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Using Nesterov's Excessive Gap Method as Basic
Procedure in Chubanov's Method for Solving a
Homogeneous Feasibility Problem

Z. Weit, C. Roos*”

We deal with a recently proposed method of Chubanov [1], for solving linear homogeneous systems
with positive variables. We use Nesterov's excessive gap method in the basic procedure. As a result,
the iteration bound for the basic procedure is reduced by the factor ny/n. The price for this
improvement is that the iterations are more costly, namely 0(n?) instead of O (n). The overall
gain in the complexity hence becomes a factor of vn.
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1. Introduction

We deal with the problem

find x € R™
subject to Ax = 0, x>0,

)

where A is an integer (or rational) matrix of size m X n and rank(4) = m.

Recently Chubanov [1] proposed a polynomial-time algorithm for solving this problem. He
explored the fact that (1) is homogeneous as follows. If x is feasible for (1), thenalso x’ = x/max(x)
is feasible for (1), and this solution belongs to the unit cube, i.e., x" € [0,1]™. It follows that (1) is
feasible if and only if the system

Ax =0, x€ (01" )
is feasible. Moreover, if d > 0 is a vector such that x < d holds for every feasible solution of (2),
then x"" = x/d € (0,1]™, where x/d denotes the entry-wise quotient of x and d, and so x;" = x;/d;

for each i. This means that x"’ is feasible for the system

ADx =0, x € (0,1]", (3)
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where D = diag(d). Obviously, problem (3) is of the same type as problem (2), since it arises from
(2) by rescaling A to AD. Moreover, if x solves (3), then Dx solves (2). The main algorithm starts
with d = 1, with 1 denoting the all-one vector, and successively improves d.

A key ingredient in Chubanov's algorithm is the so-called Basic Procedure (BP). The BP generates
one of the following three outputs:

case 1: a feasible solution of (1);
case 2: a certificate for the infeasibility of (1);
case 0: a cut for the feasible region of (2).

In case 0, the cut has the form x;, < %for some index k and is used to update d by dividing d; by

2. The rescaling happens in the main algorithm, which sends the rescaled matrix AD to the BP until
the BP returns case 1 or case 2.

Since A has integer (or rational) entries, the number of calls of the BP is polynomially bounded
by 0(nL), where L denotes the bit size A. This follows from a classical result of Khachiyan [2] that
gives a positive lower bound on the positive entries of a solution of a linear system of equations.

The BP of [1] needs at most 0(n?) iterations per call and 0(n) time per iteration. So, per call the
BP needs 0 (n*) time and hence the overall time complexity becomes 0 (n°L). By performing a more
careful analysis, Chubanov reduced this bound by a factor n to O(n*L) [1, Theorem 2.1].

Other BPs have been proposed in, e.g., [4, 5]. These BPs also need 0 (n?) iterations per call and
0(n) time per iteration, and so they also yield an overall time complexity of 0(n>L).

In [6], we proposed a BP based on the Mirror-Prox method of Nemirovski. It improves the iteration
bound per call with a factor nv/n and leads to an overall time complexity of 0(n*°L), because it
requires 0(n?) time per iteration.

Here, we analyze a BP based on the Excessive Gap technigque of Nesterov [3]. The outline of the
remainder of the paper is as follows. We present some preliminary results in Section 2. In Section 3

we describe the new BP and prove the iteration bound of O(n+v/n). Since the time complexity per
iteration is 0(n?), the overall time complexity is the same as the one given in [6].

2. Preliminaries
Let IV denote the null space of the m X n matrix A and R, denote its row space, that is,
Ny:={x € R": Ax = 0}, Ry :={ATu:u € R™}.
We denote the orthogonal projections of R™ onto IV, and R4 as P, and Q 4, respectively:
Pyi=1—AT(AAT)"14, Q4 := AT(44T) 1A

Our assumption rank(A4) = m implies that the inverse of AAT exists. Obviously, we have
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I=P,+Qs PiQs=0, AP,=0, AQ4=A.
Now, let y € R™. In the sequel, we use the notation
z = Py, V= Q).
So, z and v are the orthogonal components of y in the spaces IV, and Ry, respectively:
y=z+v, zZ € Ny, v € Ry.
These vectors play a crucial role in our approach. This is due to the following lemma.

