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Option valuation has been a challenging issue of financial engineering and optimization for a long
time. The increasing complexity of market conditions requires utilization of advanced models that,
commonly, do not lead to closed-form solutions. Development of novel numerical procedures,
which prove to be efficient within various option valuation problems, is therefore worthwhile.
Notwithstanding, such novel approaches should be tested as well, the most natural way being to
assume simple plain vanilla options under the Black and Scholes model first; because of its
simplicity the analytical solution is available and the convergence of novel numerical approaches
can be analyzed easily. Here, we present the methodological concepts of two relatively modern
numerical techniques, i.e., discontinuous Galerkin and fuzzy transform approaches, and compare
their performance with the standard finite difference scheme in the case of sensitivity calculation
(a so-called Greeks) of plain vanilla option price under Black and Scholes model conditions. The
results show some interesting properties of the proposed methods.
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1. Introduction

Valuation of options, a specific nonlinear type of financial derivatives playing an important role
in economics, has been a challenging issue of financial engineering and optimization for a long time.
The standard ways to option valuation, as well as replication and hedging, date back to the 70's with
the seminal papers of Black and Scholes [1] and Merton [19], Cox et al. [5] and Boyle [2]. While
Black and Scholes [1] and Merton [19] derived their respective models within continuous time by
solving partial differential equations (and thereafter called Black—Scholes—Merton partial differential
equations) for riskless portfolio consisting of option itself and its underlying asset, Cox et al. [5]
provided an approximate solution in a two-stage discrete time setting via recursive backward
procedure. Alternatively, Boyle [2] suggested that in order to obtain the (discounted) expectation of
the option payoff function the Monte Carlo simulation technique can be useful, i.e., instead of riskless
portfolio construction and utilization of no-arbitrage principles the risk neutral behavior of all agents
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is assumed. It is a well-known result of quantitative finance (see, e.g., Duffie [6]) that these
approaches are equivalent under the assumption of complete markets, or, at least, when an equivalent
martingale measure exists. Although the aforementioned approaches slightly differ in details, for
example, only the model of Cox et al. [5] can be used for valuation of American options, they all
should lead to identical prices under equivalent circumstances.

Notwithstanding, the increasing complexity of market conditions requires utilization of advanced
models that, commonly, do not lead to closed-form solutions. Thus, in real applications we often need
to work with advanced processes or complex payoff functions and simple valuation procedures are
no longer efficient and development of novel methods or numerical procedures, which prove to be
efficient within various option valuation problems, is therefore worthwhile. Notwithstanding, such
novel approaches should be tested as well, the most natural way being to assume simple plain vanilla
options under the Black and Scholes model first; because of its simplicity the analytical solution is
available and the convergence of novel numerical approaches can be analyzed easily.

Here, we focus on two novel numerical techniques (discontinuous Galerkin method and fuzzy
transform approach) and propose their usage in numerical solution of complex option valuation
problems. Obviously, in order to evaluate their performance, only a simple problem based on
numerical approximation of the Black—Scholes—Merton partial differential equations accompanied
by boundary and terminal conditions of plain vanilla options is assumed.

After reviewing some basic concepts about option pricing in Section 2, we present the
methodological concepts of two relatively modern numerical techniques (Section 3), i.e.,
discontinuous Galerkin and fuzzy transform approaches, and compare their performance with the
standard finite difference scheme in the case of sensitivity calculation (a so-called Greeks) of plain
vanilla option price under Black and Scholes model conditions (Section 4). The results show some
interesting properties of the proposed methods. We conclude in Section 5.

2. Option Valuation and Sensitivity Calculation

Options are nonlinear types of financial derivatives, which give the holder the right (but not the
obligation) to buy the underlying asset in future (at maturity time) at a prespecified exercise price.
Simultaneously, the writer of the option has to deliver the underlying asset if the holder asks.
Therefore, the valuation is quite challenging.

