 0. Then, we have 

 

min{𝑥𝑇 𝐴 𝑥 + 2𝑎𝑇𝑥 ∶ ‖𝑥‖2 ≤ 1, 𝑏𝑇𝑥 ≤ 𝛽}                                                                  
= max

𝜆0≥0,(𝑢0,𝑢)∈𝑆
min

𝑥
{𝑥𝑇 𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽)}, 

 

where 

 

𝑆 = {(𝑢0; 𝑢) | (𝑢𝑇𝑥 − 𝑢0) ≥ 0, ∀𝑥: ‖𝑥‖2 ≤ 1}, 
 

and the maximum is attained. 

 

Proof. It is easy to see that for every feasible point of eTRS, and every 𝜆0 ≥ 0 and (𝑢0, 𝑢) ∈ 𝑆, 

 

𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 ≥ 𝑥𝑇𝐴𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽). 
 

Therefore, 

 

min{𝑥𝑇𝐴𝑥 + 2𝑎𝑇𝑥 ∶ ‖𝑥‖2 ≤ 1, &𝑏𝑇𝑥 ≤ 𝛽}                                       
                          ≥ max

𝜆0≥0,(𝑢0,𝑢)∈𝑆
min

x
{𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽)}.  
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To show the reverse inequality, let 𝑥∗ be a global minimizer of eTRS. Then, there exist 𝜆0 ∈ ℝ+ and 
(𝑢0, 𝑢) ∈ 𝑆 such that the following conditions hold: 

 

• (2𝐴 + 2𝜆0𝐼 + 𝑏𝑢𝑇 + 𝑢𝑏𝑇)𝑥∗ = −(2𝑎 − 𝛽𝑢 − 𝑏𝑢0), 

• 𝜆0(‖𝑥∗‖2 −  1) = 0 and (𝑢𝑇𝑥∗ − 𝑢0)(𝑏𝑇𝑥∗ − 𝛽) = 0, 

• (2𝐴 + 2𝜆0𝐼 + 𝑏𝑢𝑇 + 𝑢𝑏𝑇) ≽ 0.  
 

We see that 

 

ℎ(𝑥) = 𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽) 

 

is convex, ∇ℎ(𝑥∗) = 0 and ∇2ℎ(𝑥∗) ≽ 0. Therefore, 𝑥∗ is a global minimizer of ℎ, i.e., 

 

𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 𝛿2) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽)              

≥ 𝑥∗𝑇𝐴𝑥∗ + 2𝑎𝑇𝑥∗ + 𝜆0(‖𝑥∗‖2 −  1) + (𝑢𝑇𝑥∗ − 𝑢0)(𝑏𝑇𝑥∗ − 𝛽) 

= 𝑥∗𝑇𝐴𝑥∗ + 2𝑎𝑇 𝑥∗.                                                                                   
 

Therefore, 

 

min{𝑥𝑇𝐴𝑥 + 2𝑎𝑇𝑥 ∶ ‖𝑥‖2 ≤ 1, 𝑏𝑇𝑥 ≤ 𝛽}                                                                  
≤ max

𝜆0≥0,(𝑢0; 𝑢)∈𝑆
min

𝑥
{𝑥𝑇𝐴𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽)}. 

 ∎ 

 

As we see, in general strong duality does not hold for eTRS which is the reason to consider conditions 

given in [1, 6, 7] to guarantee it. 

 

Corollary 2.2. If 𝑢 = 0 and 𝑢0 ≠ 0, then strong duality holds for eTRS. 

 

Proof. This follows from Theorem 2.2.  ∎ 

 

 

Form Theorem 2.2, we further have 

 

max
𝜆0≥0,(𝑢0;𝑢)∈𝑆

min
𝑥

{𝑥𝑇𝐴 𝑥 + 2𝑎𝑇𝑥 + 𝜆0(‖𝑥‖2 − 1) + (𝑢𝑇𝑥 − 𝑢0)(𝑏𝑇𝑥 − 𝛽)}  

= max   𝑧                                                                                                            

s. t.  (
−𝜆0 + 𝛽𝑢0 − 𝑧

1

2
(2𝑎 − 𝛽𝑢 − 𝑏𝑢0)𝑇

1

2
(2𝑎 − 𝛽𝑢 − 𝑏𝑢0) 𝐴 + 𝜆0 𝐼 +

1

2
( 𝑏𝑢𝑇 + 𝑢𝑏𝑇)

