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On SOCP/SDP Formulation of the Extended Trust
Region Subproblem

S. Fallahit, M. Salahi®", S. Ansary Karbasy®

We consider the extended trust region subproblem (eTRS) as the minimization of an indefinite
quadratic function subject to the intersection of unit ball with a single linear inequality constraint.
Using a variation of the S-Lemma, we derive the necessary and sufficient optimality conditions for
eTRS. Then, an SOCP/SDP formulation is introduced for the problem. Finally, several illustrative
examples are provided.
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1. Introduction

Consider the following extended trust region subproblem (eTRS)

minx” Ax + 2aTx
st lxllFP<1 1)
bTx < B,

where AT = A € R™" is indefinite, a, b € R™ and B € R. Since A is indefinite, this is a nonconvex
optimization problem and semidefinite programming (SDP) relaxation is not tight in general. If b =
0 and 8 = 0, then eTRS reduces to the well-known trust region subproblem (TRS) which is the key
subproblem in solving nonlinear optimization problems [4]. Although TRS is a nonconvex problem,
it enjoys strong duality and exact SDP relaxation exists for it [5]. However, the following classical
SDP relaxation is not exact for eTRS as it will also be shown in the numerical results section:

minA - X + 2a’x

s.t. trace(X) <1,
bTx < B, )
X = xxT.

First, the authors of [11] studied eTRS and proposed an exact SOCP/SDP (Second order cone
program/Semidefinite program) formulation for it. Due to the importance of eTRS also in solving
general nonlinear optimization problems, several variants of it have been the focus of current research
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[1,2,3,6,7,9]. Beck and Eldar [1] studied eTRS under the condition that dim(Ker(A — /111)) > 2,
which is equivalent to

A =2y, (3)

where A; and A, are the two smallest eigenvalues of A. Under this condition, they showed the
necessary and sufficient optimality conditions for eTRS:

0] 2(A+ AD)x = —(2a + ub),

(i) A+ =0,

@iy AllxI>P-=1D =0, wu®d"x-p)=0,
(ivy, Au=0.

Jeyakumar and Li [7] showed that dim(Ker(A — Alln)) > 2, together with the Slater's condition
ensures that a set of combined first and second-order Lagrange multiplier conditions are necessary
and sufficient for the global optimality of eTRS and consequently for strong duality. In [6], the authors
improved upon the dimension condition by Jeyakumar and Li under which eTRS admits an exact
semidefinite relaxation. They provided the following condition:

rank([A — 441, b]) <n-1. 4)

It should be noted that TRS has at most one local-nonglobal minimum (LNGM) [8], which is a
candidate for the optimal solution of eTRS if it is feasible. An efficient algorithm for computing
LNGM is given in [10]. All the above rank conditions guarantee that the global solution of eTRS does
not happen at the LNGM of TRS. Most recently, in [2] the authors derived the SOCP/SDP
reformulation of [11] by a different approach and extended it to the cases where more than one linear
constraint exist. Here, using a variant of the S-Lemma, we first derive the necessary and sufficient
optimality conditions for eTRS leading to an SOCP/SDP formulation. Then, we establish that our
derived formulation is the dual of the formulation given in [2, 11]. Finally, we present several
numerical examples illustrating various cases of the optimal solution of eTRS.

2. Global Optimality Conditions for eTRS

We define the dual cone of Sas S* = {y : (y,x) = 0, Vx € S}. The following proposition, which
is a variant of the S-Lemma, plays a key role in the proof of the optimality conditions.

Proposition 2.1. Let f, g: R" — R be quadratic functions with g(x) = x" A x + ajx + ¢4, b € R",
and B € R. Moreover, assume that g(x) is convex and there exists an x € R™ such that b”x < 8 and
g(x) < 0. Then, the following two statements are equivalent:

1. The system

£ <0,
g(x) <0,
bTx < B,
x € R™,

is not solvable.
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2. There is a nonnegative multiplier y > 0, a scalar u, € R and a vector u € R" such that

fO)+yg@) + W'x—u)’x-p)=0, VxeR"

ue{xeR":xTA;x <0, alx<o},
(M) ef{(®):x=-1 gw=<0 ¢+alx<ol.

Proof. See [11, Corollary 7].
Corollary 2.1. If g(x) = ||x]|? — 1, then item 2 in Proposition 1 is equivalent to
fO) +yg() + @W'x —ug)(b’™x =) 20, Vx€ER"
(00 € s
where L, is the Lorentz cone defined as follows:
Lps1 = {x = (x0; %) € R™ | [|%]] < x0}.