The standard market model proposed independently by Black and Scholes [1] and Merton [19] is
valid, in its basic form, only under idealized market conditions, including perfect market with the
underlying asset price following log-normal distribution without any dividends and its returns having
constant volatility, i.e., assuming fixed maturity T, the underlying asset price S = S(t) follows
geometric Brownian motion

dS(t) = uS(Odt + oS(H)dZ (1), 1)

where Z = Z(t) is the standard Brownian motion (i.e., the Wiener process), u is constant drift (long
term return) and o represents the volatility (standard deviation) of the underlying asset price returns.

Since the option value function V (S, t) depends solely on time and the underlying asset price, the
increments dV (S, t) can be specified as follows:
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v (s, t ov(s,t) 1 2%V (S, t ov(s,t
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dV(S't)=< o T T2 3s? 7555

Clearly, the sensitivity of the option price V to the change of the underlying asset price S consists of
the time increment dt and the standard normal variable change dZ.

Since both V and S depend on the same source of uncertainty dZ, it might be feasible to construct
a riskless portfolio of option VV and —A = %ﬁ’t) shares of the underlying asset S. From that, we can

derive a Black—Scholes—Merton partial differential equation (BSM PDE) for pricing the European
option contracts on a single asset:

v 1 0%V ov
E+50252—+r5——rV=0, 3)

forS>0andt > 0.

Such an equation is valid for any option under given constraints. However, a particular solution
depends on exact features of the option, i.e., on the payoff function which determines the option value
at maturity T. This terminal condition in the case of vanilla options has the form

_ (max(S — X,0), (call)
VsT) = {max(.?( —5,0), (put) (4)

where K denotes the strike price, i.e., the specified price at which an option contract can be exercised.

The pricing equation (3) equipped with one of the terminal conditions (4) constitutes the Cauchy
problem in (S, t)-domain whose analytical solutions are given by the Black—Scholes formula as

Sd(dy) — Ke TT-Dd(d,), for a call,

5
j(-e—r(T—t)cD(_dz) —S®(—d,), for a put, ©

V(S torXK,T) ={

where

4 _In(S/K)+ (r +0%/2) (T - t) J _In(S/K) + (r—0?/2) (T —t)
e oVvT —t ' 2 oVT —t '

and & stands for the cumulative distribution function of the standard normal distribution.

2.1. The Greeks

Recall that the option value (5) depends on several underlying parameters and it is obvious that any
parameter change should consequently influence it. The sensitivity analysis and measurement show how
significant these changes will be; since Greek letters are commonly used to denote such sensitivity
measures, we often call them the Greeks of an option. The availability of analytical solutions in the closed
form, such as those for the European call and put options as presented in (5), implies the ability of deriving
corresponding closed form representations for the sensitivity measures as well; see, for example, Hull [16].
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In the rest of the paper we focus only on the first-order Greeks that are represented by the first
derivatives with respect to the underlying parameters. The simplest sensitivity measure is Delta given by:

ov
By = =5 = n®(ndy), ©)

where 7 indicates the option type (n = 1 for call and n = —1 for put option, respectively). Since Delta
measures the sensitivity of the theoretical option value with respect to the changes in the underlying asset's
price, its level is particularly important in hedging portfolios consisting of options.

Furthermore, the rate of change of an option value due to the passage of time is measured by Theta,
given by:

v oS¢ (dy)
= —_— = — —T(T—t)q) =~ -7 7

where ¢ is a density function of the standard normal distribution. This sensitivity measure is also referred
to as an option's time decay, because the option loses its value as actual time approaches maturity (i.e.,
t — T), ceteris paribus.

In volatile markets the value of some option positions can be particularly sensitive to changes in the
volatility of the underlying asset price returns. In such cases, the derivative of the option value with respect
to such volatility, Vega, should be taken into account:

vy = 7 = VT () ®)

The last of the first-order Greeks considered here is Rho as given below:

ov
pv =7 =n(T —)Ke "I 00(dy), ©)
which measures the sensitivity to the riskless interest rate. Since the value of an option is less sensitive to

changes in the riskless interest rate than to the changes in other parameters, Rho is the least used of the
first-order Greeks. For further research, we refer to, e.g., Hull [16].

