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A scalarization-based method for multiple part-type
scheduling of two-machine robotic systems with non-
destructive testing technologies

Mehdi. Foumani®, Reza. Tavakkoli-Moghaddam*”

This paper analyzes the performance of a robotic system with two machines in which
machines are configured in a circular layout and produce non-identical parts repetitively.
The non-destructive testing (NDT) is performed by a stationary robotic arm located in the
center of the circle, or a cluster tool. The robotic arm integrates multiple tasks, mainly the
NDT of the part and its transition between a pair of machines. The robotic arm cannot
complete the transition if it identifies a fault in the part. The main feature of the NDT
technology is that its required time is changed by altering the testing cost. This generates a
trade-off between cost and cycle time. Initially, the problem of robotic arm scheduling and
part sequencing is jointly solved to supports the decision making for reliability
improvement of small-scale robotic systems with NDT technologies. We show how the case
of non-identical parts can be converted into a travelling salesman problem (TSP). Then, we
provide a generalization of the framework based on three characteristics: pickup criterion,
layout and travel time metric. The results are extended for the interval and no-wait pickup
criteria, and then some notes are provided for travel time saving of different layout and
travel time metric. It is shown whether circular systems are equivalent to linear systems, or
they dominate linear cases in general terms.
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1. Introduction

A robotic serial manufacturing system typically includes a material handler robotic arm and a set
of different machines, such that the processing route of all parts on these machines is similar and it
includes a chain of series operations. Note that parts are not often identical although their
processing route on these machines is similar. This is because multiple part types belong to the
same part family [1]. Therefore, the case of multiple part types is closer to the reality. Also, to make
this robotic system better represent reality, the testing process should be used in the system
including the robotic arm and machines. This is because poor quality final products can even
destroy the reputation of the manufacturer through out-situ costs (i.e., in an aircraft industry) [2].
Although the probability of some defects is very low for this aviation example, their occurrence has
serious consequences for aviation giant such as Boeing and Airbus. This is to say, manufacturers
need an integrated strategy to improve the cycle time and the quality of the parts [3].
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In general, the performance improvement of robotic systems is an interesting research direction
(e.g., real world cases [4], evolutionary algorithms for corresponding systems [5] and dynamic
robotic systems [6]). The review paper [7] addressed research on the optimization of robotic
systems. There is a fairly large number of papers on robotic systems with multiple part types, as
two-machine robotic systems with multiple part types are studied on Sethi [8] and Agnetis [9].
There are recent studies on robotic systems with multiple part types, such as Batur et al. [10], EImi
and Topaloglu [11], Batur et al. [12], Gultekin et al. [13]. However, none of them is on robotic
systems with controllable times.

There exist only two studies focused on robotic system with controllable times that both are
limited to deterministic cases and identical parts production. The first study was stated in Gultekin
et al. [14]. They concentrated on the system in which the processing route of parts is unchangeable.
Further, there is no non-destructive testing (NDT) in the system, but the processing times of
machines can be controllable. Likewise, the outcomes in Gultekin et al. [15] were expanded for a
flexible system. In an opposite direction, we cope with stochastic processing route because the test
is not destructive, and its required time by robot is controllable. Hence, in addition to considering
multiple part types and stochastic cases, the novelty of this paper is that we modify structures of two
above studies by considering controllable travel time of the robotic arm that is both material handler
and testing device.

The robotic arm here is both material handler and testing device when it transfers a part between
machines [16, 17]. This robotic arm and the corresponding system hereinafter called the Multi-
Function Robot (MFR) and the Multi-Function Robotic cell (MFRC), respectively. Foumani et al.
[16, 17] are restricted to a real-world MFR that only measures the thickness of the identical shaft
and records outcomes. However, we here assume the user interface computer is capable of the
processing route modification for each part according to its testing result. This is to say that another
novelty is that the structures of two above studies is extended for the stochastic situation, as the
number of performed NDT tests is random value for each one of parts. Foumani et al. [18] is the
single study which implied a practical case of this situation in which a robotic hand of Fanuc M-
710iB/45 Robot has a specific end-effector that test the parts in a way that the number of performed
NDT tests is a random value. The robotic hand in the study can cancel transformation by returning
to the source machine and loading the defective shaft on it again. However, Foumani et al. [18] is
limited to robotic systems with identical parts that is often considered less preferable in the reality.
In contrast, the current paper provides details of part sequencing of such MFRCs for the first time in
the literature.

As a small-scale MFRC, a two-machine MFRC is composed of a manufacturing machine My, a
packing machine M,, and a MFR that serves the entire system. The part is reloaded on M, for
rework if the testing gages of MFR uncovers any parts defects. For a linear layout, the MFRC has
separated input hopper (I) and output hopper (O), whereas they are integrated into an input/output
hopper (1/0) for a circular layout, or equivalently a cluster tool. Accordingly, we illustrate all parts

processing route by |- MFR—M,_ MFR—M, —MFR—O and /0— MFR—M,_MFR—M,
—MFR— 1/O for linear and circular layouts. Here, M; and MFR shape the stochastic loop
MleFR in this route.

For MFRCs, the main objective in the literature is to improve their performance, and pickup
criterion is one factor that influences the performance. The pickup criterion is classified into three
classes: free, no-wait, interval. A free pickup criterion means that a completed part can wait on the
machine unlimitedly, whereas it should be unloaded from the machine with no delay and loaded to


http://dx.doi.org/10.29252/iors.10.1.1
http://iors.ir/journal/article-1-621-en.html

[ Downloaded from iors.ir on 2026-02-02 ]

[ DOI: 10.29252/i0rs.10.1.1 ]

Performance Analysis of Circular Two-Machine Robotic Systems 3

the downstream machine for no-wait pickup criterion. The interval pickup criterion is in-between,
such that the machine has a time window for waiting time of the completed part on the machine.

