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1. Introduction  
 

This contribution  uses data analysis ingredients in a context of existing deterministic simulation 

platforms. It starts with a complexity-based splitting of the independent variables and the definition 

of a parametric optimization problem. Geometric characterization of global sensitivity spaces through 

their dimensions and relative positions through principal angles between vector spaces bring a first 

set of information on the impact of uncertainties of the functioning parameters on the optimal solution. 

Joining the multi-point descent direction and Probability Density Function (PDF) quantiles of the 

optimization parameters permits to define the notion of Directional Extreme Scenarios (DES) without 

sampling of large dimension design spaces. One goes beyond DES with Ensemble Kalman Filters 

(EnKF) after the multi-point optimization algorithm is cast into an ensemble simulation environment. 

This formulation accounts for the variability in large dimension. The UQ cascade continues with the 

joint application of the EnKF and DES leading to the concept of Ensemble Directional Extreme 

Scenarios (EDES) which provides a more exhaustive description of the possible extreme scenarios. 

The different ingredients developed for this cascade also permits to quantify the impact of state 

uncertainties on the design and  provide  confidence bounds for the optimal solution. This is typical 

of inverse designs where the target should be assumed uncertain. Our proposal uses the previous DES 

strategy applied this time to the target data. We use these scenarios to define a  matrix having the 

structure of the covariance matrix of the optimization parameters. This construction can be compared 

to another one using available adjoint-based gradients of the functional. Eventually, we go beyond 

inverse design and apply the method to general optimization problems. 

 

2. Motivation 
 

We consider a generic situation where the simulation aims at predicting a given quantity of interest 

𝑗(𝐱, 𝛼) and there are a few functioning or operating parameters 𝛼 and several design parameters 𝐱 
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involved. The ranges of the functioning parameters define the global operating/functioning conditions 

of a given design. This splitting of the independent variables in two sets is important in the sequel. 

 

We propose a cascade of ingredients to account for uncertainties avoiding any sampling of large 

dimensional spaces. A sampling will be only necessary for the functioning parameters 𝐮 range leading 

to a multi-point optimization problem. 

 

The literature on uncertainty quantification (UQ) is huge. In short, forward propagation aims at 

defining a probability density function for 𝑗 knowing those of 𝐱 and 𝛼 [15, 18, 25]. This can be done, 

for instance, through Monte Carlo simulations or a separation between deterministic and stochastic 

features using Karhunen-Loeve theory (polynomial chaos theory belongs to this class) [12, 13, 16, 

48, 50]. Examples of shape optimization with polynomial chaos and surrogate models during 

optimization are given in [6, 39]. 

 

Backward propagation aims at reducing the model's bias or calibrating model's parameters 

knowing the probability density function of 𝑗 (or other constraints and observations) [5, 23, 45]. This 

can be seen as a minimization problem and Kalman filters [24] give, for instance, an elegant 

framework for this inversion assimilating the uncertainties on the observations. 

 

Our aim is to propose a geometric framework to address the  curse of dimensionality of existing 

approaches related to the explosion of their computational complexity due to the sampling necessary 

to access probabilistic information, even if this can be improved with intelligent sampling techniques 

[4, 43]. The different ingredients presented here can be applied with either high-fidelity or reduced 

order models, when available [38, 40, 41, 47]. Low-order models are often used instead of the full 

models to overcome the computational complexity of UQ. 

 

After the splitting of the independent variables mentioned above, we define a multi-point 

formulation to account for the variability on 𝛼. This is feasible because the size of 𝛼 is assumed to be 

small. We define a global sensitivity space using the sensitivities of 𝑗 with respect to 𝐱 for the multi-

point problem. Once this space is built, we analyze its dimension. We previously showed how to 

perform this task and how to use this information for adaptive sampling [28, 36]. 

  

The next step is to analyze the impact of different modelling or discretizations on the results. 

Different models or solution procedures lead to different sensitivity spaces. Beyond their respective 

dimensions, principal angles between the respective sensitivity vector spaces permit to measure the 

deviation due to such changes. The dimensions of the spaces and the angles are interesting measures 

for both the epistemic and aleatory uncertainties.  Indeed, suppose that, for a given model the 

dimensions of the sensitivity spaces remain unchanged when enriching the sampling of the 

functioning parameter range. This stability would be a first indication of a low level of sensitivity of 

the simulations with respect to this parameter. Once this is established, principal angles between 

subspaces permit to analyze both the impact of a given evolution of the modelling on the sensitivity 

spaces or an enrichment of our sampling. Eventually, constant dimension and low angles will clearly 

indicate a situation of low uncertainty. 

 

These ingredients can be used in a context of multi-point robust analysis of a system to define 

worst-case scenarios for its functioning. To this end, we combine a multi-point sensitivity with the 

probabilistic features of the control parameters through their quantiles [22, 31] to define the concept 

of Directional Extreme Scenarios (DES) without a sampling of large dimension design spaces. 
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Ensemble Kalman filters (EnKF) [2, 8, 9, 10, 11, 24] permit to go beyond the directional 

uncertainty quantification concept when accounting for the uncertainties in large dimension. They 

also permit backward uncertainty propagation assimilating the uncertainty on the functional and 

constraints during the design. We cast our multi-point optimization problem into the ensemble 

formulation. A joint application of the EnKF and DES leads to the concept of Ensemble Directional 

Extreme Scenarios (EDES) to provide a more exhaustive description of possible extreme scenarios.  

 

Despite these approaches avoiding the sampling of a large dimensional space, the computing cost 

remains high and the procedures turn to be difficult to simply explain in engineering environments. 

We propose a low-complexity approach for the inversion of uncertain data where the target state 𝐮∗ 

used in an inverse problem is uncertain. In this situation, we consider functional of the form 

𝑗(x, 𝛼, 𝐮∗) = ‖𝐮(𝐱, 𝛼) − 𝐮∗(𝛼)‖ to reduce the distance between a model state 𝐮(𝐱, 𝛼) and 

observations.  

 

Targeting uncertain data is a realistic situation as the acquired data are usually uncertain. It is 

therefore interesting to be able to quantify the impact of this uncertainty on the inversion results. An 

important information will be the sensitivity of the design to a given level of uncertainty on the data 

at some location. Indeed, if this sensitivity is low, this would be an indication that a more accurate 

acquisition is unnecessary.  