) ≽ 0, (5) 

‖𝑢‖ ≤ −𝑢0,                                                                             

𝜆0 ≥ 0,                                                                                     

 

which is an SOCP/SDP formulation of eTRS. In what follows, we show that this formulation is the 

dual of the SOCP/SDP formulation given in [2, 11]. Consider the Lagrange function of (5): 
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ℒ(𝑌, 𝑣, 𝑢, 𝑢0, 𝜆0 , 𝑧) = 𝑧 + (
−𝜆0 + 𝛽𝑢0 − 𝑧

1

2
(2𝑎 − 𝛽𝑢 − 𝑏𝑢0)𝑇

1

2
(2𝑎 − 𝛽𝑢 − 𝑏𝑢0) 𝐴 + 𝜆0 𝐼 +

1

2
( 𝑏𝑢𝑇 + 𝑢𝑏𝑇)

) ∙ 𝑌 + 𝑣𝑇 (
−𝑢0

𝑢
), 

 

 

where 𝑌 ≽ 0 and ‖𝑣̅‖ ≤ 𝑣0. Let 

 

𝑌 = (𝛼 𝑥𝑇

𝑥 𝑋
). 

 

Thus, the Lagrangian can be written as 

 

ℒ(𝑌, 𝑣, 𝑢, 𝑢0, 𝜆0 , 𝑧) = 𝑧 + (𝐴 + 𝜆0 𝐼 +
1

2
( 𝑏𝑢𝑇 + 𝑢𝑏𝑇)) ∙ 𝑋 + (2𝑎 − 𝛽𝑢 − 𝑏𝑢0)𝑇𝑥           

  +𝛼(−𝜆0 + 𝛽𝑢0 − 𝑧) + 𝑣̅𝑇𝑢 − 𝑣0𝑢0           
                                       = 𝐴 ∙ 𝑋 + 2𝑎𝑇𝑥 + (1 − 𝛼)𝑧 + 𝜆0(trace(𝑋) − 𝛼) + (𝑋𝑏 − 𝛽𝑥 + 𝑣̅)𝑇𝑢 

+(−𝑏𝑇𝑥 − 𝑣0 + 𝛽)𝑢0.                   
 

Therefore, the Lagrangian dual becomes 

 

min
(𝛼 𝑥𝑇

𝑥 𝑋
)≽0,‖𝑣̅‖≤𝑣0

max
𝜆0≥0,‖𝑢‖≤−𝑢0

ℒ(𝑌, 𝑣, 𝑢, 𝑢0, 𝜆0 , 𝑧)                                              

= min
(𝛼 𝑥𝑇

𝑥 𝑋
)≽0,‖𝑣̅‖≤𝑣0

max
𝜆0≥0,‖𝑢‖≤−𝑢0

𝐴 ∙ 𝑋 + 2𝑎𝑇𝑥 + (1 − 𝛼)𝑧 + 𝜆0(trace(𝑋) − 𝛼) 

                                                                        +(𝑋𝑏 − 𝛽𝑥 + 𝑣̅)𝑇𝑢 + (−𝑏𝑇𝑥 − 𝑣0 + 𝛽)𝑢0 

= min
(𝛼 𝑥𝑇

𝑥 𝑋
)≽0,‖𝑣̅‖≤𝑣0

𝒢(𝑋, 𝑥, 𝛼),                                                                                          

 

where 

 

𝒢(𝑋, 𝑥, 𝛼) = max
𝜆0≥0,‖𝑢‖≤−𝑢0

𝐴 ∙ 𝑋 + 2𝑎𝑇𝑥 + (1 − 𝛼)𝑧 + 𝜆0(trace(𝑋) − 𝛼) 

                                                             +(𝑋𝑏 − 𝛽𝑥 + 𝑣̅)𝑇𝑢 + (−𝑏𝑇𝑥 − 𝑣0 + 𝛽)𝑢0 

 

We further have 

 