It should be emphasized that the layout is another factor that can influence the performance.
Although the processing route of parts is series, MFRCs can have either of linear or circular layouts.
A moveable Cartesian robot moves in a rail network for a linear configuration, whereas a stationary
base robotic arm rotates on its axis for circular configuration. Note that robotic systems with
circular layout are very common in practice, as an especial kind of robotic systems namely cluster
tool is using in the semiconductor manufacturing process [19, 20].

The final factor that may affect the performance is the robot’s travel time between machines that
can be additive, Euclidean, and constant. Let us describe three travel time metrics regardless of the
multi-functionality of the robotic arm. For additive travel time metric, the robot must pass through
all intermediate machines with a fixed speed to move between two machines, whereas the robot's
acceleration vary based on the distance between departed and destination machines considering a
Euclidean travel time metric. Thus, the Euclidean travel time metric is less time-consuming than the
additive one. However, it is not as fast as constant travel time metric where physical distance
between all machines is negligible due to the compact size of the system. Many results in the field
have been extracted separately for each one of pickup criteria, layouts and travel time metrics,
rather than for all of them. We contribute to the literature by studying two-machine MFRCs for the
general case.

Since robotic systems with free pickup criterion, circular layout and additive travel time metric
are the most prevailing one studied in the literature, the focus of this study is initially on MFRCs
with the same characteristics. The rest of this study is as follows. Section 2 includes the problem
description. Section 3 is devoted to a concurrent performance analysis of the cost of quality and
cycle time for the case of non-identical parts production. Section 4 takes the pickup criterion, layout
and travel time metric of the MFRC as a design problem. Finally, Section 5 concludes the research.

2. Problem description

For the sake of simplicity, we initially present the standard classification scheme of the problem.
The scheme w|w,|ws is composed of three fields [21]. w, represents the robot and machines
characteristics, w, stands for the part characteristics, and finally w; denotes the objectives. Let us
provide details of the classification by some examples. Foumani et al. [18] focused on
RyrCh|(free, A, cyclic — 1)|(minTy: st.T,) that is as follows:

e w;. A robotic system with a MFR and two machines that are located in a linear
configuration.

e w,: Parts have a free pickup criterion, an additive travel time metric, and one unit is
completed by execution of a cycle as parts are identical.

e w5: The objective is to minimize the expected cycle time given a threshold on the expected
cost of quality.

However, we focus on RyrC?|(free, A, MP)|min AT; + (1 — 1).T, in this section, where the
layout is circular, the system processes multiple part types and the objective function has a
scalarized formulation of the expected cycle time and cost of quality. Assuming a multiple part
scheduling problem, this section is partitioned into three folds: 1) We start with cycle time-related
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definitions. The focus is mainly on MFRCs with free pickup criterion, circular layout and additive
travel time metric. 2) The cost of quality-related definitions are mentioned. 3) Definitions related to
both time and cost are presented. For production of multiple part types, the system should process a
minimal part set (MPS) in a cyclic manner, and therefore each part | is a member of the MPS. The
MPS represents the smallest possible set of parts that can fulfill the manufacturing goals [22]. For
instance, we assume the supply for four part types should be 100, 60, 80 and 140 units. Then, the
greatest common divisor of them is 20, and the quantity of parts in the MPS is 19 (five of the first
type, three of the second type, four of the third type and seven of the forth type). This is to say that
the dimension of the problem is decreased from 380!/(100!x60!x80!x140!) to 12!/(5!x3!x41x71).
Also, five parts of the first type are labeled with 1-5, three parts of the second type are labeled with
6-8, four parts of the third type are labeled with 9-12, and finally seven parts of the forth type are
labeled with 13-19.

Due to the cyclic behavior of the system, it restarts by processing the first part in the MPS after
the last part in the MPS. Then, the period between the completion of exactly same part of two
successive MPSs is cycle time in such a mass production. We need to optimize the cycle time by
jointly determining the order of MFR activities and the sequence of parts.

Definition 1. A sequence of parts of the MPS is represented by o where o(l) is the I"
corresponding sequence.

part of the

It should be noted that, in contrast with the case of identical parts [18], part | here means the part
that is located in the I position of the corresponding sequence. Since we are focusing on multiple
part types, let us break a cycle of the MPS into a set of partial cycles with the size of n=|MPS|. We
continue with an updated version of the definition of activity borrowed from Brauner [4].

Definition 2. A robot activity is represented by A‘i’(”, Vvie{0, 1, 2} and VI € MPS [23], includes
steps: 1) MFR takes the part | of sequence o from M;. 2) MFR transfers the part to M;,;. 3) MFR
loads the part onto M.

Intuitively, if the system has two machines and a circular layout, M; means 1/0 for i=0 and M;.;
means 1/O for i=2. Additionally, it is vital to stress that Step 2 has an extra segment for i=1 due to
the fact that the test of part is in transit. We conclude that Step 2 is completed not only if the robotic
arm carries the part to the packing machine M,, but also the robotic arm shows no fault.

Definition 3. The I one-unit partial cycle of the part sequence o is a portion of the cycle where the
I" part of o is the input of the system and the (I-1)" part of ¢ is the output of the system [23].