2.2. Finite Difference Methods

We now present a standard numerical technique, the finite difference method. This technique is very
closely related to the Black and Scholes model because it approximates relevant partial differential
equations by finite differences. Thus, finite difference method (FDM), as one of the simplest
approximations of partial differential equations, replaces partial differentials of BSM PDE given by (3)
using suitable (finite) differences.

Rewrite BSM PDE, cf. (3) with riskless rate and option value on the right as follows:
v (S,t) av(s,t) 10%V(S,t)
S 252 —— =71V
ot e 9 Tasz T

(10)
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Here, we can see three terms with partial derivatives, showing subsequently the first order sensitivities of
the option price to time increments (dt) and the underlying asset price increments (dS), respectively, and
the second order sensitivity to the underlying asset price increments. These partial derivatives can be
approximated by discrete increments since first order derivative of any function f(x) can be depicted
using its first central difference approximation (CDA):

) = [ C WD S h2) )

Besides the above mentioned CDA, we can obviously use forward difference approximation (FDA) as
well as backward difference approximation (BDA).

As an example we will show an implicit approach to the definition of FDM according to which we
replace dS in (i ) by its discrete version AS. For this purpose, consider the central difference
approximation:

AV(S,t) _V(S+AS,t)—V(S—AS,¢)

= 12
as 2AS (12)

which is generally the most precise among the three available cases (i.e., forward, backward, and central
approximations).

We can proceed in a similar way in the case of d V (S, t)/dt, but since t shows, by definition, positive
increments only, FDA should be preferred:

av(s,t) _ V(S,t+ At) —V(S,t)

= 13
at At (13)

The second order partial derivative 92V (S, t)/dS? can be expressed as a~difference between forward
and backward approximations with respect to AS, and thus we have:

952 AS AS
_V(S+A5,0 - 2V(S,0) + V(S - A5, t)
(AS)?

92V (s, t) <V(S +4S,0) —V(S,t) V(S,t) —V(S—As, t)> /a8
(14)

Now, after selecting suitable finite differences to replace particular partial derivatives in BSM PDE of
(3), we also replace V (S, t) by the f; ;, which states for option value at time i and (price) state j that (note
that we switch the positions of state and time to make it):

fl+1] fij fije1 — fij-1 fije1 + fij—1 — 2fi;
A Wt JLiml 2262 L) J J
ac 1 2AS o 2752

= rfi,j' (15)

fori=0,..,Mandj =1,..., N — 1. This way, we can depict the complete structure of option prices for
all the points in time, including the initial time i = 0 (t = 0) and maturity time i = M (t = T), and
selected underlying asset prices S.

Subsequently, we can organize particular option values as follows:
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ajfij-1+bifij+ ¢ifij+1 = firr,)- (16)

This can be read as that the weighted average of option values in a given time moment i for three states of
the underlying asset price (j — 1, j,j + 1) is equal to option value in the next time moment (i + 1), given
the central state j. The weights are specified by coefficients a;, b;, and c;, each being dependent on final
state j, so that

1 . 2.2 2:2 1 . 2:2
ajzzAt(rj—o' Jj*), b; =1+ o%j*At + rAt, Cj=—EAt(T]+0' J%)-

3. Alternative Numerical Approaches

In this section we focus on two relatively novel numerical techniques based on the discontinuous
Galerkin method (DGM) and the fuzzy transform technique (FT), both falling into the class of
variational methods. These methods significantly extend the standard numerical tools used in option
valuation. These new approaches represent a very powerful tool for the numerical simulation of
option valuation, since they allow for better capturing of some features of different options under
various market conditions with respect to the discretization of the computational domain as well as
the order of the polynomial approximation.