𝒢(𝑋, 𝑥, 𝛼) = {
𝐴 ∙ 𝑋 + 2𝑎𝑇𝑥,         if  1 − 𝛼 = 0,   trace(𝑋) − 𝛼 ≤ 0                   

                                        𝑋𝑏 − 𝛽𝑥 + 𝑣̅ = 0,   − 𝑏𝑇𝑥 − 𝑣0 + 𝛽 ≥ 0
∞,                              o. w.                                                                        

 

 

Thus, the Lagrangian dual becomes 

 

min    𝐴 ∙ 𝑋 + 2𝑎𝑇𝑥  

         s. t.     trace(𝑋) − 1 ≤ 0,  

                    𝑋𝑏 − 𝛽𝑥 + 𝑣̅ = 0,  

                       −𝑏𝑇𝑥 − 𝑣0 + 𝛽 ≥ 0, (6) 

     ‖𝑣̅‖ ≤ 𝑣0,  

    𝑋 ≽ 𝑥𝑥𝑇 .  
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From (6), we have 

 

𝑣̅ = 𝛽𝑥 − 𝑋𝑏,                                                       
𝑣0 ≤ −𝑏𝑇𝑥 + 𝛽,                                                   
‖𝑣̅‖ ≤ 𝑣0 ⇒ ‖𝛽𝑥 − 𝑋𝑏‖ ≤ 𝑣0 < −𝑏𝑇𝑥 + 𝛽. 

 

Therefore, (6) can be written as 

 

min    𝐴 ∙ 𝑋 + 2𝑎𝑇𝑥  

         s. t.     trace(𝑋) ≤ 1,         

                                  ‖𝛽𝑥 − 𝑋𝑏‖ ≤ −𝑏𝑇𝑥 + 𝛽, (7) 

      𝑋 ≽ 𝑥𝑥𝑇 .  

 

This SOCP/SDP formulation is exactly the one given in [2, 11], but our derivation is completely 

different. 

 

Corollary 2.3. If at the optimal solution of (7), 𝑋∗ = 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ (𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ )
𝑇

, then 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗  is 

optimal for (1). 

 

2.1. Rank One Decomposition Procedure 

 

In order to derive an optimal solution for eTRS from a solution of (7) that is not rank one, here we 

give a rank one decomposition approach similar to the one in [12]. The following lemma is used for 

this derivation. 

 

Lemma 2.1. [12] Let 𝐺 be an arbitrary symmetric matrix and 𝑋 be a positive semidefinite matrix with 

rank 𝑟. Further, suppose that 𝐺 ∙ 𝑋 ≥ 0. Then, there exists a rank-one decomposition of 𝑋 such that 

 

𝑋 = ∑ 𝑥𝑖𝑥𝑖
𝑇

𝑟

𝑖=1

 

 

and 𝑥𝑖
𝑇𝐺𝑥𝑖 ≥ 0, for 𝑖 = 1, ⋯ , 𝑟. If, in particular, 𝐺 ∙ 𝑋 = 0, then 𝑥𝑖

𝑇𝐺𝑥𝑖 = 0, for 𝑖 = 1, ⋯ , 𝑟. 

 

Let 𝑋∗ be an optimal solution for (7) which is not rank one and consider the following notations: 

 

𝑌∗ = (
1 (𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ )
𝑇

𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ 𝑋∗

) ,     𝐽 = (
1 0
0 −𝐼𝑛

) ,     𝑔 = (
𝛽

−𝑏
). 

 

Obviously, we have 

 

‖𝛽𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ − 𝑋∗𝑏‖ ≤ −𝑏𝑇𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ + 𝛽 ⇔ (
𝛽 − 𝑏𝑇𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗

𝛽𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ − 𝑋∗𝑏

) = 𝑌∗𝑔 ∈ 𝐿𝑛+1, 

trace(𝑋∗) ≤ 1 ⇔ 𝐽 ∙ 𝑌∗ ≥ 0.                                                                                                  
 

The following cases may occur. 
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Case 1. 𝑌∗𝑔 = 0. From Lemma 2.1, there exists a rank one decomposition of 𝑌∗ as follows: 

 

𝑌∗ = ∑(𝑦𝑖
∗)(𝑦𝑖

∗)𝑇

𝑟

𝑖=1

, 

 

where 𝑟 is the rank of 𝑌∗ such that 𝐽 ∙ [(𝑦𝑖
∗)(𝑦𝑖

∗)𝑇] ≥ 0, for 𝑖 = 1, … , 𝑟. Moreover, 𝐽 ∙ [(𝑦𝑖
∗)(𝑦𝑖

∗)𝑇] =
0, for 𝑖 = 1, … , 𝑟, if 𝐽 ∙ 𝑌∗ = 0. We may choose the sign of the 𝑦𝑖

∗ to ensure that 𝑦𝑖
∗ ∈ 𝐿𝑛+1, 𝑖 =

1, … , 𝑟. 