Lemma 2.1. (Lemma 2.1 of [5]) If z > 0, then z solves the primal problem (1) and if 0 # v = 0,
then v provides a certificate for the infeasibility of (1).

As usual, we always assume y € A, where A denotes the unit simplex in R™. So,
A={u:1Tu=1, u>0}

In the literature we nowadays have several ways to derive from y, z and v an upper bound for the
k-th coordinate of every x that is feasible for (3). For example,

,
\/ﬁllzll, n [,

Yk

1T +
x<{—2, in [4,5].

Yk

+

17 (L) , in[5,6]

Here, we are only interested in the so-called proper cuts, where the upper bound is smaller than or
equal to % If 2nvn||z|| < 1, then the first two cuts are proper for at least one k. This follows for the

first bound simply by taking k such that y, > 1/n, and for the second bound by also using 17z* <
Vn||z*|| < vnl|z||. For the third bound, it seems far from trivial that we have the same property; for
a proof we refer to the Appendix in [6]°.

It may also be mentioned that the third cut is always at least as tight as the other two cuts; this is
shown in [5]. In the rest of the paper, we use this cut, denoting the upper bound as g, (v) and defining

o(y) = min oy ).

Next, the BP based on Nesterov's Excessive Gap method is described as in Algorithm 1.

% There is also a ‘proof” of this statement in [5], but unfortunately there is a gap in that proof that has been
overlooked.
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Algorithm 1: [y, v, z, J, case] = EXCESSIVE GAP BP(P,)
1: INITIALIZE: k=0; & = ;1; case = 0; J = 0; ug = @; po = 2;
Yo = Yuo (o)
2: while o(y) > % and o(u;) > 5 and case = 0 do
3: 2, = Payg
4: if z;, > 0 then
5: ‘ case = 1 (2 is primal feasible); return
6: else
T Vg =Yk — 2k
8: if v > 0 then
0: | case = 2 (uy, is dual feasible); return
10: else
11: 9;; }»L
12: 1 = (1 — O )up + O ((1 — )y + Ok, (W)
13: P+ = (1 — Ok )ur
14: Ye+1 = (1 — O) Uk + Oklpup s (Urt1)
15: E=k+1
16: end
17: end
18: end
19: if case = 0 then
20: find a nonempty set J such that
JC{j : bound () < 3} U{j : bound(u) < 5}
21: end

In Algorithm 1, k serves as the iteration counter. We also use the following notation:
: T K =112
Y (v): = argmingep {u Pyv + > |u — || }, v EA, ()]

where & = 1/n . Note that in each iteration two problems of this type need to be solved, in line 12
and line 14, respectively. In Section 4 we show that if P,v is known, then problem (4) can be solved
in O(n) time. But, we first show in the next section that the number of iterations of Algorithm 1 never
exceeds 0(nvn).

3. lteration Bound

Recall that y yields a solution of problem (2) if z = P,y > 0. If u € A then uTz > min z, for each
z € R™" and meig u”z = min z. Hence, P,y > 0 holds if and only if ¥)(y) > 0, where
u

e minyT
()= minu’ Pyy.

This certainly holds if y solves the problem
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T
max = maxminu’' P,y > 0.
yEA 1,1)(}’) yEA u€eh ay

In order to deal with this problem, we use an adapted version of the excessive gap technique of

Nesterov [3] by considering a smoothed version of the above problem. For decreasing values of the
parameter u, we consider instead the problem of maximizing the function ¢, (y), where

1 u
— __ 2 3 T = — 57ll2
$u () = =S lIPayll +r51€1g{u Pay + 5 llu —all }
withit =1/nandu = 0.