3.1. Discontinuous Galerkin Approach

The DGM combines the ideas and techniques of the finite volume method (FVM) and the finite
element method (FEM) to take advantage of their strengths while eliminating their shortcomings. The
FEM is a high-order method primarily designed for problems in which the exact solution is
sufficiently regular and no steep derivatives or discontinuities in the data or solutions are present. The
starting point is a variational formulation of the solved PDE and a concept of a weak solution as an
element of the suitable infinite-dimensional function space (usually called the space of trial
functions). Then, we can compute a discrete solution using the Ritz—Galerkin method as soon as a
finite-dimensional subspace of the space of trial functions is specified. There are various ways to
define these spaces. However, they are typically constructed as spaces of continuous piecewise
polynomial functions with respect to the decomposition of the computational domain into finite
elements. The basis of such a space is finite and is formed by the basis functions that generate this
space. Therefore, the FEM in its simplest form can be regarded as a special way of constructing these
spaces, which are called finite element spaces; see Ciarlet [4].

On the other hand, the FVM based on discontinuous, piecewise constant approximations allows
us to capture discontinuities in the solution but has a low order of accuracy. The FVM was originally
developed for the discretization of conservation laws. Similar to the FDM, the values are calculated
at discrete places in a meshed geometry. The essential idea is to divide the domain into many
discretization cells, called finite volumes, and approximate the integral conservation law for each of
these volumes. More precisely, the volume integrals in the solved PDE that contain a divergence term
are converted into surface ones using the divergence theorem. Then, these terms are evaluated using
the numerical fluxes that are conserved from one finite volume to its neighbor; that is, the flux
entering a given volume is identical to that leaving the adjacent one. This feature is called local
conservativity. To construct the discrete solution, we assume that the solution in each finite volume
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is constant; thus, the finite volume approach produces the piecewise constant approximations
corresponding to the discrete unknowns (see Eymard et al. [8]). Taking all of the above into account,
the DGM can be viewed as a generalization of the finite volume techniques into higher-order schemes
or as an imaginary bridge between the finite element and the finite volume.

The DGM provides the numerical solution of the PDEs composed of piecewise polynomial
functions on a finite element mesh without any requirement for the continuity of the solution across
particular elements. Therefore, this approach is suitable for problems on which other techniques fail
or have difficulties. Although the DGM was developed in the early 1970s (see Reed and Hill [25]),
its potency in option valuation problems has not been fully exploited yet. From this point of view,
this method is perceived to be a very promising numerical tool.

In what follows, we introduce the discrete problem to option valuation within the DG framework.
The proposed pricing methodology related to numerical solving of the BSE PDE requires truncation
of the spatial domain to a bounded interval Q = (0, S;,ax), Where Sp,.x > 0 stands for the sufficiently
large asset price. Therefore, we need to impose the option values at both endpoints of the domain Q.
These values are set in accordance with the theoretical European option prices (5) as S — 0 + and
S > 4o, ie.,

0,

Smax — Ke T8 (call
V(0,t) = {%e—r(T—t) V(Smaxv t) = { max (call)

0, (put) (17)

Let0 =t, < t; < -+ <ty = T be apartition of the interval [0, T] with the constant time step t =
T /M (for simplicity) and denote UJ™* € S} to be the approximation of the solution V (-, t,,). The set
S}‘l’ is the finite-dimensional space of piecewise polynomial functions of order p, constructed over the
partition of Q with mesh size h.

The discrete solution is computed by the 8-scheme that reads: Find U**! € S}l’, m=0,.. M—
1, such that the following conditions are satisfied:

(U, vp) + 0TAL (U, vy) = (U, v) — (1 = 0)tAR (UR, vy)
—018,(vy) (ty) — (1 — 0)18,(vy) (tmeq), YV €SP, (18)
(Uillw' vh) = W(,T),vp), Vv, € S}z;, (19)

where (-,-) denotes the inner product in L?(€2), the bilinear form A, (-,-) stands for the DG semi-
discrete variant of the degenerate parabolic partial differential operator from (3), accompanied with
penalties and stabilizations, and the form £, (-)(t) balances the Dirichlet boundary conditions (17);
for more details, see Hozman et al. [15].