 

By linear independence of the 𝑦𝑖
∗, we get 𝑔𝑇𝑦𝑖

∗ = 0, 𝑖 = 1, … , 𝑟. Let 𝑦𝑖
∗ = (

𝑡𝑖
∗

𝑦̅𝑖
∗ 

), 𝑖 = 1, … , 𝑟. Since 

𝑦𝑖
∗ ∈ 𝐿𝑛+1 and 𝑦𝑖

∗ ≠ 0, we have 𝑡𝑖
∗ > 0, 𝑖 = 1, … , 𝑟. Take any 1 ≤ 𝑗 ≤ 𝑟; it follows that 

(
1

𝑦̅𝑖
∗/𝑡𝑖

∗) (1 [𝑦̅𝑖
∗/𝑡𝑖

∗]𝑇) is optimal for (7). 

 

Case 2. 𝐽 ∙ 𝑌∗ > 0 and 𝑌∗𝑔 ≠ 0. Due to the complementarity condition, we must have 𝜆0 = 0. Let 

𝑦𝑔
∗: = 𝑌∗𝑔 = (

𝑡𝑔
∗

𝑦̅𝑔
∗). Since 𝑦𝑔

∗ ∈ 𝐿𝑛+1 by feasibility, we know that 𝑡𝑔
∗ > 0. Moreover, 𝐽 ∙ [𝑦𝑔

∗(𝑦𝑔
∗)

𝑇
] =

(𝑡𝑔
∗)

2
− ‖𝑦̅𝑔

∗‖2 ≥ 0, and 𝑦𝑔
∗(𝑦𝑔

∗)
𝑇

𝑔 = (𝑔𝑇𝑌∗𝑎)𝑌∗𝑎 ∈ 𝐿𝑛+1. Therefore, 𝑦𝑔
∗(𝑦𝑔

∗)
𝑇

/(𝑡𝑔
∗)

2
 is optimal for 

(7) as it is feasible and satisfies the complementarity conditions. 

 

Case 3. 𝐽 ∙ 𝑌∗ = 0 and 𝑌∗𝑔 ≠ 0. Denote 𝑦𝑔
∗ ∶= 𝑌∗𝑔 ≠ 0. Let 𝑌̃ = 𝑌∗ −

𝑌∗𝑔𝑔𝑇𝑌∗

𝑔𝑇𝑌∗𝑔
≽ 0. It is easy to 

see that 𝑌̃𝑔 = 0. 

 

Case 3.1. 𝐽 ∙ [𝑦𝑔
∗(𝑦𝑔

∗)
𝑇

] = 0. In this subcase, we have that 
𝑦𝑔

∗ (𝑦𝑔
∗ )

𝑇

(𝑡𝑔
∗ )

2  is optimal for (7). 

 

Case 3.2. 𝐽 ∙ [𝑦𝑔
∗ (𝑦𝑔

∗)
𝑇

] > 0. In this subcase, we have 

 

𝐽 ∙ 𝑌̃ = 𝐽 ∙ 𝑌∗ − 𝐽 ∙ [𝑦𝑔
∗(𝑦𝑔

∗)
𝑇

] /(𝑔𝑇𝑌∗𝑔) < 0. (8) 

 

Now, let us decompose 𝑌̃ as 

 

𝑌̃ = ∑ 𝑦̃𝑖𝑦𝑖
𝑇

𝑠

𝑖=1

, 

 

where 𝑠 = rank(𝑌̃) > 0. Since 𝑌̃𝑔 = 0, we have 𝑦̃𝑖
𝑇𝑔 = 0, for 𝑖 = 1, … , 𝑠. Choose 𝑗 such that 

 

𝐽 ∙ 𝑦̃𝑗(𝑦̃𝑗)
𝑇

< 0. 

