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Two main results of necessary conditions of optimality for two kinds of prob-
lems, bilevel optimization and quasidifferentiable MPEC, are presented via
Demyanov sum of quasidifferentials. The result that Lagrange multipliers are
independent of the choices of quasidifferentials and supergradients is given.
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1 - Introduction
We consider the following two classes of problems,

min 0(x) = f(xz,v(z), - ,vm(z))
s.-t. vi(z) = max{p;(z,y;) | Gi(z,y;) <0, Hi(w,y;) =0}, i=1,---,m,

(P1)

where f : R"*™ — R! is quasidifferentiable, x € R",y; € R*, and
(pi:gijah"&'k S Cz: 1= 13 ,Tﬂ,,j = 1! :pi:k =Pa+ 1: » is
Gi(z,y:) = (9a (@, 9:), - - - :‘gi‘pg'(xayi))T,
Hi(”T? y‘a) = (hi(pi+l}($1 yﬁ% e ahiq«; (:S? y’&))T>
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and
min  f(z,y)
(Py) s.t. zj(x,y) <0, j=1,---,r
y= (Y- ,ym)" € S(z) =1, Si(x),
where f,z; : R" X R** X --- x R°™ — R',j = 1,---,r, are quasidifferentiable, = €

R™ y; € Si(z) C R*, and

(’Oéagz'jahik € 021 i = 1: ,m, ) = 1: 1pﬁ>k:pi+1:"' s Qis

Gi(z,y:) = (ga(2,9:), -+, Gipe (2, 9:)) 7

Hi(x?yi) = (hi(p#l}(ﬁ?,%), T ?hifﬁ (z?yi))Ts

Si(z) = argmax{y;(z,y;) | Gi(z,y;) <0, H;(z,y;) =0},i=1,--- ,m.

A function f : R — R!issaid to be quasidifferentiable at - in the sense of Demyanov

and Rubinov (1980), if f is directionally differentiable at z € R™ and there exists a pair
of compact convex sets, 9 f(z),df(z) C R", such that

f'(z;d) = max (v,d) + min (w,d), Vde R"
vedf() wedf(x)

see [2]. Df(z) = [0f (x),0f(x)] is called a quasidifferential of f at x, O f(x) and Of ()
are called subdifferential and superdifferential of f at x, respectively. Elements of a subd-
ifferential and a superdifferential are called subgradients and supergradients, respectively.
The following assumptions will be used in this paper for ensuring the quasidiffentia-
bility of v;(+),7 = 1,--- ,m, at ¥ and the validity of optimality conditions. Define:

}/1(3:) = Argmax{(i‘gi(mﬂ yl) | Gi(ﬂ?,yi) S 0? H?:(:C'J yt) = 0}1 1= ]-} T, M.

Assumption 1.1. (Uniform Boundedness ) Y;(z) is uniformly bounded in some neigh-
borhood of 2%; i. e., there exists a neighborhood N; of 2° and a bounded set 7; C R* such
that Y;(z) C T;, forany z € N,.

Assumption 1.2. (M-F Constraint Qualification ) For every 30 € Y;(2), the lower prob-
lem,

max @i(ma yﬁ)

s.t. G'i(‘rayi) SosHi(x}yi) :0a i = 1 ,

satisfies M-F constraint qualification:

(M

1. The vectors Vyhij(:zro, v?),j =pi+1,--+,q, are linearly independent.

2. There exists a w; € R* satisfying,
w; Vygij(a®,9)) <0, Vie{v|gw(®y)=0v=1--p}, (@

wIV,hi(2%y)) =0, j=p+1,---,q 3)
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Assumption 1.3. (Second Order Sufficient Conditions) For any o; € A;(z°,4)) and d #
0 satisfying the following conditions,

vygfj(xo}yE)Td = 01 Vj € J(az) = {? | aij > OJJ = 11 e ?p}l (4)
vyhzj(xoayS)szo} j :p+11 y 4,5 (5)
one has,
T2 0.0
4"V, Li(a®, 40, a)d > 0, (6)
where,

V,Li(2% 4, a) =0
A%(jjo?.y‘?) = o € Rq a-? Z 01 j — 1’ s :pi: , (‘?)
o;9i(2%y)) =0,  j=1,---p;

pi 9

Liw,yiy 05) = pi(@, yi) + Y _ongie + D cwha, ®
k=1 k=p;+1

Cki:(ala"' y Opiy Qpi1, 7 1afh')' (9)

Here, coC' denotes the convex hull of C. In the next section, necessary conditions
for problem (P;), i.e., for a class of quasidifferentiable bilevel optimization, are given,
and necessary conditions for problem (P5), i.e., for a class of quasidifferentiable MPEC
problems, are presented in Section 3.