 

Considering the target as uncertain is also interesting because we do not always have existence of 

a solution for an inversion problem as 𝐮∗ is not necessarily solution of the state equation making an 

exact or deterministic inversion pointless. Also, the approach permits to go beyond inversions based 

on least squares minimization involving a mean state target. 

 

Finally, the uncertainty in measurements is also an interesting way to account for the presence of 

variability in the state. More generally, as the model and numerical procedures are by nature imperfect 

and partial, we can consider this uncertainty as a representation or estimation of the imperfections. 

These imperfections are even more present in inverse problems where one cannot afford the same 

level of resolution thus for a single simulation. We therefore need to be able to quantify the impact 

of these weaknesses on the design. The approach presented here is therefore also useful to account 

for epistemic uncertainties related to possible model or solution procedure deficiency.  

 

Concerning the computational cost of these analyses, one can say that, when using the same 

calculation ingredients as in a high-fidelity simulation (i.e., without calling for low-order models or 

cheaper discretizations), the best calculation complexity for a simulation under uncertainty  is when 

its cost is  comparable to the deterministic situation. This is clearly unreachable, except if all the extra 

effort can be achieved in a fully parallel manner and parallel to the initial deterministic calculation so 

that the time to solution to remain unchanged when accounting for the presence of uncertainties. This 

is the case with the Monte Carlo approaches. But these are quite expensive and do not take advantage 

of available simulation environments. In particular, when an adjoint-based optimization environment 

exists. Our proposal consists of upgrading existing platforms without abandoning what has been built 

for the deterministic situations and with keeping the time to solution unchanged in the presence of 

uncertainties with two sources of parallelism coming from the multi-point formulation to account for 

the uncertainties on the functioning parameters and from the EnKF formulation for those on the 

optimization variables and observation data.  
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3. Parametric Optimization 
 

We are interested in a class of optimization problems where the cost function involves a 

functioning parameter 𝛼 not considered as a design parameter: 

 

min
𝐱∈𝐎𝑎𝑑

𝑗(𝐱, 𝛼),   𝛼 ∈ 𝐈 ⊂ ℝ𝑛, 𝐎𝑎𝑑 ⊂ ℝ𝑁, (1) 

 

where 𝐱 is the design vector belonging to 𝐎𝑎𝑑, the optimization admissible domain. Usually, the 

functioning parameters (or operating conditions) 𝛼 are just a few. On the other hand, the size 𝑁 of 𝐱 

is usually large. Together, 𝐱 and 𝛼 fully describe our system and we have 𝑛 << 𝑁. This splitting 

between functioning parameters (or operating conditions) and design variables is central to our 

discussion. 

 

In [28, 29] we showed how to use multi-point optimization to address such optimization problem. 

The aim is to remove, during optimization, the dependency in 𝛼. This is done minimizing a functional 

𝐽(𝐱) encapsulating this dependency expressed through 𝐀 = {𝑗(𝐱, 𝛼𝑘), 𝛼𝑘 ∈ 𝐈𝑀} over 𝐈𝑀 a given 

sampling of 𝐈: 
 

𝐽 = 𝐉(𝐀), such that  𝐆(𝐀) ≤ 0. (2) 

 

Several choices are possible for 𝐉 and 𝐆 to address the issue of robust design. For instance, following 

Taguchi's definition, one can look for minimal-variance design or only a given level for the variance. 

Indeed, a classical approach to extend the single point design and improve off-design points is to 

control 𝜇, mean performance, and 𝜎, variance of the functional [44] as in First-Order Second Moment 

(FOSM) methods [27]. One can also look for information about the tails of the distributions which 

can be linked to the variance in the Gaussian framework and we use this relationship in quantile-

based extreme scenarios. 

 

Often it might be interesting to go beyond the first two moments and in particular consider the first 

four moments of 𝑗 during the design. Going beyond the first two moments is important when the PDF 

of 𝑗 deviates from a pure Gaussian distribution. Indeed, even with interval-based (with uniform PDF) 

or Gaussian entries there is no reason the PDF of the solution of a simulation to remain uniform or 

Gaussian. 

 

The third and fourth moments are the skewness, 𝛾, and the kurtosis, 𝜅. One can consider that a 

robust design should favor symmetry in the distribution which means a lower absolute value of 

skewness. For instance, in a Gaussian distribution we have 𝛾 = 0. Also, in a normal distribution the 

mean and median coincide and if a PDF is not too far from a normal distribution, the median will be 

near 𝜇 − 𝛾𝜎/6. Therefore, if |𝛾| → 0 then the PDF tends toward a normal distribution. This provides 

an inequality constraint on |𝛾| as 𝛾 can be positive or negative. For a unimodal PDF a reduction of 

the skewness comes when the mean and the mode of the distribution converge towards each other at 

a given standard deviation. 

 

Concerning the fourth moment, a robust design should favor higher density near the mean which 

means a higher kurtosis, but this is more subtle. Indeed, in spite of the fact that a higher kurtosis 

means a higher concentration of the probability mass around the mean, it could also imply thicker 

tails in the PDF. This means that more of the variance is the result of infrequent extreme deviations. 

We need therefore to define what we mean by a more robust design: acceptance of frequent modest 
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deviations or acceptance of infrequent extreme ones. If operational security is a major concern, then 

the latter should be definitely avoided. Hence, a reasonable requirement would be to have a design 

reducing the initial kurtosis value, 𝜅 ≤ 𝜅0, together with a constraint on the variance 𝜎. 

 

4. Gradients, Sensitivity Spaces and Admissible Search Directions 
 

Monte Carlo simulations permit to recover the moments with an error decreasing as 𝜎𝑀−
1

2, with  

𝑀 being the number of functional evaluations and the rate being independent of 𝑛. But, for small 𝑛, 

classical numerical integration outperforms Monte Carlo simulation in terms of complexity based on 

the number of functional evaluations to attain at a given accuracy these moments. As we are 

concerned with small values of 𝑛 (typically, 𝑛 = 2 or 3 in our applications), this latter is therefore 

preferred. Anyway, both Monte Carlo trials and numerical integration lead to the introduction of 

weighted sums over an 𝑀-point sampling 𝐈𝑀 of 𝐼 as estimators of the previous moments. 

