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1. Introduction

This contribution uses data analysis ingredients in a context of existing deterministic simulation
platforms. It starts with a complexity-based splitting of the independent variables and the definition
of a parametric optimization problem. Geometric characterization of global sensitivity spaces through
their dimensions and relative positions through principal angles between vector spaces bring a first
set of information on the impact of uncertainties of the functioning parameters on the optimal solution.
Joining the multi-point descent direction and Probability Density Function (PDF) quantiles of the
optimization parameters permits to define the notion of Directional Extreme Scenarios (DES) without
sampling of large dimension design spaces. One goes beyond DES with Ensemble Kalman Filters
(EnKF) after the multi-point optimization algorithm is cast into an ensemble simulation environment.
This formulation accounts for the variability in large dimension. The UQ cascade continues with the
joint application of the EnKF and DES leading to the concept of Ensemble Directional Extreme
Scenarios (EDES) which provides a more exhaustive description of the possible extreme scenarios.
The different ingredients developed for this cascade also permits to quantify the impact of state
uncertainties on the design and provide confidence bounds for the optimal solution. This is typical
of inverse designs where the target should be assumed uncertain. Our proposal uses the previous DES
strategy applied this time to the target data. We use these scenarios to define a matrix having the
structure of the covariance matrix of the optimization parameters. This construction can be compared
to another one using available adjoint-based gradients of the functional. Eventually, we go beyond
inverse design and apply the method to general optimization problems.

2. Motivation

We consider a generic situation where the simulation aims at predicting a given quantity of interest
j(x, @) and there are a few functioning or operating parameters a and several design parameters x
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involved. The ranges of the functioning parameters define the global operating/functioning conditions
of a given design. This splitting of the independent variables in two sets is important in the sequel.

We propose a cascade of ingredients to account for uncertainties avoiding any sampling of large
dimensional spaces. A sampling will be only necessary for the functioning parameters u range leading
to a multi-point optimization problem.

The literature on uncertainty quantification (UQ) is huge. In short, forward propagation aims at
defining a probability density function for j knowing those of x and « [15, 18, 25]. This can be done,
for instance, through Monte Carlo simulations or a separation between deterministic and stochastic
features using Karhunen-Loeve theory (polynomial chaos theory belongs to this class) [12, 13, 16,
48, 50]. Examples of shape optimization with polynomial chaos and surrogate models during
optimization are given in [6, 39].

Backward propagation aims at reducing the model's bias or calibrating model's parameters
knowing the probability density function of j (or other constraints and observations) [5, 23, 45]. This
can be seen as a minimization problem and Kalman filters [24] give, for instance, an elegant
framework for this inversion assimilating the uncertainties on the observations.

Our aim is to propose a geometric framework to address the curse of dimensionality of existing
approaches related to the explosion of their computational complexity due to the sampling necessary
to access probabilistic information, even if this can be improved with intelligent sampling techniques
[4, 43]. The different ingredients presented here can be applied with either high-fidelity or reduced
order models, when available [38, 40, 41, 47]. Low-order models are often used instead of the full
models to overcome the computational complexity of UQ.

After the splitting of the independent variables mentioned above, we define a multi-point
formulation to account for the variability on a. This is feasible because the size of « is assumed to be
small. We define a global sensitivity space using the sensitivities of j with respect to x for the multi-
point problem. Once this space is built, we analyze its dimension. We previously showed how to
perform this task and how to use this information for adaptive sampling [28, 36].

The next step is to analyze the impact of different modelling or discretizations on the results.
Different models or solution procedures lead to different sensitivity spaces. Beyond their respective
dimensions, principal angles between the respective sensitivity vector spaces permit to measure the
deviation due to such changes. The dimensions of the spaces and the angles are interesting measures
for both the epistemic and aleatory uncertainties. Indeed, suppose that, for a given model the
dimensions of the sensitivity spaces remain unchanged when enriching the sampling of the
functioning parameter range. This stability would be a first indication of a low level of sensitivity of
the simulations with respect to this parameter. Once this is established, principal angles between
subspaces permit to analyze both the impact of a given evolution of the modelling on the sensitivity
spaces or an enrichment of our sampling. Eventually, constant dimension and low angles will clearly
indicate a situation of low uncertainty.