Note that the value of the parameter 6 lies in interval [0,1] and the equation (18) results into a
sequence of linear algebraic problems. at each time level. The existence and uniqueness of the discrete
solution are guaranteed under the ellipticity of the form (:,-) + 8tA;,(+,-) on the left-hand side of (18)
(cf. Hozman and Tichy [12]). The starting data (19) in the recursive formulation (18) are defined as
L%-projection of payoff function (4) onto the space S}l’ .

The properties of the 8-scheme depend on the value 8. The stability property holds for% <6<1
andfor0 <6 < %We have a stability bound for the step size 7. The case 6 = % is well known as the
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Crank--Nicolson method, which is practically unconditionally stable and gives the second order
convergence in time. In other cases, 6 # % we obtain the first order schemes only; see Trefethen [29].
Therefore, we consider the Crank--Nicolson method in our empirical study.

The discrete problem (18) is equivalent to a system of linear algebraic equations at each time level
and can always be expressed in a matrix form; see Hozman and Tichy [13]. Let B = {w;}29F denote
the basis of the space S}f with degrees of freedom (DOF). Then, the discrete solution at each time

level t,, € [0, T] can be written as a linear combination of basis functions in the form

DOF
UR(S) = ) &Mwi(S),  §MER, Sed. (20)

More precisely, this discrete solution U™ is identified with the coefficient vector u™ = {¢™}P9F €
RPOF with respect to the basis B. Then, (18) reads as

(M + 8tA)u™ = (M — (1 — O)TA)u™*! — (0™ + (1 — 6)f™+1), (21)
Where the terminal vector u™ is given by U} arising from (19).

The system matrix in (21) is a composition of the mass matrix M and the matrix A arising from
the bilinear form A}, defined as

M= {(Wj'Wi)}DOF' A= {c"lh(Wj'Wt)}DOF (22)

ij=1 ij=1"
The right-hand side of (21) contains a weighted average of the following two vectors

" = (W)t} ™ = (W) (b DR (23)

Approximate evaluation of Greeks. In order to illustrate the robustness of the presented approach,
the numerical scheme (21) is used not only for the evaluation of option prices but also for their
sensitivity measures. Considering the polynomial approximation at least of the first order (linear),
Delta can be directly computed from the derivatives of the basis functions {w;}P°F, using the relation

(20) as

DOF
out
Byltm) * === ) EW(S). (24)
i=1

On the other hand, the remaining Greeks are numerically computed using the central finite difference

m+1 m—1
U - Uh

Oy (tm) ~ — —— (25)
V(b0 ~ Uit(o + 6)2—8U,’l”(0 — 6)’ (26)
oy (1) ~ Ult(r+68) - U*(r — 6)’ @7

26
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where 0 < § « 1 and 7 are sufficiently small values. This approach involves solving the option
valuation problem twice to obtain the solution in two different stages, t + 7, 0 £ 6 and r + &,
respectively. Note that this approach provides only the pointwise approximation with respect to the
underlying parameters t, o, and r.

3.2.  F-transform Technique

The second numerical method considered here is based on the fuzzy transform (F-transform, for
short) technique. The F-transform technique was introduced by Perfilieva [20] (see also Perfilieva
[21]) to approximate real valued functions usually from the L? space and has two phases: direct and
inverse. The direct F-transform transforms a continuous (or integrable) function defined in a bounded
interval into a finite vector of real numbers, which are called the components of the F-transform. The
inverse F-transform returns the vector of the F-transform components to a continuous function that
approximates the original function. The key parameter of the F-transform is a fuzzy partition of the
domain of the considered functions by means of fuzzy sets that form the basis function. Setting fuzzy
partitions affects the quality of the approximation of functions using the F-transform.