 

The linearity in the sums permits to access the gradient of the moments with respect to the control 

parameters 𝐱 from the gradient of the functional at the sampling point 𝛼𝑘. These are four vectors in 

𝑆𝑀 = 𝑆𝑝𝑎𝑛{∇𝐱 𝑗(𝐱, 𝛼𝑘), 𝛼𝑘 ∈ 𝐼𝑀} ⊂ ℝ𝑁. In applications of interest, 𝑁 is large. However, we 

showed that often dim(𝑆𝑀) << 𝑁 [28, 29, 30]. This analysis also permits to posteriori give 

confidence bounds on the choice of the sampling size 𝑀 which should be clearly larger than dim(𝑆𝑀). 

 

Let us denote by 𝐶𝑖=1,2,3 the three constraints on the second, third and fourth moments and let us 

consider the subspace 𝑠𝑀 = 𝑆𝑝𝑎𝑛{∇𝐱𝐶𝑖=1,2,3} ⊂ ℝ3 ⊂ ℝ𝑁. Obviously 𝑝 = 𝑑𝑖𝑚(𝑠𝑀) ≤ 3. Let us 

denote by {𝐪𝑖=1,...,𝑝}, an orthonormal basis for 𝑠𝑀 obtained, for instance, orthonormalizing the three 

gradient vectors by the Gram-Schmidt procedure. The gradients 𝐺 of the constraints can therefore be 

expressed as a linear combination of the 𝑞𝑖:𝐺 = (∇𝐱𝐶𝑖=1,2,3) = 𝑃−1(𝐪𝑖=1,...,𝑝) with 𝑃 being the  

matrix expressing the coordinates of 𝐪 in 𝐺. 

 

With equality constraints, a descent direction 𝑑 can be obtained writing the first order optimality 

condition stating that 𝑑 needs to be orthogonal to 𝑠𝑀. Hence, using the local orthonormal basis 

{𝐪𝑖=1,...,𝑝}, we consider 𝑑, given by  

 

𝑑 = ∇𝐱𝜇 − ∑〈∇𝐱𝜇, 𝐪𝑖〉𝐪𝑖

𝑝

𝑖=1

. (3) 

 

Denoting by Π the matrix of the projection operator 〈∇𝐱𝜇, 𝑞〉, we have 

 

𝑑 = ∇𝐱𝜇 − (Π𝑃𝐺)𝑡   𝑃𝐺 = ∇𝐱𝜇 − (𝐺𝑡𝑃𝑡 Π 𝑃)𝑡  𝐺 = ∇𝐱𝜇 + Λ𝑡𝐺, 
 

with Λ𝑡 = (𝜆1, 𝜆2, 𝜆3) ∈ ℝ3. We have 𝑑 → 0 with the optimization iterations converging. Stationarity 

in 𝑑 therefore realizes the first order optimality conditions for the Lagrangian 𝐿 = 𝐽 + Λ𝑡𝐶. 

 

With inequality constraints, the solution of our minimization problem needs to verify the first order 

KKT conditions [37]. But, the optimality conditions for the Lagrangian will involve only positive 

Lagrange multipliers: Λ ∈ ℝ+
3  and ∇𝐱 𝐿 = ∇𝐱 𝐽 + Λ𝑡∇𝐱 𝐶 = 0 with the complementarity condition 

Λ𝑡𝐶 = 0, meaning that 𝜆𝑖 = 0 if 𝐶𝑖 ≤ 0 and 𝜆𝑖 > 0 if 𝐶𝑖 = 0 (i.e., 𝐶𝑖 is an active constraint). To 
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define 𝑑 we follow what would be placed for the equality constraints, only considering active 

constraint gradients in the definition of 𝑠𝑀 which is not a subspace but a convex cone: 

 

𝑠𝑀 = {𝐱| 𝐱 =  ∑ 𝛽𝑖

3

𝑖=1

∇x𝐶𝑖, 𝛽𝑖 > 0 | 𝐶𝑖} ⊂ ℝ3 ⊂ ℝ𝑁. (4) 

 

At the solution, ∇𝐱 𝐽 is orthogonal to this cone. Before working on the cone, let us start defining a 

local orthonormal basis {�̃�𝑖=1,...,𝑝} for �̃�𝑀 from (4) but with 𝛽𝑖 ∈  ℝ. This is therefore a subspace and 

the basis can be defined, as before with 𝑝 = 𝑑𝑖𝑚(𝑠𝑀). Now, we have 𝑞𝑖 = ± �̃�𝑖 with the sign chosen 

such that < 𝐪𝑖=1,...,𝑝, ∇𝐱𝐶𝑗 >≥ 0, if 𝐶𝑗 = 0, for 𝑗 = 1, . . . ,3 (i.e., pointing inside the cone). 

  

Here, {𝑞𝑖=1,...,𝑝} are therefore the generators of the cone 𝑠𝑀 deduced from a basis of �̃�𝑀. If the 

generators cannot be defined, then the problem is found to have no solution, as at least two of the 

constraints are incompatible with the gradients being parallel and pointing in opposite directions. 

These generators permit to define the admissible search direction 𝑑 from (3) but taking into account 

that we only remove the non admissible contribution: 

 

𝑑 = ∇𝐱𝜇 − ∑ 𝜒𝑖

𝑝

𝑖=1

〈𝐪𝑖, ∇𝐱𝜇〉𝐪𝑖, (5) 

  

with 𝜒𝑖 = 0 if 〈𝐪𝑖, ∇𝐱𝜇〉 ≥ 0 and 𝜒𝑖 = 1 if 〈𝐪𝑖, ∇𝐱𝜇〉 < 0. 

 

5. A Multi-point Descent Algorithm 
 

Our aim is to use existing platforms. Hence, to compute the ingredients above we use an available 

single-point optimization environment which can easily be modified for parallel multi-point 

calculations. This platform involves a direct simulation chain linking the parameters (𝐱, 𝛼) to the state  

𝐮, solution of a state equation 𝐹 (𝐮(𝑞(𝐱, 𝛼))) = 0, and its adjoint 𝐯 and to a functional 𝑗: 

 

 Give 𝐱0, 0 < 𝜌, 𝐈𝑀, 𝑝𝑚𝑎𝑥. 