 

Such a 𝑗 must exist due to (8). Consider the following quadratic equation: 

 

𝐽 ∙ [(𝑦𝑔
∗ + 𝛼 𝑦̃𝑗)( 𝑦𝑔

∗ + 𝛼𝑦̃𝑗)
𝑇

] = 0. 

 [
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This equation has two distinct real roots having opposite signs. Choose the one such that the first 

component of 𝑦𝑔
∗ + 𝛼𝑦̃𝑗 is positive. Denote 

 

𝑦𝑔
∗ + 𝛼𝑦̃𝑗 ∶= (

𝑡∗

𝑦̅∗ 
). 

 

In this case, since 𝐽 ∙ [𝑦𝑔
∗(𝑦𝑔

∗)
𝑇

] > 0, it follows that 𝑦𝑔
∗ is in the strict interior of the cone 𝐿𝑛+1. Due 

to the complementarity, we must have (𝑢0
∗ ; 𝑢∗) = 0. Let us consider the solution 

(
1

𝑦̅∗/𝑡∗) (1 (𝑦̅∗/𝑡∗)𝑇). It is easy to check that this solution is both feasible and complementary to 

the dual optimal solution  (𝜆0
∗ ; 𝑢0

∗ ; 𝑢∗), and thus optimal for (7). 

 

3. Numerical Examples 
 

Here, we are to provide various examples explaining different cases that might occur for the 

optimal solution of eTRS. 

 

Example 3.1. Consider the following example: 

 

𝐴 = (
−4 0 0
0 12 0
0 0 11

) , 𝑎 = (
−4
0
0

) , 𝑏 = (
20
8

−14
) , 𝛿 = 1, 𝛽 = 5. 

  

We have 𝜆1 = −4 and dim(Ker (𝐴 − 𝜆min(𝐴)𝐼𝑛)) = 1 ≱ 2. Thus, the dimension condition (4) fails 

to hold. Moreover, the new dimension condition given in [6] also fails to hold, since 

 

rank([𝐴 − 𝜆1𝐼𝑛 𝑏]) = rank (
0 0
0 8
0 0

0 20
0 8
7 −14

) = 3 ≰ 2. 

 

The optimal objective value of SDP relaxation (2) is −7.6827. The global solution of TRS is 𝑥𝑔
∗ =

[1, 0, 0]𝑇, which is infeasible for eTRS, and LNGM of TRS is 𝑥𝑙
∗ = [−1, 0, 0]𝑇, which is feasible for 

eTRS with the objective value of  4.0000. Moreover, for (7), the optimal solution is 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ =

[0.6266, −0.2169, 0.4140]𝑇 and 𝑋∗ = 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ (𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ )
𝑇
. Thus, 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗  is optimal for (1) 

with the objective value of  −4.1329. As we see, the classical SDP relaxation (2) is not exact for this 

example and subsequently strong duality fails to hold. Also, it is worth to note that at the optimal 

solution, the linear constraint is active while the trust region constraint is not active. 

 

Example 3.2. Consider the following example: 

 

𝐴 = (
−4 0 0
0 5 0
0 0 3

) , 𝑎 = (
0.5714

0
0

) , 𝑏 = (
−17
14
−2

) , 𝛿 = 1, 𝛽 = 4.4. 

 

We have 𝜆1 = −4 and dim(Ker (𝐴 − 𝜆min(𝐴)𝐼𝑛)) = 1 ≱ 2. Thus, the dimension condition (4) fails 

to hold for this example as well. Also, the new dimension condition of [6] fails to hold here, since 
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rank([𝐴 − 𝜆1𝐼𝑛 𝑏]) = rank (
0 0
0 5
0 0

0 −17
0 14
3 −2

) = 3 ≰ 2. 