The first application of the F-transform in the numerical solution of ordinary differential equations,
in particular the Cauchy problem, was described by Perfilieva [22] (see also Perfilieva [20]) and
partial differential equations of special types for multivariable functions by Stépni¢ka and Valasek
[27, 28]. In Chen and Schen [3], a novel algorithm based on the F-transform has been proposed to
obtain an approximate solution for a class of second-order ordinary differential equations with
classical initial conditions. In Khastan et al. [17], new numerical methods based on the higher degree
F-transform for solving the Cauchy problem have been presented. A further development of the F-
transform based numerical method introduced by Perfilieva [22] for solving a boundary value
problem (BVP) for a second-order ODE with Dirichlet boundary conditions can be found in Perfilieva
et al. [23]. The proposed methods outperformed the second order Runge-Kutta method. An extension
of the shooting method for nonlinear boundary value problems with the help of F-transform was
proposed in [24]. A generalization of the Stépnicka and Valasek approach to the numerical solution
of partial differential equations was then proposed by Hol¢apek and Valasek [9, 10].

The principal of the numerical solution of ordinary or partial differential equations lies in the
substitution of the respective F-transform components for all the functions and their (partial)
derivatives in the differential equation. The F-transform components of the derivatives of functions
are then expressed by the method of finite differences (cf. Duffy [7]). The result of the substitution
of the F-transform components and the expression of derivatives is a system of linear algebraic
equations with unknown F-transform components of a function, which is a solution of the differential
equation. The approximate solution of the differential equation is obtained by the inverse F-transform.
The contribution of the F-transform to the numerical solution of differential equations consists mainly
of the reduction of the number of linear algebraic equations, the solution of which becomes very
complicated for an increasing dimension of function spaces.

Approximate evaluation of Greeks. In contrast to the computation of the sensitivity measures
(Greeks) in the case of the DGM, here we compute also the Delta values by finite differences. The
reason is that the derivatives of basic functions of a fuzzy partition (if they exist) at all nodes are equal
to zero, which makes the approximation of Delta extremely imprecise (biased). Precisely, as specified
in [15], we can consider the following approximation formulas:
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DOF-1
ut— Uit Ul, — Ut Ubor — UPor—
By(S,tg) = Tt o(§) + ) L (5) 4 LA DO (5, (28)
k=1

h

where ¢ is the uniform generating function of the fuzzy partition, h is the bandwidth, Uy, is the k-th
component of the direct F-transform with respect to the restricted fuzzy partition to , i.e., the vector
U={U, | k=0,..,DOF} of real numbers given by
g _ Jo ue()dx
=
fg Pk (x)dx

,  k=0,..,DOF. (29)

It is easy to see that the first order forward and backward differences in (28) are used to approximate
the derivatives at the boundaries and the central differences to improve the accuracy of the
approximation. The remaining Greeks, namely, Theta, Vega and Rho, are numerically computed by
the formulas (25), (26) and (27), respectively.

4. A Comparative Example

The experimental analysis provided in this section shows extensive comparison of the FDM, DG
and FT methods in connection with the plain vanilla option price sensitivity measurement of the first
order within the Black and Scholes setting. In particular, we consider data modified from Kopa et al.
[18], in line with Hozman and Tichy [11] and Hozman et al. [14], who have already analyzed the
valuation problem of vanilla put option at the same market data (DAX options) using the DG approach.
We consider here only intermediate (maturity of 193 days) close to the ATM options with the current
underlying (German stock market index) value being S, = 4715.879. The fixed parameters of the
model are the riskless interest rate r (0.039) and the volatility o (0.4422), which is derived from true
option prices observed at the market (implied volatility approach).

Numerical approximation is crucially related to the discretization of the computational domain Q,
its length being deliberately chosen as eight times the strike price to suppress the influence of the
inaccurate Dirichlet boundary condition (17). Together with this, we choose the time step t = 1/3600
so that the effect of time discretization on numerical results is negligible.