 Optimization iterations: For 𝑝 = 1, . . . , 𝑝𝑚𝑎𝑥 do 

- 1-𝑀 parallel state equation solutions 𝐹 (𝐮(𝑞(𝐱𝑝), 𝛼𝑘)) = 0, 𝛼𝑘 ∈ 𝐈𝑀, 

- 2-𝑀 parallel evaluations of 𝑗(𝐱𝑝, 𝛼𝑘), 𝛼𝑘 ∈ 𝐈𝑀, 

- 3-𝑀 parallel solutions of the adjoint state 𝑣 equation: 

𝑣𝑡𝐹𝒖 (𝐮(𝑞(𝐱𝑝), 𝛼𝑘)) = 𝑗𝑢
𝑡 , 𝛼𝑘 ∈ 𝐈𝑀 , 

- 4-M parallel evaluations of ∇𝐱𝑗(𝐱𝑝, 𝛼𝑘) = 𝑗𝐱 + (𝐯𝑡𝐹𝐱)𝑡, 𝛼𝑘 ∈ 𝐈𝑀, 

- 5-define 𝑑 the descent direction using (5), 

- 6-minimization using 𝑑: (e.g.,  𝐱𝒑+𝟏 = 𝐱𝑝 − 𝜌𝑑), 

- Stop if a given stopping criterion is achieved. 

 

In multi-criteria problems, steps 2, 3 and 4 include the treatment of more than one functional 

inducing a  different definition of the descent direction 𝑑 to account for other constraints (mainly 

physical this time) than the moment-based ones mentioned above. 
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Despite the natural presence of parallelism due to the 𝑀 independent evaluations of the state, 

functional and its gradient, computational complexity remains an issue. We have shown previously 

how to reduce this effort optimizing the sampling size [28] together with the use of incomplete 

sensitivity concept in the evaluation of the gradients which permits to avoid the solution of the 𝑀 

adjoint equations [35]. This is particularly suitable when using black-box state equation solvers not 

providing the adjoint of the state variables.  

 

Such minimization problems have produced new interests to descent methods and this not only 

because of their lower computational complexity, as compared to gradient free methods [1, 19, 37]. 

Indeed, beyond minimization, we saw that gradients are useful to see what should actually be the 

search space in a context of robust multi-point design [29, 30]. Hence, beyond individual gradient 

accuracy (i.e. at each of the sampling point), what is important in multi-point problems is the global 

search space defined by the ensemble of the gradient vectors. This means that one might tolerate 

higher error levels in each of the gradient defined at the different sampling point than for a single-

point optimization situation as what is important is for the global search space to remain nearly 

unchanged. An interesting mathematical concept which permits to measure the deviation between 

two subspaces is the principal angles between subspaces.  

 

6. Angles Between Subspaces 
 

We use the mathematical concept of principal angles between subspaces in the Euclidean space 

(here ℝ𝑁), initially introduced by Jordan [21]. If the maximum principle angle between two subspaces 

is small, then the two are nearly linearly dependent. Geometrically, this is the angle between two 

hyperplanes embedded in a higher dimensional space.  

 

Let us briefly recall the concept of principal angles and how to practically compute them [14, 20]. 

For simplicity, suppose 𝐴 and 𝐵 are two subspaces of dimension 𝑘 of ℝ𝑁, 𝑁 ≥ 2𝑘, although this is 

not a prerequisite to define the principal angles. The 𝑘 principal angles {𝜃𝑖, 𝑖 = 1, . . . , 𝑘} are 

recursively defined as 

 

cos(𝜃𝑖) =
〈𝑎𝑖, 𝑏𝑖〉

‖𝑎𝑖‖‖𝑏𝑖‖
= max {

〈𝑎, 𝑏〉

‖𝑎‖‖𝑏‖
∶  𝑎 ⊥ 𝑎𝑚, 𝑏 ⊥ 𝑏𝑚: 𝑚 = 1, … , 𝑖 − 1}, 

 

where 𝑎𝑗 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵. 

 

The principal angles 𝜃𝑖 are between 0 and 𝜋/2. This is an important point and will be used later 

to take advantage of the positivity of the cosine of the angles. The procedure finds unit vectors 𝑎1 ∈
𝐴 and 𝑏1 ∈ 𝐵 minimizing the angle 𝜃1 between them. It then takes the orthogonal complement of 𝑎1 

in 𝐴 and 𝑏1 in 𝐵 and iterates. This procedure is not useful, in practice, as computationally inadequate. 

We would like to be able to find the angles 𝜃𝑖 from the inner products 〈𝑎𝑖 , 𝑏𝑗〉 of the elements of two 

bases of 𝐴 and 𝐵 [42]. This would be interesting in our multi-point optimization context where we 

can exhibit an orthonormal basis of the global search space for the multi-point optimization problem 

using the Gram-Schmidt orthonormalization. 

 

Now, let {𝑎𝑖, 𝑖 =  1, . . . , 𝑘} and {𝑏𝑖, 𝑖 =  1, . . . , 𝑘} be two arbitrary orthonormal bases for 𝐴 and 𝐵. 

Orthonormal bases are easy to obtain through the Gram-Schmidt orthonormalization procedure.  

Consider 𝑀 being the matrix of the projection operator 𝑃𝑟𝐴 of 𝐵 onto 𝐴, defined by 
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𝑃𝑟𝐴(𝑏𝑖) = ∑〈𝑏𝑖, 𝑎𝑗〉𝑎𝑗

𝑘

𝑗=1

, 𝑀 = (〈𝑏𝑖, 𝑎𝑗〉)
𝑖,𝑗

. 

 

The principal angles can be linked to this operator [42] through 

 

𝑀 = 𝐺Σ𝐻𝑡, 
 

where 𝐺 and 𝐻 are orthogonal matrices and Σ = 𝑑𝑖𝑎𝑔(cos(𝜃𝑖)).  