In this section, we show that the algorithm needs at most O(nx/ﬁ) iterations to generate a vector

y € A such that 2n+/n|z|| < 1. For the proof, we consider a run of the BP during which z has always
a nonpositive entry and v a negative entry. So, the BP does not halt in line 5 or line 9. In that case,

the algorithm stops after at most 2nv2n iterations, as we show below. We start with a relatively
simple lemma.

Lemma3.1.0 < ¢, (y) — po(y) < .

Proof. Letu € A. Then lul|? = ¥ u? < Y™, u; = 1. Similarly, [|[%]|? < 1. Hence,
1 75112 1 2 =112 T~
Ellu —ull* = E(Ilull + a2 = 2uTu < 1,

where we also used u = 0 and & = 0. Using this, we write

1
$u() < —7 IPayII* + minulPyy +p = p + o (),

It remains to show that ¢, (y) = ¢, (). This follows since ¢, (y) is increasing in . Hence the proof
is complete. [ ]

1
Lemma 3.2. Z[I1P4ylI* < ¢, (wio).

Proof. We start with the case where k = 0. Then, we have uy = 4 = % Ho = 2, Yo = Yy, (o). We
simplify the notation by denoting P, simply as P. Then, we may write

1 2 1 7 Y12
S IPaoll? = S 1Py = @) + P@)|

1 ) 112 1 =112 T psj 7112

= ZIPGio — DI + 1Pl + (Pyo) P — [|Pal
1 1

< —IIPaI? +y§ P+ 3 llyo — all?

1. _ . Ho _
< —IIPEI? +y§Pa+ = llyo — 1

1. _ . Ho —
5 IPall? + min {u” Puo + = llu = @12} = ¢, (o),
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where the last but one equality is due to the definition of y,. We proceed with induction on k. To
simplify the notation further, we denote y = vy, t = g, U = Up, V' = Viy1r U = U1, U = Uy
and

y=0-0)y+0y,). (5)
Then, we have

u'=(1-6)(u+6y) +6%,1)
=[1-60)u+ 0[(1 -0)y+ Qy#(y)]

= (1—0)u+ 6.
Moreover,
w=>0-0u,
and
y' =1-0)y+8y,W). (6)

Under the assumption that % IPyll? < ¢, (u) we need to show that % IPy’]|? < ¢ (W).

We have

1 u
Sy = —Z 112 : T l —a7ll2
¢ @) 2||Pu I +r51€1£1{u Pu' + > |lu — ul| }

!

1 u _n2
=3 IPu'1? +y, (W) Pu' + > ||y#r(u’) — "

Due to the definition of u’ and since ||z||? is convex in z, we get
IPu'lI? = 1|1 = 8)Pu + 6PF|I* < (1 — O)|Pull® + 6|PYII.

Hence,

' 1 2 1 112 IN ' ' —112
By ) = =5 (1= OIIPul = 3 011PII + y,0 WY’ + 5 [y, ) 7
1 1 , oM N2
= 2 (L= OIIPu = 5 01IPFI + 3, (e P((1 = O+ 69) + 5 |y ) ~

1 ’ ,u‘ 12 —_ 1 A ! 5
= (1= 0) |~ 1Pull? + v, @Y Pu+ &y @) = TH2| + 0] =S 1PFI? + 3,0 )7 P3)|

Let us denote the two bracketed expressions shortly by T; and T,, respectively. We proceed by
evaluating Ty, the first bracketed expression. This can be reduced as follows:

1
Ty = =S IPuI? + 3,0 () Pu + 2 |y )
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= (¢, ~ ()" Pu —%”yﬂ(u) — ") + y @) Pu +g||yu,(u') —a’
! M ! el =
= ¢u (W + P (v @) =3, @) +5 ([lye @) = all” = Iy — ).
Putting a = y,/(u") and b =y, (u), we have
lla —@ll2 = lIb — @ll? = llall® - IblI> — 2aTa + 2b" @
= |la — b||? = 2||b||?> + 2aTh — 2aTu + 2bTu
= lla = blI> + 2(b — W) (a — b) (7)