 

The global solution of TRS is 𝑥𝑔
∗ = [−1, 0, 0]𝑇, which is infeasible for eTRS, and LNGM of TRS is 

𝑥𝑙
∗ = [1, 0, 0]𝑇, which is feasible for eTRS with the objective value of −2.4972. The optimal 

objective value of the SDP relaxation (2) is −5.4326 and the optimal objective value of the 

SOCP/SDP formulation (7) is −2.4972, which is also the optimal objective value of (1). Moreover, 

for (7), the optimal solution is 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ = [1, 0, 0]𝑇 and 𝑋∗ = 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ (𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ )

𝑇
, and thus 

𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗  is optimal for (1). Here also strong duality fails to hold like the previous example. Finally, 

at the optimal solution, the linear constraint is not active while the trust region constraint is active. 

 

Example 3.3. Consider the following example where at optimality both constraints are active: 

 

𝐴 = (
−4 0 0
0 −8 0
0 0 2

) , 𝑎 = (
0

2.2857
0

) , 𝑏 = (
4

−15
18

) , 𝛿 = 1, 𝛽 = 4. 

 

Here, we have 𝜆1 = −8 and dim(Ker (𝐴 − 𝜆min(𝐴)𝐼𝑛)) = 1 ≱ 2. Thus, the dimension condition (4) 

fails to hold. Moreover, the new dimension condition of [6] also fails to hold, since 

 

rank([𝐴 − 𝜆1𝐼𝑛 𝑏]) = rank (
4 0
0 0
0 0

0 4
0 −15

10 18
) = 3 ≰ 2. 

 

The global solution of TRS is 𝑥𝑔
∗ = [0, −1, 0]𝑇, which is infeasible for eTRS, and LNGM of TRS is 

𝑥𝑙
∗ = [0, 1, 0]𝑇, which is feasible for eTRS with the objective value of −3.4286. The optimal 

objective value of the SDP relaxation (2) is −11.0642 and the optimal objective value of the 

SOCP/SDP formulation (7) is −9.7551, which is also the optimal objective value of (1). The optimal 

solution of (7) is  𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ = [−0.2885, −0.8567, −0.4276]𝑇 and 𝑋∗ = 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ (𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ )

𝑇
, 

and thus 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗  is optimal for (1). 

 

In all three examples above, the optimal solution of (7) is rank one, and thus we easily have the 

solution of (1). However, this is not the case, in general, as illustrated by the following example. 

 

Example 3.4. Let 

 

𝐴 = (
−4 0 0
0 1 0
0 0 −3

) , 𝑎 = (
0.5714

0
0

) , 𝑏 = (
−6
−3
0

) , 𝛿 = 1, 𝛽 = 2.2. 

 

We have 𝜆1 = −4 and dim(Ker (𝐴 − 𝜆min(𝐴)𝐼𝑛)) = 1 ≱ 2. Thus, the dimension condition (4) does 

not hold. Moreover, the new dimension condition of [6] also fails to hold, since 

 

rank([𝐴 − 𝜆1𝐼𝑛 𝑏]) = rank (
0 0
0 5
0 0

0 −6
0 −3
1 0

) = 3 ≰ 2. 
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The global solution of TRS is 𝑥̅∗ = [−1, 0, 0]𝑇, which is again infeasible for eTRS, and LNGM of 

TRS is 𝑥̅ = [1, 0, 0]𝑇, which is feasible for eTRS with the objective value of −2.8572. The optimal 

objective value of the SDP relaxation (2) is −5.4354 and the optimal objective value of the 

SOCP/SDP formulation (7) is −3.6121, which is also the optimal objective value of (1). The optimal 

solution of (7) is 

 

𝑋∗ = (
0.1842 −0.0537 0
−0.053 0.0156 0

0 0 0.8001
) , 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ = (
−0.4292
0.1251

0
), 

 

obviously showing 𝑋∗ ≠ 𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝
∗ (𝑥𝑠𝑜𝑐𝑝/𝑠𝑑𝑝

∗ )
𝑇
. By the rank-one decomposition procedure 

discussed in the previous section, one gets the optimal solution  𝑥∗ = [−0.4292, 0.1251, −0.8945]𝑇 

for (1). 

 

4. Conclusions 

 

Using a variant of the 𝑆-Lemma, we presented the necessary and sufficient optimality conditions 

for the extended trust region subproblem leading to an SOCP/SDP formulation of it. Our derived 

formulation turned out to be the dual of the SOCP/SDP formulation given in [2, 11] using a 

completely different approach. Extending this idea for several linear inequality constraints could be 

an interesting future research direction. 
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