Each of these partial cycles can complete a single part. Then, a sequence of robot activities when
each activity is performed exactly once for each part |, where [ € MPS, represents a partial cycle
and n executive partial cycles makes together a cycle. Since the cycle can be broken into n partial
cycles, we can find a mechanism to optimize all partial cycles in order to find the optimal cycle. Of
course, it is important to find the optimal sequence of parts in order to apply this mechanism for the

MFRC. Assume that Ai'(l) is the final activity for each partial cycle, where [ € MPS. Then, the

permutation of other activities can be one of the following alternatives: 1) A7¢™", 47® 2) 470,

AJ%D . This is to say that we have two classes of one-unit partial cycles: 1) S7"=47¢"1 47",

470 2) s7D=490 47D 470 for the part | entering the system and the part I-1 leaving the

system. Also, here k €{1, 2} is the NDT test strategy. For the stop testing (k=1) MFR stops in front
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of this machine to complete the test, but it performs the test of the part in transit between M; and M,
for the transition testing strategy (k=2).

g

For any | € MPS, none of Skl(l) and S,fz(l) operate in a steady state due to the dynamic nature of

circular MFRCs. Intuitively, the time taken between the completion of A;’(l) and Af(”l) is not
fixed. Consequently, we present an adapted version of notation:
MPS Minimal part set of a multiple part scheduling problem
n Total number of finished parts in the MPS
o Sequence of parts of the MPS
a(l) Part in the 1™ position of the sequence o
y°® Time required for the NDT test of the I" part regardless of testing strategy
. Lower bound of the testing time
P Upper bound of the testing time
Do) Probability of identifying no defect in each time testing of the I" part
€ Load/unload time of machines by MFR
0 Time for traveling between adjacent locations with additive travel time metric
A1) Processing time of the 1™ part by manufacturing machine M;
by Processing time of the I part by the packing machine M,
w?® MFR’s waiting time at M; for 1" part fed to the MFRC, where [ € N
Ao Bounds for the waiting time w, ®
by Bounds for the waiting time w, O

fi(Sp;’, v"®)  Total cost of quality for 5,‘;.(1) where y<y? <)V

foSps’ v°®)  Partial cycle time of S,fj(l) where y-<y? <Y

Ty Expected cycle time, i.e., ZlEMPSE(fl(S,‘:j(”,y"(l)))

T Expected cost of quality, i.e., ¥;emps E (f> (S,fj(l), D))

A Parameter of the scalarization (the weight of the objectives)
C Total in-situ costs of quality

Ce Total out-situ costs of quality

Note that ¢, J, ¢, and ce are assumed to be independent from the part types because the parts in
an MPS often belong to the same family [1, 24]. Here, y°® can be varied between the bounds by
allocating resources to the NDT. The total cost of resources for each part I, where [ € MPS, is
dedicated by fl(S,fj(l), y° W) that is the summation of in-situ and out-situ costs of quality [25]. ¢, is

the cost of NDT to guarantee that all completed parts have a fixed quality level. We may prefer to
decrease c;. However, it may result in a higher ce.
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a(l)
kj

fo(S7 J.U), y°®) is non-decreasing with respect to y?®. This is to say, a trade-off between time and
cost is vital to know how they vary with respect to the testing time.

It is apparent that f,(S;.", y°®) is non-increasing with respect to y°® when y-<y?®<y* while

Definition 4. For each part | of the part sequence o, where [ € MPS, a solution is 8= (57®,

yo®) in which 570 € {57,570 5§71 57011 and yt<yoM<;¥, Moreover, YoW={7O= (59O,
yo®): 590 g (570 571 570 g7 and 5t<yo W<} gives all feasible decisions of the partial

cycle executed for the I™ part of a sequence o.

Two types of stochastic dominancy exist for optimization problems with two objects: 1) solution

67® dominates 65 if it is not stochastically worse than 65 under both objects, and it is

2
stochastically better than @, ®under at least one of objects. 2) 6; @ and 0, ® are considered as

stochastic alternative solutions if there is no stochastic dominancy between them [14].

Definition 5. If f,(87)<f,(67 ) and £,(67)<f(67) with one of the inequalities being strict,

then 6, @ stochastically dominates 6, ® for multiple part problem, which is written as 6; (1)59;’ @

Definition 6. ST stochastically dominates S,f].(” (s7V<s? j(l)) if there exists no Ey*(S,fj(”) such
D A ) « « l
that (57, P)<(Si”. 7). V7€ 7*(SeD).

Let us now refer to different classes of stochastic dominancy as follows [26]:

1. Absolute dominance (AD): a random outcome ¥; is absolute preferred over ¥,, written
qllz(l) ylz if P(S”ﬁ‘l’p_):l and SU1> 51/2 be met for at least one Slll_

2. First-order stochastic dominance (FSD): The random outcome ¥; is first-order
dominant over ¥,, written ¥,>,) ¥, if P(¥1>1)>P(¥,>2) for all 1.

3. Second-order stochastic dominance (SSD): if the random outcome ¥; is second-order
dominant over ¥, written %> ¥%,, we conclude that E(¥1)>E(?>).

In a similar manner, =), =2 and =) indicate classes of stochastic equalities. ¥1=u)%,, ¥1=¢ ¥,
and ql]_:(g) gyz, if P(yllz Wg)zl, P(T1>i)=P(SU2>i) and E(Wl)zE(Sllz), respectively.