 

With 𝐺 and 𝐻 being orthogonal matrices, this is a Singular Vector Decomposition (SVD) of 𝑀. 𝐺 

and 𝐻 are unknown at this point. But we will show that we do not need them to get the 𝜃𝑖. Otherwise, 

the approach will again be computationally useless. 

 

We recall that the columns of 𝐺 are the left-singular vectors of 𝑀 and eigenvectors of 𝑀𝑀𝑡 and 

the columns of 𝐻 are the right-singular vectors of 𝑀 and eigenvectors of 𝑀𝑡𝑀. And most importantly, 

the cos2(𝜃𝑖) are the eigenvalues of 𝑃𝑟𝐴
𝑡𝑃𝑟𝐴, written in matrix form as: 𝑀𝑡𝑀 = (𝐺Σ𝐻𝑡)𝑡(𝐺Σ𝐻𝑡) =

𝐻Σ2𝐻𝑡 with Σ2 = 𝑑𝑖𝑎𝑔(cos2(𝜃𝑖)). 

 

Therefore, to find the principal angles between subspaces 𝐴 and 𝐵, knowing an orthonormal basis 

in each subspace, one should calculate 𝑀 and find the eigenvalues of 𝑀𝑡𝑀 and take the square root 

of them. This last operation is valid as the angles are between 0 and 𝜋/2, and the cosine is therefore 

always positive. 

 

We presented the approach for subspaces of the same dimension 𝑘, but it is not necessary for the 

two subspaces to be of the same size in order to find the angles between them. We need 𝑁 ≥ 2𝑘 to 

be able to exhibit two orthogonal subspaces. If 𝑁 < 2𝑘, then some principal angles necessarily 

vanish, and for 𝑁 = 𝑘, they all vanish. This procedure is still valid if the subspaces have different 

dimensions. The projection operator can be defined as well as its transpose; and the eigenvalues of 

𝑀𝑡𝑀 are real as this is a symmetric square matrix. 

 

In our optimization applications, we always proceed first with a reduction in size of the search 

space using a sampling reduction size algorithm [28]. This makes the calculation of the whole set of 

eigenvalues feasible in terms of computing complexity. However, if this is out of reach, one can 

evaluate the bounds on the angles to see the global pertinence of our reduced order models and 

gradient approximations. This can be done without an exact calculation of all the eigenvalues. It is 

sufficient to use the Gershgorin circle theorem to find the bounds, as every eigenvalue of 𝑀𝑡𝑀 lies 

within at least one of the Gershgorin discs 𝐷((𝑀𝑡𝑀)𝑖𝑖 , 𝑅𝑖) centred on (𝑀𝑡𝑀)𝑖𝑖 and with radius 𝑅𝑖 =
∑ |(𝑀𝑡𝑀)𝑖𝑗|𝑗≠𝑖 . And because 𝑀𝑡𝑀 is symmetric, the eigenvalues being real, we only consider the 

intersection of the discs with the horizontal axis. Alternatively, the largest and smallest principal 

angles can be found using the iterative power and the inverse power methods applied to 𝑀𝑡𝑀. 

 

Principal angles between multi-point search spaces are interesting to measure the pertinence of 

sensitivity definitions based on different models or numerics. Indeed, the design will be unaffected 

by a reduction in the model's complexity if the search subspaces, generated by the gradients at the 

sampling points of the functioning parameter interval and their approximations, remain the same. 

This is therefore an original quantification tool for epistemic uncertainties. 
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7. Inversion for Uncertain Data 
 

Let us expand the class of problems introduced in Section 3 to the following 

 

min
𝐱∈𝐎𝑎𝑑

𝑗(𝐱, 𝛼, 𝐮∗) , 𝐮∗ ∈ ℝ𝑝, 𝛼 ∈ 𝐈 ⊂ ℝ𝑛, 𝐎𝑎𝑑 ⊂ ℝ𝑁, (6) 

 

where 𝐮∗ represents either measurements or state estimations which is a vector of random variables. 

We are interested in functionals 𝑗 of the following form 

 

𝑗(𝐱, 𝛼, 𝐮∗) = 𝑗̃(𝐱, 𝛼) +
1

2
‖Π𝐮(𝐱, 𝛼) − 𝑢∗(𝛼)‖2. (7) 

 

The first term is what has been discussed up to now. Operator Π: ℝ𝑁 → ℝ𝑝 (typically, a linear 

interpolation operator) makes the state available at data locations. Inverse problems are in this class 

[17, 45]. This formulation also permits to see the state as uncertain as a whole with Π the identity 

operator. One can also introduce zoning techniques to discriminate through the level of confidence 

one might have on the state evaluation following the variability one observes in practice.  

 

To summarize, we assume the components of 𝐮∗ to be independent, uncertain and given by their 

Gaussian PDF, for instance, 𝒩(𝜇𝑖 , 𝜎𝑖
2 ), 𝑖 = 1, . . . , 𝑝 with mean 𝜇𝑖 and variance of 𝜎𝑖

2. 𝐶𝑜𝑣𝐮∗ is 

therefore a diagonal matrix. 

 

The simplest way to measure the effect of these uncertainties on the inversion result is again to 

proceed with Monte Carlo simulations. This implies a sampling of the variation domain of the data 

consistent with their PDF. This means we proceed with 𝑀 independent inversions for 𝑀 data sets 

defined by independent choices compatible with the PDF of 𝐮∗ given by 

 

𝒩(𝜇𝑖, 𝜎𝑖
2) → (𝐮𝑖

∗)𝑚, 𝑖 = 1, . . . , 𝑝, 𝑚 = 1, . . . , 𝑀. 
 

These independent inversions will produce 𝑀 optimal control parameters 𝐱𝑜𝑝𝑡
𝑚 , 𝑚 = 1, . . . , 𝑀, from 

which statistical moments can be defined (typically, the mean and variance) with again a rate of 

convergence in 𝑀−1/2 being independent of 𝑝. Such generation of scenarios is already very 

demanding when involving only a direct simulation chain. In our problem, each of the scenarios 

involves an inversion, each requiring several solutions of the direct and adjoint problems. This 

complexity makes the approach be clearly out of reach, even if the calculations were independent and 

could be carried out in parallel. 