2 - The Case of (P,)

For every y? € Y;(z), the set of Lagrange multiplier vectors of lower level problem
is nonempty if and only if M-F constraint qualification holds at 3?; see [6, 10]. Moreover,
the following theorem holds.

Theorem 2.1. [1,7,8, 11,12, 13| Suppose that the M-F constraint qualification and sec-
ond order sufficient conditions hold for every y) € Y;(z"). Then, v;(-) is (local) Lips-
chitzian, directionally differentiable and

U; (xo; d’) = sup infaEA:;(:rU,y;‘)dTvlrLi (3:01 Yi, a)' (I)
yi€Y:(z?)

Ifforeveryi, i =1,---,m, Y;(2°) is finite, i.e., Y;(2°) = {y},--- ,y*}, then (1) can
be written as:

v)(2%; d) = max{(d,e) |e € C}} — max{(d,e) |e € C?}, (2)

i.e., vi(+) is quasidifferentiable at x°, and [C},—C?| is a quasidifferential of v; at z°,
where,
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Ol =co(Uk(Z,u B, C2=XL Bl
Bl = _CO(UaeA(IO,yé){meé(xna y,a)}), Vli=1,--- .8,
yl €RS, Vji=1,-- b O

In the remainder of the paper, we assume that for every i, i = 1,--- ,m, Y;(z") is
finite. Consider problem (P;). Since v(-) is Lipschitzian, it is uniformly directionally
differentiable. By the quasidifferential calculus of composition functions [3], one has that
6 is quasidifferentiable at 2°, and [96(z°), 30(2°)] is formulated by:

() = {w|w= (D, ,0®) + T2 WO + ) —vON — o],

v“(v(” o) € Of (y°), i € CL,, i € —CF, ),
00(2°) = {w | w= (oW, ..., 7) + Zntﬁrl [u® (N + ) + V" ON + 0" ],
(u(l e 1u(n+ﬂb}) S af(y ) )\ € Czl—nﬂu'?; € _Cz?—n}ﬂ
v <o <" v <0, 0" >0, y° = (2% v (20), -+ om(20))T,
Q(%) — v(%) — »U'rﬁ), 6{'5) o ’U}(t) + v"('é),i — ]_? .. :‘n_

Let A, B C R" be convex compact. The Demyanov difference of A and B, our basic
operation here, is defined by:

A-B = clco{Vi*(h|A) — V&*(h|B)|h € T},
where, T' = {h € R"|V*(-| A)(h) and V&*(- | B)(h) exist}. The form of Demyanov
difference, 9 f(x)—(—0f(x)), will play the main role and is also denoted by 9™ f(z).

Lemma 2.1. [4] Let f : R* — R' be quasidifferentiable. If 1° € argminepn f(x), then
0 € 9" f(a). O

The following theorem can be obtained in terms of Lemma 2.1.

Theorem 2.2. Suppose Assumptions 1,2 and 3 hold, and for i, i = 1,--- ,m, Y;(z) is
finite. If 2° is a minimizer of (Py), then 0 € 076(aP). O
In what follows, assume that # is a maximal function, i.e.,
min 6(x) = max{v,(z), - ,vn(z)} 3)
s.t. vi(z) = max{y;(z,y) | Gi(x,y;) <0, Hy(w,y;) =0}, i=1,---,m.

One has from the quasidifferential calculus of maximal functions that the quasidiffer-
ential of A(+) at 2° is given by:

) =co |J G+ D P,

ke R(20) i€ R(z)\{k}
(%) =—- > C7,
ieR(z)
where, R(2°) = {i € 1 : m | 0(2°) = v;(2°)}.
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Lemma 2.2. [3] Let A, B C R" be convex compact. Then, (A + B)—B = A. [l

Lemma2.3. Let A;, B C R",i =1,--- ,m, be convex compact. Then, co(lJ]~, A;)—B C
co U, (A;—B).