These ingredients can be used in a context of multi-point robust analysis of a system to define
worst-case scenarios for its functioning. To this end, we combine a multi-point sensitivity with the
probabilistic features of the control parameters through their quantiles [22, 31] to define the concept
of Directional Extreme Scenarios (DES) without a sampling of large dimension design spaces.
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Ensemble Kalman filters (EnKF) [2, 8, 9, 10, 11, 24] permit to go beyond the directional
uncertainty quantification concept when accounting for the uncertainties in large dimension. They
also permit backward uncertainty propagation assimilating the uncertainty on the functional and
constraints during the design. We cast our multi-point optimization problem into the ensemble
formulation. A joint application of the EnKF and DES leads to the concept of Ensemble Directional
Extreme Scenarios (EDES) to provide a more exhaustive description of possible extreme scenarios.

Despite these approaches avoiding the sampling of a large dimensional space, the computing cost
remains high and the procedures turn to be difficult to simply explain in engineering environments.
We propose a low-complexity approach for the inversion of uncertain data where the target state u*
used in an inverse problem is uncertain. In this situation, we consider functional of the form
jX a,u*) = [lu(x,a) —u*(a)|| to reduce the distance between a model state u(x,a) and
observations.

Targeting uncertain data is a realistic situation as the acquired data are usually uncertain. It is
therefore interesting to be able to quantify the impact of this uncertainty on the inversion results. An
important information will be the sensitivity of the design to a given level of uncertainty on the data
at some location. Indeed, if this sensitivity is low, this would be an indication that a more accurate
acquisition is unnecessary.

Considering the target as uncertain is also interesting because we do not always have existence of
a solution for an inversion problem as u* is not necessarily solution of the state equation making an
exact or deterministic inversion pointless. Also, the approach permits to go beyond inversions based
on least squares minimization involving a mean state target.

Finally, the uncertainty in measurements is also an interesting way to account for the presence of
variability in the state. More generally, as the model and numerical procedures are by nature imperfect
and partial, we can consider this uncertainty as a representation or estimation of the imperfections.
These imperfections are even more present in inverse problems where one cannot afford the same
level of resolution thus for a single simulation. We therefore need to be able to quantify the impact
of these weaknesses on the design. The approach presented here is therefore also useful to account
for epistemic uncertainties related to possible model or solution procedure deficiency.

Concerning the computational cost of these analyses, one can say that, when using the same
calculation ingredients as in a high-fidelity simulation (i.e., without calling for low-order models or
cheaper discretizations), the best calculation complexity for a simulation under uncertainty is when
its cost is comparable to the deterministic situation. This is clearly unreachable, except if all the extra
effort can be achieved in a fully parallel manner and parallel to the initial deterministic calculation so
that the time to solution to remain unchanged when accounting for the presence of uncertainties. This
is the case with the Monte Carlo approaches. But these are quite expensive and do not take advantage
of available simulation environments. In particular, when an adjoint-based optimization environment
exists. Our proposal consists of upgrading existing platforms without abandoning what has been built
for the deterministic situations and with keeping the time to solution unchanged in the presence of
uncertainties with two sources of parallelism coming from the multi-point formulation to account for
the uncertainties on the functioning parameters and from the EnKF formulation for those on the
optimization variables and observation data.
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3. Parametric Optimization

We are interested in a class of optimization problems where the cost function involves a
functioning parameter a not considered as a design parameter:

. . N
Xrendlrlld](x, a), a €l cR", 0,; C RY, (1)

where x is the design vector belonging to 0,4, the optimization admissible domain. Usually, the
functioning parameters (or operating conditions) « are just a few. On the other hand, the size N of x
is usually large. Together, x and « fully describe our system and we have n << N. This splitting
between functioning parameters (or operating conditions) and design variables is central to our
discussion.

In [28, 29] we showed how to use multi-point optimization to address such optimization problem.
The aim is to remove, during optimization, the dependency in a. This is done minimizing a functional
J(x) encapsulating this dependency expressed through A = {j(x, @), @y € I} over I, a given
sampling of I:

J =J(A), such that G(A) < 0. (2

Several choices are possible for J and G to address the issue of robust design. For instance, following
Taguchi's definition, one can look for minimal-variance design or only a given level for the variance.
Indeed, a classical approach to extend the single point design and improve off-design points is to
control u, mean performance, and o, variance of the functional [44] as in First-Order Second Moment
(FOSM) methods [27]. One can also look for information about the tails of the distributions which
can be linked to the variance in the Gaussian framework and we use this relationship in quantile-
based extreme scenarios.