3. Performance evaluation of objectives

Before proceeding with this Performance evaluation of objectives, let us first provide a base case
formulation of inspired by existing formulations for linear cases [18]. One of the characteristics of

fl(S]fj(l), y°®) is that it is independent of the robotic arm move sequences since it is related to a

process-oriented extension of the MFRCs. In more detail, fl(S,fj(l), y"(l)) is independent of 4, such

that the layout and travel time metric has no effect on it. Accordingly, we formulate fl(S,fj(l), y°®)
for generic two-machine MFRCs as a function of y°®. For any |, fl(S,fj(l), y°®) is the summation

of the in-situ and out-situ costs. The in-situ cost depends on y°® and the probability of identifying
no defect. Initially suppose that, for any fixed y°®, MFR identifies no defect in each time of test of
I™ part with probability PoyWhere 0<p,y<1. This means the testing result of the part | is a
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Bernoulli trail with parameter pq(;. For the I part, the treatment of the system is like a
geometrically distributed variable X°® with parameter Po(yy because the geometric distribution
represents a set of Bernoulli trials before the first success. Note that the geometric distribution is
memoryless, and therefore we assume that the processing time of each part | on My is the same for
both original and reworking tasks. Similarly, p,; is the same for both original and reworking tasks

of each part |. Hence, the in-situ cost for 1™ part is ¢, X°@Wy?®, The out-situ cost is only a non-
increasing with respect to y®. It is where d>0 is a given constant. d is a small value for

0% o‘(l))d
high-tech industries since even one non-conforming part causes an infinite out-situ cost. The total
cost of quality and its expected value for 1" part are:

. (SJU), Yo = ¢, xo0yo0 +(y0(l))d Q)

O o)
(S 7O = L @

. . 1 a(D
Equation (2) can be generalized to ZZEMPSE(fl(S,fj(),y”(”)) :ZleMps% +(y,f%)d,
0(1)

where (S, y7®)e YO if we consider the expected value of total cost of quality for all parts in
MPS. Now, we determine feasible partial cycle times for a fixed y°®. For this case, two strategies
exist for the NDT technology: the stop testing (k=1) and the transition testing (k=2). As stated
before, for k=1, MFR stops in front of this machine to complete the test, but it performs the test of
the part in transit between M; and M, for k=2. For a circular two-machine MFRC with additive
travel time, the stop testing strategy is restricted to the cases below: 1) it increases the partial cycle
time, for at least ¥ if the testing reveals that the part must pass M. 2) it reduces the partial cycle
time for at least min{o, y°®} if the testing reveals that the part must be loaded to M, for rework.
Thus, partial cycle times S7°, S7, 570 and s7 of a circular two-machine MFRC with additive
travel time metric are:

fa(S732, ¥ = 4e+35+(a, ) +y° P +26) X O+b, ©)

f(S15s ¥70) = 6a+60+y" D +(a, ) +y O +26)(X O -1)+maxa, b, ., @)

f2(S5 gz), y’®) = Be+20+a,;, +max{d, VU(Z)}"'(aa(z)"'Vaa)"'min{& y*OY}+2e)(X U(Z)'l)"'bo(z—n (5)
(S35, ¥°©) = Be+5o+max{d, y"O3+(a, +rO+min{d, y O 26) (X O-1)+ maxg,, . (6)

. l
where maxq, b, ., =Max{0, ap(-(26+39), byq-1)-(2:+30)}. Let us only detail f,(S7;", y°®) for
the sake of brevity. In Equation (4), the robotic arm visits 1/0, M,, and M, in the I"" execution of

S“(l) Firstly, MFR travels backward from M, to 1/O to unload the I part and load it on M; (2e+20).
Then it returns to M, to remove the (I-1)™ part and transfer it to I/O after a wait at M,

(2e+20+w, o= 1)) Similarly, unoccupied MFR comes back to M, to unload the I" part and transfer it
to M, after a wait at M; (2e+25+w, (l)) in the final step. After testing the part (y°®), it needs the
rework time (ad(l)+y"(l)+28)(X0(l) —-1). Thus, fz(sz(l),
ya(l))=6g+65+y”(l)+(aa(l)+y“(l)+28)(X“(l) - 1)+w20(l_1) + wf(l) where wf(l) = max{0, a,q —
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(2£(l+1§5) - wz"”_l)} and wz"(l"l) = max{0,bs-1) — (26 + 36)}, meaning that wf(” +
o(l—1)_
w, - maxaa(l)lba(l_l).

So far, two frameworks are separately developed. However, MFRCs may face both objectives
concurrently. As mentioned earlier, the classification scheme of the problem for this case is
RyrC2|(free, A, MP)|min AT; + (1 — 1).T,. Hence, the curve involved in considering both
objectives of study provides a high performance with a satisfactory cost. This means the scheduling
problem, which is labeled by T(a), is converted into the following weighted sum formulation:
T(0) = {minTiemps 1 Ei(Sg; v ®)) + (1 = ). E(f(S71 v @) (877 yo®) € vy,
Once the optimal part sequence ¢* is determined and the optimal partial cycles and corresponding
time required for the NDT test of all parts of the MPS are assigned, we can conclude that the value

of the optimal solution is T(¢*). The formulation T(o) = {minZlEMpS/l.E(fl(S,fj(l),y”(l))) +
¢! —/’l).E(fZ(S,fj(l),y"(l))); (S,fj(l),y"(l)) € Y°®} has 1 and 1-1 as the predefined weights for
E(fl(S,f}l), y°®yand E(fz(S,':j(l), y°W®), and it can be optimized though the following theorem.