In the following theorem, we give the optimality conditions for eTRS. Our proof follows the idea
of [7].

Theorem 2.1. Suppose that the strict feasibility constraint holds for eTRS, i.e.,
3% € R® with ||®]|2—-1<0, bTx — B < 0.

Moreover, let x* be a feasible point for eTRS. Then, x* is a global minimizer of eTRS if, and only if,
there exist A, € R, and (—ug,u) € L™ such that the following conditions hold:

o () (2A+ 22yI + buT + ubT)x* = —(2a — fu — buy),
o (i) UIx* 1> = 1) =0, x* —upy)(b"x* = ) = 0,
o (iii) (24 + 2251 + bu” +ub?) = 0.

Proof. [Necessity] Let x* be a global minimizer of eTRS. Then, the following system of inequalities
has no solution:

xTAx+2a"x+y <0,
Ix|>?—1<0,
bTx < B,

where y = —(x*TAx* + 2a”x*). Thus, by Proposition 2.1 there exist A > 0 and a vector (u; u) €
R"™*1 such that

xTAx +2aTx +y + 2,(lIx]1? = 1) + WTx —ug)(bTx — B) =0, Vx € R
anduTx —uy >0, Vx € R" : ||x||? < §2. Let x = x*. Then, we have

Ao(llx*lI? = 1) + W'x™ —up)(b"x" — p) = 0.
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Now, as x* is feasible for eTRS, 1, = 0, and (u”x* — uy) > 0 it follows that
Ao(llx™lI? = 1) =0, ('x* —up)(d"x"—p)=0.
Let
h(x) =xTAx +2aTx + 2,(JIx]1? = 1) + Wx —ug)(bTx — p).
Then, obviously x* is a global minimizer of h, and so Vh(x*) = 0 and V2h(x*) > 0, i.e.,

(24 + 22y I + bu” + ubT)x* = —(2a — fu — buy),
(24 + 2241 + bu” +ubT) = 0.

Thus, all conditions (i), (ii) and (iii) hold.
[Sufficiency] If the optimality conditions hold, then from (ii) we see that
h(x) = xTAx + 2a"x + 25(||x]|? = 1) + WTx — ug)(bTx — B)
is convex. Moreover, from condition (i), we have Vh(x*) = 0 and therefore, x* is a global minimizer
of h. Thus, for the given 4, and (uy; w) in the optimality conditions and for any feasible solution of

eTRS, we have

xTAx+2aTx > xTAx +2a"x + A,(Jlx]1? = 1) + (uTx —ug)(bTx — B)
>xTAx* +2aTx* + A,(lIx*|12 — 1) + WTx* —up)(bTx* — B)
=x*TAx* + 2aTx".

This implies that x* is a global minimizer of eTRS. [ ]
Theorem 2.2. Suppose that there exists X € R™ with ||x||> — 1 < 0and b”x — 8 < 0. Then, we have

min{x” Ax +2aTx : ||x]|? < 1,bTx < B}
= max_ min{xT Ax+ 2a"x + 2,(|x||> = 1) + WTx —uy)(bTx — )},

N 2020,(ug,u)es x
where
S={upw | W'x—up) =0, vx:llx|l* <1},
and the maximum is attained.
Proof. It is easy to see that for every feasible point of eTRS, and every 4, = 0 and (uy,u) € S,
xTAx +2aTx > xTAx + 2aTx + 2,(|Ix]|? = 1) + wx — ug)(bTx — B).
Therefore,

min{xTAx + 2aTx : ||x||? < 1,&bTx < B}
max  min{xTAx + 2a"x + 1,(J|lx]|? — 1) + wTx —uy)(bTx — B)}.

=
2020,(ugu)esS x


http://iors.ir/journal/article-1-588-en.html

[ Downloaded from iors.ir on 2025-10-18 ]

On SOCP/SDP Formulation of the Extended Trust Region Subproblem 7

To show the reverse inequality, let x* be a global minimizer of eTRS. Then, there exist 1, € R, and
(ug,u) € S such that the following conditions hold:

o (2A+ 221 + bu" + ubM)x* = —(2a — pu — buy),
hd AO(||x*||2 — 1) =0and (u"x*— uo)(bT *—B)=0,
o (2A+ 2251 + buT +ub") = 0.
We see that
h(X) = xTA x + ZaTx + AO(HXHZ — 1) + (uTx — uo)(bTx _ ﬁ)

is convex, Vh(x*) = 0 and V2h(x*) = 0. Therefore, x* is a global minimizer of h, i.e.,

xTAx +2aTx + 2(J|lx]|1? = 62) + (uTx —ug)(bTx — B)

> x*TAx* + 2aTx* + A, (Ix* 112 — 1) + WTx* —uy)(bTx* — B)
— T * T ..%

=x" Ax* + 2a" x".