For a more detailed comparison, each of the methods is considered in the form of linear as well as
nonlinear (quadratic or cosine) approximations. The quality of the approximation can be easily observed
by comparing the numerical results with the theoretical prices according to the Black and Scholes
model. Therefore, at ¢ = 0, we compute the relative error e, > measured in the L2-norm over the whole
computational domain and pointwise relative error e, evaluated in the reference point S..f, i.e.,

IO Vo] [URe) V(s 0)
L vesorn - P [V (Syef, 0)]

(30)

where U denotes the approximate solution obtained by one of the two numerical approaches and
V (S, t) is the analytical solution given by the BS formula (5), respectively. The formulas (30) can be
subsequently extended to the calculation of the relative errors e;2 and e, for selected sensitivity
measures using (6) — (9).
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According to the theoretical results from Riviére [26], it is known that the DG technique produces
(in general) optimal convergence of spatial derivatives of approximate solutions, all measured in the L2-
norm for sufficiently regular problems. In case of the remaining first order derivatives (i.e., except for
the one with respect to the underlying asset price), similar convergence results in the L2-norm could be
expected. On the other hand, the general results of pointwise error estimates are not available.

The calculations are performed on a sequence of consecutive uniformly refined meshes with linear
as well as nonlinear basis functions, for the particular scenario of vanilla options with % = 4700 and
T = 193/360 days.

We use linear approximations and analyze the first-order Greeks: Delta, Theta, Vega and Rho.
These sensitivity measures are computed by (24) using the central finite differences (25) — (27) with
steps T = 1/3600 and § = 0.002. Corresponding relative errors are apparent from Figure 1.

It is easy to see that relative errors in the L?-norm decrease with the mesh refinement, i.e.,
proportionally to DOF. More precisely, the order of convergence for the first-order Greeks
corresponds at least to the order of a polynomial approximation, though the pointwise errors exhibit
oscillatory behavior in some cases. One can easily conclude that all considered methods are quite
comparable with respect to both relative errors and it is not easy to identify the best method.

Concerning the nonlinear basis functions, the relative errors exhibit similar behavior as the linear
basis functions. More precisely, in line with the theory, the convergence of Delta values in the L?-
norm is optimal for DGM, i.e., quadratic for the approximation with quadratic basis functions.
Compared to this behavior, the raised cosine basis functions in FT also exhibit quadratic trend in the
L?-errors for the Delta values. As expected, the results for the remaining first-order Greeks are of
the same quality and their orders of accuracy are consistent with the Delta ones. On the other hand,
from the results for pointwise errors, nothing more rigorous can be inferred. Thus, for now, one
should be satisfied with the claim that errors have more or less downward trends.

5. Conclusions

We proposed two novel numerical approaches newly applied for option valuation problem with
special attention being paid to the evaluation of the sensitivity parameters, the so-called Greek
letters. The first technique is derived from the discontinuous Galerkin method, which is based on
discontinuous piecewise polynomial approximations. The second technique is based on the F-
transform, the application of which to the original continuous problem leads to a new one for the
unknown components of this transform. The resulting problem is then discretized using the finite
difference method. In the case of linear approximation, the results are very similar amongst all the
methods, but, for nonlinear basis functions, the differences in these approaches appear to be
significant, especially due to the different types of basis functions (parabola vs. raised cosine). On
the other hand, the benefits of the F-transform could mainly be reflected in the possibility of reducing
the number of degrees of freedom in the discretization under the preserved order of accuracy, which
actually contribute to the decrease of the computational time. However, this advantage of the F-
transform observed mainly in solving the BS equation containing several underlying factors, in
which the complexity of the calculation grows exponentially. Regarding the discontinuous Galerkin
method, its main advantages lie in the possibility of an easy usage of the discontinuous payoff
functions and discrete sampling.
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Figure 1. Comparison of relative L2-errors (left) and pointwise errors (right) of the Delta, Theta,
Vega, and Rho values for particular methods. The horizontal axis represents the degrees of
freedom.
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