 

7.1. Low-complexity uncertainty evaluation 

 

In the sequel, we discuss two low-complexity constructions of 𝐶𝑜𝑣𝐱, the covariance matrix of the 

control parameters from 𝐶𝑜𝑣𝐮∗ , the covariance matrix of the data. We want these constructions to 

have a cost comparable to a deterministic inversion and, again, we want to avoid any sampling of a 

large dimension space.  

 

8. 𝒂-Quantile 
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Consider a random variable 𝑣 with its PDF known (either analytic or tabulated). The tail of the 

PDF can be characterized defining, for a given probability level (0 < 𝑎 < 1), the following threshold 

value: 

 

VaR𝑎 = inf{𝑙 ∈ ℝ ∶ 𝑃(𝑣 > 𝑙) ≤ 1 − 𝑎}. 
 

Different 𝑎-quantiles are available. One very well known is the Value at Risk (VaR) which has been 

widely used in financial engineering as a measure of risk of loss on a given asset [22]. We do not 

need the time dependency issue here, this is however interesting as it permits to account for possible 

improvement of measurement accuracy as discussed in [31]. 

 

8.1. Bounding the uncertainty domain 

 

We would like to use the concept of 𝑎-quantile (we call it in the sequel VaR) to define a closed 

domain of variation for the uncertain data [31]. Given a threshold 0 ≤ 𝑎 < 1, a data 𝐮𝑖
∗, 𝑖 = 1, . . . , 𝑝, 

belongs to the interval [𝜇𝑖 + VaR𝑎
−, 𝜇𝑖 + VaR𝑎

+], VaR𝑎
− ≤ 0 ≤ VaR𝑎

+ with probability 𝑎. For Gaussian 

probability density functions, we have VaR𝑎
− = −VaR𝑎

+ and the values at risk are explicitly known to 

be 

 

VaR0.99(𝑁(0,1)) = 2.33 and VaR0.95(𝑁(0,1)) = 1.65, 
 

and VaR𝑎(𝑁(0, 𝜎2)) = 𝜎2VaR𝑎(𝑁(0,1)). We have therefore, with probability 𝑎, an uncertainty 

domain for the data, given by  

 

𝐵𝑎(𝜇) = ∏[𝜇𝑖 − 1.65𝜎𝑖
2, 𝜇𝑖 + 1.65𝜎𝑖

2]

𝑝

𝑖=1

⊂ ℝ𝑝. 

 

This is a large domain and we do not want to proceed with any sampling. 

 

8.2. Directional Extreme Scenarios (DES)  
 

However, using the sensitivity of the functional with respect to the data, we can identify two 

directional  extreme sets of data corresponding to the intersection of 𝐵𝑎(𝜇) and 𝑑 = 𝜇 + 𝑡𝜕𝑗/𝜕𝑢∗, 

𝑡 ∈ ℝ. Let us call these two data sets (𝐮∗)±, defined as 

 

(𝐮∗)± = 𝜇 ± 1.65𝜎𝑖
2 (

𝜕𝑗/𝜕𝑢∗

‖𝜕𝑗/𝜕𝑢∗‖
)

𝑖

 . (8) 

 

To measure of the impact of this variability on the result of the inversion, we proceed with two 

minimizations with the target data given by (𝐮∗)± starting from 𝐱∗ = 𝐱𝑜𝑝𝑡(𝐮∗ = 𝜇). Let us call (𝐱∗)± 

the results of these inversions. 

 

We assume monotonic behaviour of the outcome of the inversion with respect to the data. That is 

 

‖𝐱∗(𝜇) − 𝐱∗(𝜈)‖ ↗   𝑖𝑓  ‖𝜇 − 𝜈‖ ↗. (9) 
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This assumption is reasonable and means that larger deviations in data sets bring larger variations 

in the outcome of the optimization. This also suggests that the maximum deviation for the results of 

the inversion due to the uncertainty of the data can be estimated by 𝑋± = (𝐱∗)+ − (𝐱∗)−. Hence, we 

introduce a first approximation to the covariance matrix 𝐶𝑜𝑣𝐱± [49] for 𝐱 as follows 

 

𝐶𝑜𝑣𝐱± = 𝔼 ((𝑋±)(𝑋±)𝑡) − 𝔼(𝑋±)𝔼(𝑋±)𝑡 ∼ (𝑋±)(𝑋±)𝑡 − (𝑋±̅̅ ̅̅ )(𝑋±̅̅ ̅̅ )
𝑡
, (10) 

 

with (𝑋±̅̅ ̅̅ ) = ((𝐱∗)+ + (𝐱∗)− − 2𝐱∗)/2.  

 

The monotonicity hypothesis can be checked a posteriori, at least partially, measuring the distance 

between (𝐱∗)± and 𝐱∗ ± 𝜌∇𝐱𝑗(𝐱∗, 𝐮∗), 𝜌 > 0. This expression permits to identify two bounds 𝜌± and 

two intervals [0, 𝜌±] on which the monotonicity is verified. Larger values of parameters 𝜌± a 

posteriori enforce the hypothesis.  

 

If one looks at optimization from the view point of controllability for dynamical systems [41,35], 

quantiles can be introduced in optimization algorithms [31]. The notion of over-solving appears then 

naturally where it becomes useless to solve accurately near an optimum when the variations in control 

parameters between two iterations of the optimizer fall below the uncertainties defined through a local 

uncertainty ball: all the points inside this ball being indeed equivalent in term of the confidence one 

can have on their performance. 

 

We have presented the concept of Directional Extreme Scenarios for various applications in [29, 

30, 34]. Directional Extreme Scenarios can be defined for 𝐱 as well, considering the components of 

the design vector as random variables. It is indeed interesting to account for uncertainties in large 

dimensional spaces. We have also extended the DES considering ensemble-based simulations after 

casting the multi-point optimization algorithm into the Ensemble Kalman Filters (EnKF) formalism 

(see [32] for the details). The joint application of EnKF and DES leads to the concept of Ensemble 

Directional Extreme Scenarios (EDES) which provides more exhaustive possible extreme scenarios 

knowing the Probability Density Function of our optimization parameters.   