Theorem 1. Table 1 holds for weighted sum formulation of the problem,
T(0) = {minTiemps - Ei(Sg; v @) + (1 = D). ECf (S5, v @) (87 vo®) € yoby,

if the optimal y°® is obtained by first derivative of the weighted sum formulation with respect to
ya(l)_

Table 1. Optimality region for cycles of circular two-machine MFRCs with non-identical parts

Success Operational parameters
Parameter

sy *tbg-1)<30 Ay tbo-1)=30 sy tbo-1)>30

[} A
fo(Ste”, o 0)= (ST, o)
(ST, Y7 O) <y (S5, o)
(ST, o O)< @ F(S5P, o)

BT, v D)< BT, vo®)
Poy<¥e | TSP, P O)2 o FalS, o)

fo(S7a2, Y O)= @ BASTL, o ©)
fz(sz(l), y”(”)Su) fZ(ng(l), ya(l))

(87 ©)=f(S7L, ¥ ©)

(07 ©)=t(7,” v )& f(S7;" )

(67 O)=h(s7, y°®)

1 l
(S5, ¥ O)= ST, )
fz(sg’f”, y”m)iu) fz(S;Z(l), ya(l))

fo(SY 7O = TSty Yo D)= (S35, o)
1
= (s, ¥7®)

1 1
ST, YT O)= fa(S53”, ¥ ©)
fz(sz(l), y”(”)Su) fz(Sfl(l), ya(l))

pU(l):l/z fZ(Sffl)vyd(l))g(l)fZ(sz(l)r ya(l)) ()= o) o) al) o) fz(sgz(l)’ ya(l))i(l)fz(sérl(l)’ya(l))
o (1))= a(l) 20) f2(9 )—f2(511 VY )&f2(521 VY ) f a* () _f a(l) a(l)
f(07 W)=ty(S7, 7, ¥° D) &h(S7D, yID)&A(SID, 5oy 207 )=H(S;, 7, v?)
&fz(Sgl(l),)/”(l)) 12 22 &fz(S;Z(l),]/”(’))
f 50(1)1 oY=, f Srf(l)y a(l)
050, )< (Y, y70) e o et Lo 0S50, D)< (Y, y70)
Pew¥e | fus50, " D)< ST, ¥o©) Y a2y Sz v D)= fa S5, 77 0)

(87 O)=f(S57, ¥ )

fo(Sp 2, Y D)= BASTL”, o ©)
fz(ga*(z)):fz(sgl(l)’ ya(l))& fz(sgz(l)’ ya(l))

1267 O)=h(s5.°, y°®)

Proof. The idea behind the proof of this theorem is as follows. Recalling the generalized version of
Equation (2), the chosen partial cycle has no effect on the value of Y;cyps E(fl(S,fj(l),y”(’))).
Therefore, Y empsA-E(fy (S,fj(l),y"(l))) plays the role of an intercept when we select the optimal
among 570,570, 57 and 7V for a part. This is because Table 1 implies ay(y, by,  and
Poqy affect the optimality of a partial cycle, not y°®. Hence, the segment
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ZlEMPS/l.E(fl(S,fj(l),y“(l))) is the same for all parts, and can be ignored when we select the
optimal cycles.

Regarding Table 1, let us only focus on one part and prove the optimality region z"*(”=(E(f1(Sf1(l),

y*(S71)), E(fASTP, y*(S7P))); the proof of the other bounds in Table 1 has symmetry. Having
Definition 6, S’ " dominates another cycles if there is no 7 i E7°(Sy j(l)) so that (S, j(l), =<V,

7), v7€ y*(spi?) and v Ve (73, 571, 57503 Then, considering a constant x, we have:

aa(l) +7+2€

E(fz(sﬁl), V))=uerde+3o+ , +hgq_1)=H (7)
o(l)
o “ Aynt+V12+2¢€

E(fz(Slg), V12))=p>46+60 - a, +(Z)T:+maxao(l)'bo(lfl) =u 8)

- ~ ~ ~ . ~ Ay Y21 +min{é,y,1}1+2¢
E((S71, Pan)) oAt 20N, FaaFas-Mino, faa “OTATEOT )y
©
E(fz(Szaz(l)v Pa)) =1 be+55+Max{s, P22 }-F25-min{s, )722}_aa(l)+aa(l)+]722+min{5.]722}+2£+maxa L=

o) s Po-1)
(10)
Which meaning that:

y= Pa(l)(ﬂ'43‘35‘ba(l))' Ay()-2¢ (11)
?12: pO’(l) (ﬂ+aa(l) '48'65'maxa0(l),bg(l_1))' ao’(l)-zg (12)
V21= Doy WtP21+min{6, 721 }-4e-26-max{d, ¥21}-byq-1))- Aoy-Min{0d, 721 }-2¢ (13)

V22= Doy (Wt P22+ sy +Min{0, 755 }-4e-55-max{o, sz}'maxag(l),bg(l_l))‘ Ayqy-MIn{6, 223-2¢ (14)

Taking u from (7) and combining it with (12), (13) and (14) results in:

)712=)7+Po(z)(ao(z)+ba(l)'35'maxaa(l),bg(l_1)) (15)
V215V +2ps(Min{6, 21 3)-min{J, 7,1} (16)
V225V 0o (As@y Doy 22+ MIN{I, 722 }-26-max{d, sz}'maxag(l),ba(l_l))‘min{é, Y22} (17)

It follows form (15) and (16) that 7,,<y and ¥,1<Y if ag)+bs-1)<36 and p,)<¥2. Moreover,
(17) reveals that 7,,< is correct if ayy+by-1)<36 and py()<¥2. Then, §TD<go® M g™
STO<57® and 27" O=(E(f,(STL, y*(S7P)), EESZP, y*(S7P))). The proof of Table 1 for the
rest of partial cycles is similar if we limit ourselves to a single part | of MPS. It is obvious that we

should sum individual E(f,(Sg\”, ¥7®)) in order to obtain Lieyps(1 — D). E(f(Sgy”,¥7 ) .
We could prove that S,f j(l) should be chosen based on Table 1. After selection of the optimal partial
cycles for all parts in MPS, the question is: what is the optimal value of ¥y afterwards? Here, we
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(CI yo®
Da(z)