Proof: straightforward. O

Theorem 2.3. Suppose Assumptions 1,2 and 3 hold, and fori, i = 1,--- ,m, Y;(a") is
Sinite. If 2° is a minimizer of (3), then there exists a finite number of a € Ao(2°,1}) C
A% yh), L =1, B, k € R(2°) and X« 1, k) > 0, such that

E Ma, 1, k) Vo L (2%, yk, ) = 0.

a€Ag(a0,yL),1=1, B, kER(x0)
Proof: One has from Theorem 2.2 that 0 € 976(z°). Compute 96(z°),
070(2°) = 90(2°)~(—06(z°))
CO[U.&:ER{IO)(C; + EieR(r)\{k} Cf)];(ZieR(zﬂ) C?)

= co{C}—C}|k € R(2")} (Lemma 2.2)
while,
Ci—Cf = co(Ufﬁ] Eu;ﬂ By)— E?i] Bj,
C coUki(X,u B~ Sk B (Lemma?2.3)
= colU,(0-BL) (Lemma2.2)
= —¢0 Uf:kl B;.

As a consequence, one has:
0e co{—colU* B.|ke R(z°)}
8

= co{UiZ1 (Uaea@o ) { Ve Ln(a®, 4, a)}) | k € R(2°)}

= Co{Vka(mo,yL,o:) la € A(mo,yi),i =1,---, 0k € R(2")},
that is, there exists a finite number of (v, [, k) > 0, such that

Z Ma, 1, k) Vo L (2%, k., ) = 0,
a€Ag(20,yL ) I=1, Bk, kER(x0)

where, Ay(z°, y}.) is a finite subset of A(z°,y.). O
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For (Py), if ¢;,i = 1,--- ,m, are strictly concave, g;;,i = 1,--- ,m,j = 1,--- ,p;,
are convex, h,i =1,--- ,m,k =p; +1,--- | ¢, are affine, and Slate constraint qualifi-
cation holds, then (1) holds and the solution of lower level problem (1) is unique, that is,
Y;(2°) = {y?}; see [9]. Therefore, one has:

vi(%; d) = infoe p,00,40)d" VaLi(2°, ], ). 4)

In other words, v; is superdifferentiable at 2°, and Jv;(z°) = co{V,.L(2°,4?,a)|a €
A;(2° y?)}. By the quasidifferential calculus of composition functions, the quasidiffer-
ential of f(-) at 2° is formulated as:

(%) = {w|w= (W, ,0™) + 32 (0O — 0" D),
(’U(”, co v € 9f (y°), i € Bin},
0(2%) = {w|w= (@D, ,50) + T (@ + Oy,
(u®, - u™ ™) € Of (y°), i € Bi-n},
where,
v <o <, 0 <0,0" 20,40 = (2% 01 (2), - om(20))T,
p® = @ /@ HO — 4@ 4 /@
Bin = CO{Vth-_n(:EO, y?—m a)|a € Ai—n($0=y?—n)}‘
Similarly, if f is a maximal function, then we have the following theorem.

Theorem 2.4. Assume that p;,i =1, --- ,m, are strictly concave, g;j,i =1,--- ,m,j =
1,---,p; are convex, hy,i = 1,--- ,m,k = p; + 1,--- ,q;, are affine, and Slate con-
straint qualification holds. If 2° is a minimizer of (3), then there exists a finite number of
Ma, k) > 0, such that

Yo Mak)VeLi( g, a) =0,
acAp(z0,yD), ke R(z0)
where, Ag(z°,y}) is a finite subset of A(2°,y}), and Y(z°) = {y2}.
Proof: By Theorem 2.2 one has that 0 € 9+ 6(2°). We only need to compute 9+ 6(z°),
+0(z°)

= 90(2°)—(~06(2"))

= CO[UkeR(xU)(QU-’C(wU) — D icR@\{k} dvi(a°))]-(~ 2 _keR(a0) Iy, (%))
C co{(Qux(2”) — D icR@\ (k) Jvi(2°))~

(= X ker@o) Ove(2®) |k € R(2°)}  (Lemma2.3)

= co{0uk(2°)—(—0vi(z°)) | k € R(2")} (Lemma 2.2)
= co{V,L(z% yp,a) | k € R(2°), € Ay(z®,y})}.