Using this, we obtain

1y = 9,0+ (Pu+ (3, ~ 1)) (3@ = ,00) + 5y @) = @
From (5) and (6), we deduce
0 (y,ﬂ W) - yu(u)) =y =79

We also use that the definition of y, (u) implies that this vector minimizes y” Pu + % lly — u]|? over

all y € A. Hence, at y = y, (u) the vector V,, (yTPu + % ly — ﬁllz) has nonnegative inner product
with u — y, (w), for all u € A. Since y,/(u") € A, we get

(Pu +u(yu (W - ﬁ))T (yu’ ) - yu(u)) >0

Therefore, by using the induction hypothesis, we obtain

B
=zl = 9lI%

ly' = 912 = < 1IPyll? +

Tl = ¢ﬂ(u) t+553 292

Due to (7), with u = 0, we get
lall? = [Ib]|? + 2b™ (a — b), (8)

where a and b are arbitrary vectors. Using this and P2 = P, we obtain

1 1
> IIPyII2 SIPPIZ + (PO'Py = 9) = IIPII* + (v =N PY.

It follows that

—IIPy||2+(y NTPY +—lly' — 91~

292

For the second bracketed term we write
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1 $3 ! 5 1 e li ey T A
T, = —EIIPyII2 +y, W)'PY = EIIPyII2 +(y, @) —9) Py.
Substitution yields, while also using (1 — 0)u = ',

¢ (W)= (16T, + 6T,

1
IPYI? + (1 = )y = 9)TPY + 6]y,

v

NI r—u\:l »—xNI _No |

292
IPSIZ +[(1 = 0)(y = T +0(y @) -] Py +— 292 ly" — 9117

1PIZ + [~ 9+ [(1 — 0y + 0y, )] PY+ o

I

292 ly" =9l

IPYI* + (v’ — )TPy+ ly" = plI2.

267

According to the definition of k in Algorithm 1, the iteration number is given by k + 1. We claim
that

4

M= Dk +2) ©)

This istrue if k = 0, because uy = 2. We proceed with induction on k. Suppose that the claim holds
for some k > 0. Since 8, = 2/(k + 3), we get

2 ) k+1 4 4

“"+1=(1_9")""=(1_k+3 e ey 3tk+ Dk +2) (k+2)(k+3)

as desired. As a consequence, we have

4

W tenn _ (k+2)(k+3) _k+3

- = >

CERENCT: 4 k42
(k + 3)?

By also using that P is a projection matrix, we obtain

! 1 5112 ! ST D5 1 ! 5Y 112 1 2
b W) 2 ZIPII"+ O = 9Py + S IPG = DI° =S lIPyII%
Hence the proof of the lemma is complete. ]

Lemma 3.3. If Algorithm 1 does not halt after k > 1 iterations, then

1Pyell” < =

V=2 0¥

Proof. Since the algorithm does not halt after k iterations, we have || P,y ||? < 2¢,,, (uy) by Lemma
3.2and ||Pyugl|? = % by the Appendix in [6]. Also, using Lemma 3.1, we get
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1
IPayicll® < 2¢,,, (uie) < 2(do(ur) + pi) < 25 — et

where we also used

do(u )=—1||Pu I + minu”Pu <—1||Pu I? < ——
0Nk 2K T ea =2 T

since Pu,, has at least one entry less than or equal to zero (otherwise, u;, would solve the problem
and the algorithm would halt with case 1). Due to (9) it follows that

1P ”2 < 8 1 < 8 1
=0T Dk+2) 2okt 12 n®

proving the lemma. [ ]
Lemma 3.4. Algorithm 1 requires at most 2n+/n iterations.