+O/U(D)d) =0) to obtain the optimal y°®. Instead, we should consider a generalized form as —y

e r* (yg(l))d) (1-2). E(fz(S"(l) y°®)))=0 for each part | given that the optimal partial cycle is

Po()
obtained from Table 1. For instance, if Table 1 implies that S“(l)

1 d+1 [d.Dg(1)-C
(ag@ytbo(-1)<30 and p,;)<72), then V*(Slf; )= /#)IE =

Corollary 1. Having a circular two-machine MFRC with additive travel time metric that produces
non-identical parts, the problem of finding the optimal part sequence ¢* is equivalent to the
travelling salesman problem (TSP) if testing result on MFR is Bernoulli trail for all parts.

are not able to simply consider the first derivative of Equation (2) equal to zero (i

is the optimal partial cycle

The idea behind the proof of Corollary 1 is straightforward. We know that Table 1 plays the role
of a set of dominant rules as mentioned before. Thus, for each part sequence o, we can simply find
the optimal partial cycles and corresponding time required for the NDT test of all parts of the MPS.
All we need is to find the optimal part sequence o*. Regardless of the applied part sequence, this is
equivalent to a TSP with cost matrix C=[E(f2(5,f,,j,y)]nxn due to the following reason. Recalling
Definition 3, the cost matrix shows part I-1 (as output of the partial cycle) on the row and part | (as
input of the partial cycle) on the column. Hence, the obtained ¢ by this cost matrix can give us ¢*.

The cost matrix plays the role of a prerequisite for converting the problem into a TSP problem,
such that we can find the optimal sequence of parts with TSP solvers such as Concorde [27]. It is
well known that TSP is an NP-hard problem in combinatorial optimization, and therefore solving its
graph is computationally complex. However, the class of TSP which is equivalent to our robotic
system problem can be solved in polynomial-time due to the structure of the cost matrix. Regardless
of the NDT, the well-known Gilmore and Gomory (GG) algorithm is applied for typical robotic
systems with non-identical parts [28]. However, in the following theorem, we show how a GG
algorithm can be employed to find optimal sequence of a two-machine MFRC with NDT
assumption.

Theorem 2. The class of the TSP that is equivalent to the two-machine MFRCs with non-identical
parts is solvable in polynomial time.

Proof. The idea behind the proof of this theorem is as follows. The GG algorithm solves this special
case of the TSP with cost structure C;; = max{x;, y,,}. To describe the GG algorithm, we should

first rewrite the expected values of Equations (3)-(6). The expected values of Equations (3) and (5)
are:

+y°® 4 2¢
> E(R(TC. 7)) = nay +Z o= me 5 (18)

LEMPS Po

agsqy +v°® + min{8,y°®} + 2¢

n
Z E (fz(sgl(l)’ ycr(l))) =nas; + Z(max{& ya(l)} _ ya(l) _ min{&ya(l)} +

LEMPS =1

n
)+ boayy (19)
Ps( =
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, where a;=4¢+30 and az=4e¢t+26. It is obvious that ZlEMPSE(fz (Sfl(l),y"(”» and

Siemps E (fz (Sé’f”,y"“)» are independent from the sequence of parts in the MPS. This means

that there is no part sequensing problem if each part | is processed by either of S7 or 20,
n o) n
Z E (fz(sfz(l)rya(l))) =na, + Z(M —a,q) + Z MaXa, 0 by (20)
LEMPS =1 Poy =1

DT E(f(s50,ro®)) = na,

LEMPS
n

+ Z(max{&,y”(l)} —y°® —min{8,y°P} - a,) +

asqy +v°Y + min{s,y°®} + 25)
Po)

=1
n
+ Z MaXa, ) by y) (21)
=1

, Where a,=4¢+60 and a,=4¢+55. Once again, it is obvious that a,, a,, first summations in Equations
(20) and (21) are all independent from the sequence of parts in the MPS because they show no
interaction between two consequtive parts in an arbitrary sequence o. However, the second
summations in Equations (20) and (21), which are Z{;lmax%(l)’bg(l_n, depend on the parts

sequence . Consequently, we need to detail MAXq, () boary™ max{0, a,()-(26+39), bg(i-1)-

(26+39)}.
. . ) a(l) o(l-1) o)
As mentioned in the proof of Equations (3)-(6), Maxa, by = Wi~ TW, where w; 7 =
max{0, a, — (2¢ +368) —wy "V} and wy ™ = max{0, b,_1) — (2¢ + 36)}. Here, wy ™V is
a(l)

independent from the part sequence o, but the part sequence has a direct effect on w; *~ and this is

the reason of dependency of Mmaxq,, b to the part sequence o. Let us write wl" O as wl" O

a(l-1)

a(l-1) o(l-1) . .
-w, + max{w, , Ay — (2 + 36)}. Then, Equations (20-21) are changed as follows:
n o) 2 n
(1) ) _ a[,(l) + Y + 2¢ _
lz E (fz(51z N )) =nas + Z(ipa(l) a@) + Z max{xa(l—l)'yo'(l)} (22)
EMPS =1 =1
D7 E(f(s50,r70)) = na
ZEAT/IIPS o o
+y°® + min{5,y°V} + 2
+ Z(max{c?,y"“)} —y7® —min{5,y°0} - ayq + G TY min{§,y "} 5)
= Ps
n
+ z max{Xg(-1y, Yo} (23)
=1

, Where as=2¢+30, ag=2e+20, x5(—1) = max{2¢e + 36, b,-1)}, Yoy = a;- In these equations, the
only segment that is affected by the parts sequence is Yi; max{x4(;-1), Yo}, Which has the
structure of a polynomial-time solvable TSP, and a GG algorithm can be implemented for it o.