 

9. From the Adjoint to the Covariance Matrix of the Optimization 

Parameters 
 

Another construction of 𝐶𝑜𝑣𝐱 takes advantage of our adjoint calculation leading to ∇𝐱𝑗, the 

gradient of the functional with respect to the optimization parameters [33]. 

 

Let us recall the adjoint formulation for a generic state equation 𝐹(𝐮(𝐱, 𝛼)) = 0. The gradient of 

𝑗 with respect to 𝐱 is given by 

 

∇𝐱𝑗 =
𝜕𝑗

𝜕𝐱
+ ((

𝜕𝑗

𝜕𝐮
)

𝑡 𝜕𝐮

𝜕𝐱
)

𝑡

=
𝜕𝑗

𝜕𝐱
+ ((

𝜕𝑗

𝜕𝐮
)

𝑡

(
𝜕𝐹

𝜕𝐮
)

−1 𝜕𝐹

𝜕𝐱
)

𝑡

=
𝜕𝑗

𝜕𝐱
+ (𝐯𝑡

𝜕𝐹

𝜕𝐱
)

𝑡

, 

 

where we have introduced the adjoint variable 𝐯 to be the solution of 

 

𝐯𝑡
𝜕𝐹

𝜕𝑢
= (

𝜕𝑗

𝜕𝑢
)

𝑡

, (11) 
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and used in the algorithm given in Section 5. When the governing equations are self adjoint (i.e., 
𝜕𝐹

𝜕𝐮
=

(
𝜕𝐹

𝜕𝐮
)

𝑡
), one can use the corresponding solver with 

𝜕𝑗

𝜕𝐮
 as the right-hand side and simply solve: 

 
𝜕𝐹

𝜕𝐮
𝑣 =

𝜕𝑗

𝜕𝐮
, 

 

Also, if 𝐹 is linear, then 
𝜕𝐹

𝜕𝐮
 is a constant operator independent of 𝐮. The interest of the adjoint 

formulation is that the cost of getting ∇𝐱𝑗 becomes independent of the size of 𝐱. But, the problem 

with the adjoint approach is that, except for the two situations we mentioned (linear or self adjoint 

state equations), it needs the development (and maintenance) of a new code. This is why we use 

automatic differentiation when possible. 

 

In multi-criteria problems the functional 𝑗 is minimized under equality or inequality constraints 

𝑐𝑖=1,...,𝑞, and we need to solve an adjoint problem for the functional and each of the active constraints 

(needed to express the first order KKT conditions). This can be seen as a block diagonal matrix 

inversion with all blocks being similar and the right-hand side given by (𝜕𝐮𝑗, 𝜕𝐮𝑐1, . . . , 𝜕𝐮𝑐𝑞)
𝑡
with 𝑞 

active constraints. Automatic differentiation in reverse mode with multiple right-hand side capacity 

can be used to address this problem. Otherwise, deflation techniques for linear systems with multiple 

right-hand sides can be applied [26, 47] taking advantage of the fact that the blocks being the same 

the Krylov decomposition needs to be conducted only once.  

 

The functional 𝑗 involves the least square deviation at data location between model and data, and 

𝜕𝐮𝑗 in the right-hand side of (11) can be obtained by 

 

𝑗(𝐱, 𝐮∗) = 𝑗̃ +
1

2
‖Π𝐮 − 𝐮∗‖2 = 𝑗̃ +

1

2
〈Π 𝐮 − 𝐮∗, Π 𝐮 − 𝐮∗〉 

  = 𝑗̃ +
1

2
〈ΠtΠ 𝐮, 𝐮〉 − 〈Πt𝐮∗, 𝐮〉 +

1

2
〈𝐮∗, 𝐮∗〉, 

 

Where we have 𝜕𝐮𝑗 = 𝜕𝐮𝑗̃ + Π𝑡Π𝑢 − Π𝑡𝐮∗. On the other hand, the sensitivity of 𝑗 with respect to the 

data 𝜕𝐮∗𝑗 needed in (8) is given by 𝜕𝑗/𝜕𝐮∗ = −(Π𝐮 − 𝐮∗). 

 

With ∇𝐱𝑗 at hand, let us establish another expression for the covariance matrix of 𝐱 considered as 

a vector of zero-mean random variables. Denote, for simplicity, by 𝐮 the model solution (zero-mean 

valued: 𝐮 ← 𝐮 − 𝜇) at the data location and suppose it is linked to the parameters through a linear 

model: 𝒖 = 𝐿𝐱. The covariance matrix for 𝐮 is therefore 

 

𝐶𝑜𝑣𝐮 = 𝔼(𝐮𝐮𝑡) = 𝔼(𝐿  𝐱𝐱𝑡   𝐿𝑡) = 𝐿  𝔼( 𝐱𝐱𝑡)  𝐿𝑡 = 𝐿  𝐶𝑜𝑣𝐱  𝐿𝑡. 
 

If the dependency of 𝐮 with respect to the parameter 𝐱 is nonlinear, then the analysis still holds for 

the linearized model. Introducing 𝒥 = 𝜕𝐮/𝜕𝐱, we have 

 

𝐶𝑜𝑣𝐮 = 𝒥  𝐶𝑜𝑣x  𝒥𝑡. 
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To get 𝐶𝑜𝑣𝐱, we need therefore to invert this expression and because the amount of data can be large 

and probably impossible to exactly fit, we proceed with a least squares formulation looking for 𝐶𝑜𝑣𝐱 

minimizing 

 
1

2
〈𝒥  𝐶𝑜𝑣x  𝒥𝑡, 𝒥  𝐶𝑜𝑣x  𝒥𝑡〉 − 〈𝐶𝑜𝑣u, 𝒥  𝐶𝑜𝑣x  𝒥𝑡〉. 