Therefore,

min{xTAx + 2aTx : ||x]|> < 1,bTx < B}

< max _ min{xTAx + 2aTx + 2,(Jlx]1? = 1) + (uTx —uy)(bTx — B)}.
1020,('“.0; u)ES X

As we see, in general strong duality does not hold for eTRS which is the reason to consider conditions
givenin [1, 6, 7] to guarantee it.

Corollary 2.2. If u = 0 and u, # 0, then strong duality holds for eTRS.

Proof. This follows from Theorem 2.2. ]

Form Theorem 2.2, we further have

T T 2 _ T, _ T, _
Aozor‘?ua}))fu)esmxm{x Ax+2a" x+ (x| =1+ @Ww'x—uy)(b'x — B)}

= max z
1
—Ao+ Pug —z 3 (2a — Bu — buy)T
st | 1 =0, )
E(Za—ﬁu—buo) A +AOI+§(buT +ub?)
lull < —uy,
10> 0,

which is an SOCP/SDP formulation of eTRS. In what follows, we show that this formulation is the
dual of the SOCP/SDP formulation given in [2, 11]. Consider the Lagrange function of (5):
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1
—Ao+ Puy —z 2 (2a — Bu — buy)T

LY, v,u,ug, Ay,2z) =2z + Y + 07 (—uo)’

1
E(Za—ﬁu—buo) A+/101+§(buT+ubT) “

where Y > 0 and ||7|| < v,. Let

Thus, the Lagrangian can be written as

1
LY, v,u,uy,Ag,2) =2+ (A + 201 +§(buT +ubT)> ‘X + (2a — pu — buy)Tx

+a(—2¢ + Buy — z) + Tu — vouy
=A-X+2a"x+ (1—a)z+ Ay(trace(X) —a) + (Xb — fx + v)Tu
+(=bTx — vy + Buy.

Therefore, the Lagrangian dual becomes

in max L(Y,v,u,ugy, Ag,2)

T _ > <—
(a' 3;( >0,||v||5v0}‘0—0»”u”— Ug

= min max A-X+2a"x+ (1 —a)z+ Ay(trace(X) — a)

T _ > <—
(a' 3;{ >0,”v”5v010—0»”u”— Ug

+(Xb—Bx + ) Tu+ (—=bTx — vy + Buy
= min G(X,x,a),

a xIT -
=0,||7||<v,
( X) [ITll=vo

where

GX,x,a) = P A-X+2a"x+ (1 —a)z+ Ay(trace(X) — a)
020,[|luf|l=s—ug
+(Xb—Bx+ ) Tu+ (=bTx — vy + Bug

We further have

A-X+2aTx, ifl—a=0, trace(X)—a <0
GgX,x,a) = Xb—Bx+v=0, —bTx—vy+B=0
0, 0.W.

Thus, the Lagrangian dual becomes

min A-X + 2aTx
s.t. trace(X)—1<0,
Xb—fx+v=0,
—bTx —vy+ B =0, (6)
7]l < v,
X = xxT.


http://iors.ir/journal/article-1-588-en.html

[ Downloaded from iors.ir on 2025-10-18 ]

On SOCP/SDP Formulation of the Extended Trust Region Subproblem 9

From (6), we have

v = fx — Xb,
vy < —bTx + B,
17l < vo = |IBx — Xb|| < vy < —bTx + f.

Therefore, (6) can be written as

min A-X +2a’x

s.t. trace(X) <1,
|Bx — Xb|| < —b"x + B, (7
X = xxT.

This SOCP/SDP formulation is exactly the one given in [2, 11], but our derivation is completely
different.

Corollary 2.3. If at the optimal solution of (7), X* = x;‘ocp/sdp(x;‘ocp/sdp)T, then xgocp /sap 1S
optimal for (1).

2.1.Rank One Decomposition Procedure

In order to derive an optimal solution for eTRS from a solution of (7) that is not rank one, here we
give a rank one decomposition approach similar to the one in [12]. The following lemma is used for
this derivation.