For the sake of brevity, we refer to Kabadi and Fazle Baki [28] to know how the above GG
algorithm can be implemented for two-machine MFRCs in polynomial time. So far, there is a
unified framework for two-machines MFRCs for non-identical parts production with following
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characteristics: free pickup criterion, circular layout and additive travel time metric. The framework
assists companies which use robots with multi-functionality to remain competitive. However, a
generalization of the framework is useful because types of robotic systems are varied by certain
features. In the next section, we start by providing a generalization of the framework that
distinguishes the problem based on three characteristics of MFRCs: pickup criterion, layout and
travel time metric.

4. MFRCs based on pickup criterion, layout and travel time metric

This research has concentrated on typical MFRCs to validate the study of the case of non-
identical parts. Clearly, it is still crucial to show that the analysis is adoptable to real-world cases,
which are common in different industries. The applicability of the analysis is indicated by three
main characteristics of MFRCs. The first characteristic is described separately, but the last two
characteristics are described jointly in order to conduct a more in-depth analysis.

4.1. Analysis of MFRCs based on pickup criterion

There is a meaningful interaction between optimal solution of production systems and their
features. Thus, here, we study problems with the standard classification schemes Ry zC?|(no —
wait, A, MP)imin AT; + (1 — A).T, and  RyrC?|(interval, A, MP)|min AT; + (1 — 1).T5,
respectively. The former scheme represents a robotic system with a MFR and two machines that are
located in a circular configuration. Multiple part types have a no-wait pickup criterion with an
additive travel time metric, and the objective has a scalarized formulation. However, the latter
scheme represents a similar robotic system where pickup criterion is interval. The no-wait and
interval pickup criteria are more oriented towards real world problems in comparison with free
pickup criterion since it is a relaxed version of them. In practice, the no-wait and interval pickup
criteria are applied for chemical and food products that should be processed as soon as possible. For
no-wait pickup criterion, the waiting time of each part | on each one of machines M, and M, is zero,
whereas the waiting time of each part | on each one of M; and M, is limited within a time interval
for the interval pickup criterion.

As stated in Foumani et al. [29], the difference between MFRCs with free pickup criterion and
two others lies in the fact that we need to define optimality conditions for MFRCs with free pickup

criterion. However, we must find feasibility conditions for each of S,f j(l) in the cases of no-wait and

interval pickup criteria. To point out the subject more clearly, let us first determine the feasibility
conditions for MFRCs with no-wait pickup criterion.

Ayqy = 26+ 36 (24)

bsu-1y = 2e + 36 (25)

Inequalities (24) and (25) imply that wf(l) and wz"(l_l) should be qual to zero in order to have a
feasible partial cycle for I" part in the MPS. It can be argued that partial cycles Sfl(l) and Szdl(l)are

feasible, regardless of as(;) and b,(;—qy in inequalities (24) and (25), but sz(l) and S;’Z(l)are more
productive when they are feasible. This is because wf ® and wza =1 are zero, meaning that
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maxaga),bm_l)zo in Equations (4) and (6). Therefore, Equations (4) and (6) dominate Equations (3)
and (5) with the same value of the total cost of quality. After these feasibility checks, Theorems 1

and 2 can be applied for MFRCs with no-wait pickup criterion. In what follows, we determine the
feasibility conditions for MFRCs with interval pickup criterion.

Ayqy + oy = 26 + 36 (26)
bo1y + bory = 26 + 38 (27)
, where as;) and 50(1-1) denote the bounds for the waiting times wf ® and wza (1_1), respectively.

. . l -1 l l :
Because waiting times w’® and wy“™" can be nonzero, 7" and SV are not necessarily

optimal even if they are feasibly. Table 1 is for optimally check in addition to feasibility inequalities
(26) and (27).

4.2. Analysis of MFRCs based on layout and travel time metric

At this stage, we consider replacing the layout of the MFRC with a linear configuration and
changing its travel time metric to either of Euclidean and constant to know how this feature impacts
the efficiency. Therefore, in this section, we study problems with following classification schemes:

e  RyrCi|(free,A,MP)|min AT; + (1 — 1).T,
e RyrCY|(free, E,MP)min AT, + (1 — 1).T,
e RyurC2|(free,C,MP)imin AT, + (1 — 1).T,

The difference of the first classification scheme with the classification scheme in Section 2 is
that it represents a linear configuration, whereas the difference of the last two classification schemes
with the classification scheme in Section 2 is that they represent Euclidean and constant travel time
metrics. We first derive the travel time of the MFR between machines for m-machine MFRC with
any layout and travel time metric, and then extract some special properties of the two-machine
cases. We recall that ¢ represents the required time for traveling between two adjacent location
pairs, i.e., e and e+1. That is, the travel time d(M,, M;) between two non-adjacent location pairs e
and f for each one of two layouts and three travel time metrics can be expressed in Table 2 (inspired
from Jolai et al. [30]).