N
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Hence, it follows from the definition of convex hull that there exists a finite number of
Ma, k) > 0, such that

Z AMa, k)Vka(:r:“,yg, a) =0,

acAg(z0,y) ke R(x)

where, Ay(z°, y7) is a finite subset of A(z,y}), and Y3, (z°) = {y}}. O

3 - The Case of (P,)

Here, we consider problem (P3), which is equivalent to the following problem,

min  f(z,y)
s.t. zj(z,y) <0, j=1,---,r
’U.;(.’L‘) S @é(xﬂyi)a 1= ]-1 , M, (1)

G@(:r:,'yz-)é(], 1=1,---,m,
Hi(xﬂyi)zoa 3.=11”':?’n‘}

where, v;(z) = max{%‘(xa?}i) | Gi(z,y) <0, Hij(z,y:) = U}-

Lemma 3.1. Let A C R",B C R™,d = (dy,d2) € R" x R™. Then, G4(A x B) =
G, (A) x Gg,(B), where G 4(A) denotes the maximal face of A determined by d.

Proof: According to the definition of maximal face one has that (Z,7) € G4(A x B) if
and only if

<(f?§)}(d1!d?)) = max ((xay)!(dlrdﬁ»!

(z,y)EAXB

that is,
(33, dl) + (ya d2> = lzleaj(x? d’l) + ];.leaé“yﬂ d2>

Therefore,
—_ — = . 2
r;lea;(w T,d;) + r;leag(y ¥,dy) =0 2

Since (7,y) € G4(A x B), we have (7,7y) € A x B, thatis,7 € Aand 7y € B. Hence,

. = >
Il‘lél/i((:b Z,dy) >0

and

—7.d,) > 0.
r;}gag(y y,ds) >0

Using the last two inequalities in (2), one has:

11151}(;: —Z,d;) =0
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and
I;leag(y ~7,dy) =0,
that is,
(T, d1) = max(z,d1), (7, dn) = max(y,dy).
This leads to (Z,7) € Gg4,(A) x Ga,(B). O

Corollary 3.1. Let A C R",B C R™andd = (d,,dy) € R" x R™. If §*(-| A x B) is
differentiable at d, then 6*(- | A) is differentiable at d, and 6*(- | B) is differentiable at d,.

Moreover,
Vo*(d| A x B) =V (d, | A) x Vé*(dy | B).

U
Lemma 3.2. Let T C R™ x R™ be a full measure. Then, Ppn(T) and Ppn(T) are full

measures with respect to R" and R™, respectively, where Px(T) denotes the projection
of T onto X.

Proof: By contradiction, assume that Pr~(7") is not a full measure subset of R". Then,
there exists A C R", not a zero measure, and A C R"\ Pg~(T"). Therefore, A x R™ C
R™ x R™ is not a zero measure, which contradicts the fact that A x R™ C (R" x R™)\T
and T is a full measure with respect to R" x R™. Hence, Pr-(T) is a full measure with
respect to R". In a similar way, we can prove that Pg~(T") is a full measure with respect
to R™. O

Lemma3.3. Let A,C C R", B, D C R™ be convex compact. Then, (Ax B)—(C' x D) C
(A—-C) x (B—-D).

Proof: LetT = {d € R*"x R™|é*(-| Ax B) and §*(- | C' x D) are differentiable at d}.
One has from the definition of Demyanov difference, Corollary 3.1 and Lemma 3.2,
(A x B)—(C x D)
=clco{Vé*(d| A x B) —Vé*(d|C x D)|d e T}
=clco{V*(d; | A) x Vé*(do | B) — Vé*(dy |C) x Vé*(dy | D) |d € T}

. . - . dy € Ppn(T)
gclco{V(S (di|A) x Vé*(dy | B) — Vo*(dy | C) x Vé*(da | D) ‘ dy € Py (T) }
=clco{Vé*(di | A) — Vé*(dy | C) | dy € Ppn(T)} %

cleo{V*(dy | B) — Vo*(dy | D) | dy € Ppm(T)}
=(A-C) x (B-D).
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Theorem 3.1. Suppose Assumptions 1,2 and 3 hold, and for i, i = 1,--- ,m, Y;(a")
is finite. If 2° is a minimizer of (Py), then there exist \; > 0,5 = 0,--- 7, ; > 0,7 =
- ,muvy; >20,i=1,--- ,m,j=1,--- ;ppandwix,t =1,--- ,;m, k=p;+1,--- g,
not all zero, such that