Lemma 2.1. [12] Let G be an arbitrary symmetric matrix and X be a positive semidefinite matrix with
rank r. Further, suppose that G - X > 0. Then, there exists a rank-one decomposition of X such that

r

X = ExixiT

i=1
and x/Gx; = 0,fori = 1,---,r. If, in particular, G - X = 0, thenx/ Gx; = 0, fori = 1,---,r.
Let X* be an optimal solution for (7) which is not rank one and consider the following notations:
o < 1 (x:ocp/sdp)T> 1= %) 9= (%)
Xsocp/sdp X* ’ 0 —I)” —b
Obviously, we have

T ..*
/3 —b xsocp/sdp

ﬁx;ocp/sdp —X'b

”Bx;ocp/sdp —X'b | < _bTx;ocp/sdp +p e < > = Y*g € Lpy1,

trace(X*) <1 J-Y*>0.

The following cases may occur.
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Case 1. Y*g = 0. From Lemma 2.1, there exists a rank one decomposition of Y* as follows:

= Zr:(yi*)(y{‘)T,
i=1

where 7 is the rank of Y* such that J - [(y;) (y;)T] = 0, for i = 1,...,r. Moreover, ] - [(y)(y)T] =
0, fori=1,..,r, if J-Y* =0. We may choose the sign of the y; to ensure that y; € L,,, 4, i =
1,..,r.

L t; :
By linear independence of the y;, we get gy; = 0,i = 1,...,7. Lety; = (yi) i=1,..,r.Since
l
yi €L,y and y; #0, we have t; >0, i=1,..,r. Take any 1<j<r; it follows that
—% *1TYN ; H
(}71*/t )(1 [y /t:1") is optimal for (7).

Case2./-Y* > 0andY*g # 0. Due to the complementarity condition, we must have 1, = 0. Let
t*

V=Yg = <J_/g*>. Since yg € Ly by feasibility, we know that t; > 0. Moreover, J - [yg*(yg)T] =
9

(¢ ) —||7;11? = 0,and yg(yg) g = (g"Y*a)Y*a € L,,,. Therefore, yg(yg) /(& ) is optimal for
(7)asitis fea5|ble and satisfies the complementarity conditions.

Ty *

Case3./-Y*=0andY*g # 0. Denote y; := Y*g # 0. Let ¥ = v* — Y;‘;i*s
seethat Yg = 0.

= 0. Itiseasy to

Case 3.1/ - [y;(v;)"] = 0. In this subcase, we have that y‘éy;’)

9

is optimal for (7).

Case3.2.] - [y, (yg)T] > 0. In this subcase, we have
J =]y =] |y(5) | /T g) < 0. (8)

Now, let us decompose Y as

1%

[

where s = rank(¥) > 0. Since Yg = 0, we have 7/ g = 0, for i = 1, ..., s. Choose j such that

-5 <o.

Such a j must exist due to (8). Consider the following quadratic equation:

J- [(yg +ay;)(y; + ayj)T] - 0.
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This equation has two distinct real roots having opposite signs. Choose the one such that the first
component of y; + ay; is positive. Denote

. < t*

In this case, since J - [yg(yg*)T] > 0, it follows that y, is in the strict interior of the cone L,,,. Due
to the complementarity, we must have (ug;u*)=0. Let us consider the solution

(}7*}“) (1 @ /t)7T). It is easy to check that this solution is both feasible and complementary to
the dual optimal solution (Ag; ug; u*), and thus optimal for (7).

3. Numerical Examples

Here, we are to provide various examples explaining different cases that might occur for the
optimal solution of eTRS.

Example 3.1. Consider the following example:

-4 0 O —4 20
A=<0 12 O),a=<0),b=(8>,5=1,ﬁ=5-
0 0 11 0 -14

We have 1, = —4 and dim(Ker (A- Amin(A)In)) = 1 £ 2. Thus, the dimension condition (4) fails
to hold. Moreover, the new dimension condition given in [6] also fails to hold, since

0 0 0 20
rank([A — 441, b]) =rank[0 8 0 8 |=3<«2.
0 0 7 -—-14

The optimal objective value of SDP relaxation (2) is —7.6827. The global solution of TRS is x; =
[1,0,0]7, which is infeasible for eTRS, and LNGM of TRS is x; = [—1, 0, 0]7, which is feasible for

*

eTRS with the objective value of 4.0000. Moreover, for (7), the optimal solution is xgoc /5ap =

[0.6266,—0.2169, 0.4140]7 and X* = x;OCp/sdp(x;OCp/sdp)T. Thus, Xgocp/sap 1S Optimal for (1)

with the objective value of —4.1329. As we see, the classical SDP relaxation (2) is not exact for this
example and subsequently strong duality fails to hold. Also, it is worth to note that at the optimal
solution, the linear constraint is active while the trust region constraint is not active.