Let us start with linear and circular MFRCs with additive travel time metric. Without loss of
generality, assume that e<f. Then, as stated earlier, the linear case has only one route
Mc—Mei1—...—Miy—My, to transfer the part from M, to My, whilst there are two options
Mc—Mes1—...—Miy—Ms and Me—Mg1—...—1/0—...—Ms.1— M possible for the circular case to
travel between M, to My and these two routes can potentially give a shorter travel time. Generally,
the time taken for a move from M, to M is |e-f [0 and min{|e-f |3, (m+1-|e-f |)o} in linear and circular
configurations of MFRCs. Because |e-f |0 > min{|e-f |0, (m+1-|e-f |)J}, the travel time between
machines M. to Ms in the linear case of MFRCs is never less than this value in the circular case of
MFRCs. For the case of Euclidean travel time metric, the MFRs acceleration and deceleration vary
based on the distance between machines M. and M;. Therefore, a direct move between them without
stop takes Jer and it is shorter than the time deg+dyr taken for a move with stop. Likewise, possibility
of two options Mc—Mei1—...—Me1—M; and Me—Me1—...—1/0—...—Mq—M; of routing in
MFRCs with Euclidean travel time metric results in time savings. However, this result does not hold
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for the constant travel time metric. In more detail, we know that additive travel time metric is more
time-consuming than Euclidean travel time metric (de=degtdgr), While the constant travel time
metric reflects the ultimate gain of Euclidean travel time metric (de=4J). From this discussion, we
can conclude that two options explained above take the travel time ¢ that is independent from the
layout of the MFRCs. The results of Table 2 are especially suitable for the optimization of two-

machine MFRCs due to their structural properties. Table 3 is provided for Sfl(l),sza),Szal(l) and
oAb,

Table 2. Travel time of the MFR between machines for different m-machine MFRCs

Travel Time Layout Gap
Linear Circular Linear - Circular
Additive le-f |0 min{je-f |5, (m+1-|e-f )0} max{0, (2Je-f |-m-1)6}
Euclidean et * Oef < Jeg+ I, Oef © Oet < Oegt max{0, der}: Jer < Jegt gty
vge{min{e, f}+1, ..., max{e, f}-1} Voe{l, ..., m+1}\{e, f} Vge{l, ..., min{e, f}-1, max{e, f}+1, ..., m+1}
Constant 12 1) 0

Table 3. Travel time saving of circular two-machine MFRCs with additive travel time metric

Linear Circular
Syi’  Additive Euclidean  Constant Additive  Euclidean  Constant
S70 36 [6, 3] s 0 0 0
S78 20 [0, 26] 0 0 0 0
S50 30 [6, 30] J 0 0 0
Sg 26 [0, 26] 0 0 0 0

The arguments in Table 3 go as follows. For the linear case with additive travel time, rewriting
Equations (3)-(6) leads to the corresponding column in the table. This is because we need an extra

35 between A7 and A7%) for each one of f,(S7°, y®) and £,(S7”, y°®) in Equations (3)

and (5). Likewise, for each part | where [ € MPS, we require an extra ¢ between Ag(l_l) and A‘lf(l)
and another extra & between A7 and 47" for each one of f(S7V, y®) and f,(S27, y°®) in
Equations (4) and (6). For the linear case with Euclidean travel time, there is a chance to have a
better performance, such that only an extra ¢ between Ag(l_l) and Ag(l) is needed for each one of
f,(s7, o) and f,(S7, yo®) in Equations (3) and (5). Under ideal condition, we also require
no extra & between A5¢™" and A7 (and 47 and AZ®) for each one of f,(S%", y°®) and
fz(ng(l), y°®) in Equations (4) and (6). Note that the ideal condition of the linear case with
Euclidean travel time is when it has a constant travel time. In what follows, we consider the cases
that the problem is equivalent to circular two-machine MFRCs with additive travel time metric.

Theorem 3. Regardless of the travel time metric, the optimization of the circular case is equivalent
of the optimization of circular two-machine MFRCs with multiple parts types and additive travel
time metric.
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Proof. Recalling Equations (3)-(6), there is no transit between non-adjacent location pairs. In other
words, any pairs chosen from 1/0, machine M; and machine M, consists a pair of adjacent locations.
This is enough to conclude that all elapsed travel times are equal to 4, as it is the case for constant
travel time metric. Therefore, we can conclude that Theorems 1 and 2 generally remain valid for a
circular case o.

The final note is that the above theorem is crucial since small-scale circular MFRCs are more
common in practice and they need less space of shop floor than linear ones. In addition, stationary
robotic arms are more economical to setup and easier to program that keep them as a robust solution
as comparison with Cartesian MFRs.

5. Conclusion remarks

The performance analysis of small-scale robotic systems becomes very complex when stochastic
variables such as controllable testing times are taken into consideration, especially for the case of
non-identical parts production. Analyzing the performance of such problems under a scalarized
formulation has shown that optimal solutions depends on operational parameters aq;y, by(), 6 and
quality parameters p,;, and y°®. Thus, we accomplish the highest benefit by assuming the
problem as an integrated one to generate optimal cycles according to as(;), bg(ry, 6, p and y°®,
Finally, as a design problem, pickup criterion of the robotic system is studied. Due to a set of
feasibility constraints, the search spaces for scheduling problems were reduced for no-wait and
interval pickup criteria. Moreover, considering travel time metric, a preliminary analysis has
identified the regions where the performance of a circular two-machine system is more than that of
the corresponding linear system. The results prove that the circular layout dominates the linear
layout and the travel time metric of the system with circular layout is not an important issue. As a
research direction, we can consider dual-gripper robots that are very common in practice. For such a
robot, the NDT test can be performed by each of two grippers.
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