0n € X0 ful22, %) + Do X0t 2 (20, 4°) +
Sy wi(co U{VaLi(2®, 9}, a) | € A(z,45), 1 =1, , Bi} = Vepir(2°, 4:))+
D1 D Vij Vagii (2%, 47) + 2o, hepit1 wikVzhir(2°, y7),
05, € Xa0™ £, (2°,9°) + 320 AjO 254, (20,0°) + 300 pi(—= Vi 01(2°, 9))
+ 20 20 i Vi gii (2%, 90) + 200 3o wik Vi hak (2%, 97),
where, y° = (y,- -+, ym)"

Proof: Problem (1) is equivalent to:

min  f(z,y)
s.t. zi(z,y) <0, j=1,---,r
Ué(m) - (pi(x':y‘i) S 01 1= ]-} T,y (3)

Gi(may'é)sgﬁ iz]—a"'ama
Hi(x:'yi):o: i:]_;,,m

If 2° is a minimizer of (P,), then there exists y° € R™ such that (z°, 3°) is a minimizer of
(3). Consider v; as a function of (x, y). We have from Theorem 2.1 that

Ovi(2°,9°) = C! x 0,,,,
O (2°,4°) = —=C? x 0,y
Similarly, we have that v; — ¢; is quasidifferentiable at (z°,y") and
Avi — ¢i)(2% y°) = (Cf — Voia(2°, 7)) X

0%+ % 0x (=Viy (2°,3)) x 0 x -+ x 0,
'\rm -’

A(v; — ;) (2°,9°) = —C? x 0.

By virtue of the necessary conditions of constrained quasidifferentiable optimization
due to Gao [5], there exist \; > 0,5 = 0,--- ,r, u; > 0,2 = 1,--- ,m, 1; > 0,0 =
1,---,m,j=1--- ,pyandw,2=1,--- ,m,k=p; +1,--- , ¢, not all zero, such that

0€ A0 f(2%4°) + 3271 A0 252, y°)
+ 2 i{[(CF = Vi (2, 99)) —CF x 0 x -+ x
(=Vipiy, (2%,99)) x -+ x O} + 327 370 iV (@ 935 (2, 97)
+ o 1 WitV gy hir (20, 7).

(4)
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Computing (C} — Vi, (2°,4?))—C?, one has:

(C} = Veia(2®,9)))—C?
= —Vpir(a®,4]) + (C]=C7})
- —V{pu(:r;o, y?) —Co U?;l Bzﬁ
= —Vi(a%,9)) — coUL (o U{ Vo Li(a®, 4}, a | a € A2, y)))})
= —Vgom(ji‘o,y?) +co U{mei(xo:yi: a | a € A(moa yf):’f = 1: e sﬁi}'

Combining the above formula with (4), the conclusion is obtained from Lemma 3.3. [

Ifin (Py), f, 2,7 = 1,--- ,r, are differentiable, then the necessary conditions given
in Theorem 3.1 turns to qualities.

Corollary 3.2. Suppose that f,z;,j = 1,--- ,r, are differentiable in (Ps), Assumptions
1,2 and 3 hold, and for i, i = 1,--- ,m, Y;(2°) is finite. If 2° is a minimizer of (P,),
then there exist \; > 0,5 = 0,--- ,r, u; > 0,i=1,--- ,mv;; >0,i=1,--- ,m,j =
1,---,piandwy,i =1,--- m,k=p;+1,--- ¢, not all zero, such that

D'n = /\vax(moayu) + Z;:l )\jvzjx(muayo)_i_
E;il ,LL%-(CO U{vai(xus yﬁ! 05) I o€ A(:an yﬁ)sl = 11 e !ﬁi} - V{pém(:ljﬂ} yé))+
D 2y Vi Vagii (20, 99) + 300 ST wik Vaha (20, 99),

Os; = MoV i (2°,9°) + 3771 \jV 2y, (2%, 4°) + 3002, pa(=Vipi (2%, 99)) +
D i 2y Vig Vi 9ig (20, 49) + 301 Dk 1 wik Vi har (20, 99),

where, y° = (9, ,y2)". O
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