  

The first order optimality conditions with respect to 𝐶𝑜𝑣x gives 

 

𝒥𝑡𝒥  𝐶𝑜𝑣x  𝒥𝑡𝒥 − 𝒥𝑡  𝐶𝑜𝑣u  𝒥 = 0, 
 

which leads to 

 

𝐶𝑜𝑣x = (𝒥𝑡𝒥)−1  𝒥𝑡  𝐶𝑜𝑣u  𝒥  (𝒥𝑡𝒥)−1, 
 

and eventually, to 

 

𝐶𝑜𝑣x = 𝒥−1  𝐶𝑜𝑣u  𝒥−𝑡 = (𝒥𝑡   𝐶𝑜𝑣u  𝒥)−1. (12) 

 

To get 𝐶𝑜𝑣x and knowing 𝐶𝑜𝑣u, it is therefore sufficient to evaluate 𝒥 = 𝜕𝐮/𝜕𝐱. The second 

expression in (12) is interesting as it involves the inversion of a square matrix and gives a least squares 

sense to the inversion of rectangular matrices. Also, if the optimization is successful and the model 𝑢 

and the data 𝑢∗ close, then we can assume that the data are independently collected and use the 

covariance matrix of the observation instead of 𝐶𝑜𝑣𝐮, that is 

 

𝐶𝑜𝑣u ∼ 𝐶𝑜𝑣u∗ , 
 

which is then diagonal and its inversion is straightforward. 

 

The question is, therefore, how to efficiently evaluate 𝒥 = 𝜕𝐮/𝜕𝐱. The model at data locations Π𝐮 

is obtained applying, for instance, a linear interpolation operator Π to the model solution 𝐮 on the 

mesh. Therefore, we have 

 

𝒥 = Π
∂𝐮

∂𝐱
. 

 

Now, recall that ∇𝐱𝑗 is available and has been computed with an adjoint approach. We now use it to 

access 𝜕𝐮/𝜕𝐱 without extra calculation as follows 

 

∇𝐱𝑗 =
𝜕𝑗

𝜕𝐱
+ ((

𝜕𝑗

𝜕𝐮
)

𝑡

 
𝜕𝐮

𝜕𝐱
)

𝑡

=
𝜕𝑗

𝜕𝐱
+ ((

𝜕𝑗

𝜕𝐮
)

𝑡

 Π−1𝒥)

𝑡

, 

 

where the first terms in the right-hand side is zero if there is no direct dependency on 𝐱 in 𝑗, and it is 

non-zero, for instance, if a Tykhonov regularization term is introduced in the functional [46]. This 

leads to 

 

(
𝜕𝑗

𝜕𝐮
)

𝑡

 Π−1𝒥 = (∇𝑥𝑗 −
𝜕𝑗

𝜕𝐱
)

𝑡

, 
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and eventually to, 

 

𝒥 = Π (
𝜕𝑗

𝜕𝐮
)

−𝑡

(∇𝑥𝑗 −
𝜕𝑗

𝜕𝐱
)

𝑡

. (13) 

 

where the components of  (𝜕𝑗/𝜕𝐮)−𝑡, which is a line vector, are given by the inverse of those of 

(𝜕𝑗/𝜕𝐮) and scaled by the inverse of its size in order to have (𝜕𝑗/𝜕𝐮)−𝑡 . (𝜕𝑗/𝜕𝐮) = 1. Alternatively, 

to avoid numerical difficulties with small components of (𝜕𝑗/𝜕𝐮), (13) can again be seen in a least 

squares sense with the inverse of a normal matrix as follows: 

 

𝒥 = Π ((
𝜕𝑗

𝜕𝐮
) (

𝜕𝑗

𝜕𝐮
)

𝑡

)

−1

𝜕𝑗

𝜕𝐮
(∇𝑥𝑗 −

𝜕𝑗

𝜕𝐱
)

𝑡

  (14) 

 

This expression involves the inverse of the information matrix (((𝜕𝑗/𝜕𝐮))((𝜕𝑗/𝜕𝐮))
𝑡
). One should 

be aware that the condition number of this matrix can be very high. We do not discuss this issue here 

but typically the Bunch and Kaufman [3] algorithm should be used in order to account for this possible 

deficiency.  In particular, if rank deficiency is detected, then the Moore-Penrose inverse should be 

used based on the eigenvalue decomposition of the information matrix [7]. 

 

Under the hypothesis of the validity of the physical model, this analysis gives indications on the 

level of backward sensitivity of the optimization parameters with respect to the model solution at data 

locations which is also the sensitivity with respect to the deviation between the model and data at the  

data locations (as the data are independent of the optimization parameters): 

 
𝜕𝐮

𝜕𝐱
=

𝜕(𝐮 − 𝐮∗)

𝜕𝐱
. 

 

These ingredients have been used in a generic way in several applications [28, 29, 30, 33] in the 

presence of various sources of variability. 

 

10. Concluding Remarks 
 

In order to be easily integrated in engineering environments to quantify our confidence in optimal 

solutions without intensive sampling of large dimensional parameter spaces, a cascade of  geometric  

uncertainty quantification concepts has been presented.  The cascade is based on the application of 

data analysis concepts together with existing deterministic simulation platforms. 

 

The analysis starts with the geometric characterization of global sensitivity spaces through their 

dimensions and relative positions by the principal angles between global search subspaces. Then, 

joining a multi-point descent direction and extreme values information from the probability density 

functions of design variables the concept of Directional Extreme Scenarios (DES) has been 

introduced. 

 

 The construction goes beyond DES with Ensemble Kalman Filters (EnKF) after the multi-point 

optimization algorithm is cast into an ensemble simulation environment. This permits to account for 
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the variability on the functioning parameters through the multi-point formulation and for the 

variability on the optimization parameters and observation data through the ensemble Kalman filter 

formulation. 

 

The joint application of the EnKF and DES leads to the concept of Ensemble Directional Extreme 

Scenarios (EDES) which provides exhaustive possible extreme scenarios knowing the PDF of the 

optimization parameters, and this being achieved without a sampling of the admissible space.  

 

The UQ cascade ends with low-complexity solutions for reverse propagation of aleatory uncertain 

target data in inverse design with two approximations of the covariance matrix of the optimization 

parameters. These provide uncertainty quantification analysis for the inversion solution with 

confidence margins in the design parameters in very large design spaces. The constructions also 

permit to account for epistemic uncertainties considering a model or a solution procedure as always 

being imperfect. Hence, seeing the associated error as uncertainty, these reverse propagation 

constructions provide a quantification of the impact of these weaknesses on the design. 
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