Proof. As we established in Section 2, y,, gives rise to a proper cut if n3||P,y,||? < 1. This certainly
holds if 4n® < (k + 1)2, which is equivalent to k + 1 > 2nv/n. Hence, the proof is complete.  m

4. Time Complexity per Iteration

In this section, we prove that problem (4) can be solved in O (n) time, provided that z = P,y has
been computed. The problem can then be restated as

min {uTz + lu—al?: 1Tu=1u> 0}. (10)
u 2

The Lagrange dual of this problem can be simplified to

R 2 e,
rg%x{f 2||v|| P uv leW}, (11)
where
u
=—1-2z
w o z

Indeed, as we next show we have weak duality. Let u be feasible for (10) and the pair (v, §) for (11).
Then, the duality gap, i.e., the primal objective value minus the dual objective value, can be reduced as
follows:

T E —_ 512 — _E 2
uz+2||u | (f 2||U||)

p H e _ H

— T _1 — - 2 - 2 _ Ty - 2
_,L (2n1 M;)+2||u||#+2#||u|| ,uuz; (¢ S IVl )
— T o 2 = T Tq — - 2

=5 u w+2||u|| too U 1 (f 2||T7|| )
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- —TuTW +%|Iu|l2— (¢ —%llvlll)
=L 3 ||ul|l|2 - (63 1v1?)
— 2 2
- ;MuTv 5 ull? + Sl
= Ellu —v||?>0.
This makes clear that the duality gap vanishes if and only if
v=u, ul (uv — &1 —w) = 0. (12)
Using this, the optimality conditions for u € A can be expressed in u alone as follows:
pu—E&1>w, ul(uu—&1-w) =0, (13)

for some &. Now, let I:={i:u; >0}. Since u=>0 and yu —&é1 —w >0, we deduce from
ul(uu — &1 —w) = 0 that

iel = ,uul-—fzwl-.
Ifj & I, then w; = 0, whence pu — &1 = w implies —¢ > w;. It follows that if i € I and j € I, then
Wi=,l,lui—€2[lui+Wj>Wj, ViEI, V]%I (14)

We conclude from this that w; consists of the |I| largest entries of w and the elements outside I are
strictly smaller than those in I. For the moment, assume that w is ordered in nonincreasing order, so that

41 = i) == Wp. (15)

It then follows that I has the form I = {1, ..., k}, for some k, and w; < wy, foreach j > k. Now, using
1"u = 1andu; = 0, for j > k, we may write

k k te 1 K
W.
1=1Tu=Zui=z : =- kf"‘ZWi

i=1 i=1 H H i=1

From this, we obtain an expression for the optimal value of &, namely,

(16)

vy
I
ol e
=
I
ling
s

and then
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1
— ;(Wi+f)p lSk
0, i>k.

Uu; (17)

If k < n, then the domain of the primal problem (10) is given by
{ued:up = =u, =0},

which expands if k increases. Hence, the optimal objective value occurs if k is maximal. One easily
verifies that the vector u determined by (16) and (17) belongs to A only if

k
u+ kwy > Z w;. (18)
i=1

Obviously, this holds for k = 1, because u > 0. A crucial observation is that if (18) does not hold for
some k, then it does also not hold for larger values of k. Moreover, if it holds for some k, then testing
(18) for k + 1 amounts to a comparison of u + (k + 1wy, and Y5 w; + wy,q, Which requires
0(1) operations. Hence, the largest k satisfying (18) can be found in 0 (k) time. We then know the
index set I and hence we can compute ¢ and then u;, for i < k. We conclude that if w is ordered as in
(15), then the solution of (10) requires only O (n) time.

The above reasoning uses the fact that the vector w is already ordered in nonincreasing order; to get
w ordered in this way, takes 0 (n logn) time. Thus, it follows that problem (11), and also (10), can be
solved in O(nlogn) time. The computation of z requires 0(n?) time, which dominates the time for
ordering w. Hence, solving problem (4) requires 0(n?) time. As a consequence, the overall time
complexity of BP becomes O (nL - nvn - n?) = 0(n*>L)time.
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