Example 3.2. Consider the following example:

-4 0 0 0.5714 ~17
A=(0 5 0),a=| o |,b=|14 |.6=18=44
0 0 3 0 -2

We have 4; = —4 and dim(Ker (A — Amin(4)1,)) = 1 £ 2. Thus, the dimension condition (4) fails
to hold for this example as well. Also, the new dimension condition of [6] fails to hold here, since
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0 0 0 -17
rank([A — A,1, b]) = rank <0 5 0 14 ) =3 %2
0 0 3 -2

The global solution of TRS is x; = [-1,0, 0]7, which is infeasible for eTRS, and LNGM of TRS is
x; =[1,0,0]7, which is feasible for eTRS with the objective value of —2.4972. The optimal
objective value of the SDP relaxation (2) is —5.4326 and the optimal objective value of the
SOCP/SDP formulation (7) is —2.4972, which is also the optimal objective value of (1). Moreover,
for (7), the optimal solution is x;,c,/sqp = [1,0,0]7 and X* = x;*ocp/sdp(x;‘ocp/sdp)T, and thus
Xsocp/sap 1S OPtimal for (1). Here also strong duality fails to hold like the previous example. Finally,
at the optimal solution, the linear constraint is not active while the trust region constraint is active.

Example 3.3. Consider the following example where at optimality both constraints are active:

-4 0 O 0 4
A= 0 -8 0|,a=(22857),b=|-15|,6=1,p=4.
0 0 2 0 18

Here, we have 2, = —8 and dim(Ker (4 — Apin(A)1,,)) = 1 £ 2. Thus, the dimension condition (4)
fails to hold. Moreover, the new dimension condition of [6] also fails to hold, since

4 0 O 4
rank([A — AL, b])=rank[0 0 0 —-15|=3<%2.
0 0 10 18

The global solution of TRS is x; = [0,—1,0]7, which is infeasible for eTRS, and LNGM of TRS is
x; =[0,1,0]7, which is feasible for eTRS with the objective value of —3.4286. The optimal
objective value of the SDP relaxation (2) is —11.0642 and the optimal objective value of the
SOCP/SDP formulation (7) is —9.7551, which is also the optimal objective value of (1). The optimal

solution of (7) is  x5ocp/sap = [—0.2885,—0.8567,—0.4276]" and X* = x;,cp/sdp(x;ocp/sdp)T,
and thus x;,¢p,/sap IS Optimal for (1).

In all three examples above, the optimal solution of (7) is rank one, and thus we easily have the
solution of (1). However, this is not the case, in general, as illustrated by the following example.

Example 3.4. Let

-4 0 0 0.5714 -6
A=<0 1 O),a:( 0 >,b=<—3),6=1,ﬂ:2.2.
0 0 -3 0 0

We have 4, = —4 and dim(Ker (4 — Ayin(A)1,,)) = 1 £ 2. Thus, the dimension condition (4) does
not hold. Moreover, the new dimension condition of [6] also fails to hold, since

0 0 0 -6
rank([A — A1, b]) = rank (0 50 —3) =32
0 01 O
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The global solution of TRS is x* = [—1,0,0]7, which is again infeasible for eTRS, and LNGM of
TRS is ¥ = [1,0,0]7, which is feasible for eTRS with the objective value of —2.8572. The optimal
objective value of the SDP relaxation (2) is —5.4354 and the optimal objective value of the
SOCP/SDP formulation (7) is —3.6121, which is also the optimal objective value of (1). The optimal
solution of (7) is

0.1842 —0.0537 0 —0.4292
X*=|-0.053 0.0156 0 |, Xocpssap =| 01251 |,

0 0 0.8001 0

obviously showing X*th;‘(,cp/sdp(x;‘ocp/sdp)T. By the rank-one decomposition procedure

discussed in the previous section, one gets the optimal solution x* = [—0.4292,0.1251, —0.8945]7
for (1).

4. Conclusions

Using a variant of the S-Lemma, we presented the necessary and sufficient optimality conditions
for the extended trust region subproblem leading to an SOCP/SDP formulation of it. Our derived
formulation turned out to be the dual of the SOCP/SDP formulation given in [2, 11] using a
completely different approach. Extending this idea for several linear inequality constraints could be
an interesting future research direction.
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