Often it might be interesting to go beyond the first two moments and in particular consider the first
four moments of j during the design. Going beyond the first two moments is important when the PDF
of j deviates from a pure Gaussian distribution. Indeed, even with interval-based (with uniform PDF)
or Gaussian entries there is no reason the PDF of the solution of a simulation to remain uniform or
Gaussian.

The third and fourth moments are the skewness, y, and the kurtosis, k. One can consider that a
robust design should favor symmetry in the distribution which means a lower absolute value of
skewness. For instance, in a Gaussian distribution we have y = 0. Also, in a normal distribution the
mean and median coincide and if a PDF is not too far from a normal distribution, the median will be
near u — ya /6. Therefore, if |y| — 0 then the PDF tends toward a normal distribution. This provides
an inequality constraint on |y| as y can be positive or negative. For a unimodal PDF a reduction of
the skewness comes when the mean and the mode of the distribution converge towards each other at
a given standard deviation.

Concerning the fourth moment, a robust design should favor higher density near the mean which
means a higher kurtosis, but this is more subtle. Indeed, in spite of the fact that a higher kurtosis
means a higher concentration of the probability mass around the mean, it could also imply thicker
tails in the PDF. This means that more of the variance is the result of infrequent extreme deviations.
We need therefore to define what we mean by a more robust design: acceptance of frequent modest
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deviations or acceptance of infrequent extreme ones. If operational security is a major concern, then
the latter should be definitely avoided. Hence, a reasonable requirement would be to have a design
reducing the initial kurtosis value, k < i, together with a constraint on the variance o.

4. Gradients, Sensitivity Spaces and Admissible Search Directions

1

Monte Carlo simulations permit to recover the moments with an error decreasing as oM™ 2, with
M being the number of functional evaluations and the rate being independent of n. But, for small n,
classical numerical integration outperforms Monte Carlo simulation in terms of complexity based on
the number of functional evaluations to attain at a given accuracy these moments. As we are
concerned with small values of n (typically, n = 2 or 3 in our applications), this latter is therefore
preferred. Anyway, both Monte Carlo trials and numerical integration lead to the introduction of
weighted sums over an M-point sampling I, of I as estimators of the previous moments.

The linearity in the sums permits to access the gradient of the moments with respect to the control
parameters x from the gradient of the functional at the sampling point a;. These are four vectors in
Sy = Span{V, j(x,ay), ay € I} € RN. In applications of interest, N is large. However, we
showed that often dim(S,) << N [28, 29, 30]. This analysis also permits to posteriori give
confidence bounds on the choice of the sampling size M which should be clearly larger than dim(S,,).

Let us denote by C;-1 , 3 the three constraints on the second, third and fourth moments and let us
consider the subspace sy = Span{VyCi—1,3} € R® c RV. Obviously p = dim(sy) < 3. Let us

.....

.....

matrix expressing the coordinates of q in G.

With equality constraints, a descent direction d can be obtained writing the first order optimality
condition stating that d needs to be orthogonal to s,,. Hence, using the local orthonormal basis

.....

p
d= Vx,u - z<vx:u' qi)qi ' (3)
=1

i

Denoting by IT the matrix of the projection operator (V4 u, q), we have
d = Vyu — (IIPG)t PG = Ve — (GEPYTI P)t G = Vyu + ALG,

with At = (1;,1,,13) € R3. We have d — 0 with the optimization iterations converging. Stationarity
in d therefore realizes the first order optimality conditions for the Lagrangian L = J + A*C.

With inequality constraints, the solution of our minimization problem needs to verify the first order
KKT conditions [37]. But, the optimality conditions for the Lagrangian will involve only positive
Lagrange multipliers: A € R3 and V, L = V, J + A'V, C = 0 with the complementarity condition
AfC =0, meaning that 2; =0 if C; <0 and A; > 0 if C; = 0 (i.e., C; is an active constraint). To
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define d we follow what would be placed for the equality constraints, only considering active
constraint gradients in the definition of s,, which is not a subspace but a convex cone:

3
su={xlx= Y %G Fi>0]C)c R CRY. (@)
i=1

At the solution, V, J is orthogonal to this cone. Before working on the cone, let us start defining a

.....

Here, {qizl,"_,p} are therefore the generators of the cone s,, deduced from a basis of §,,. If the
generators cannot be defined, then the problem is found to have no solution, as at least two of the
constraints are incompatible with the gradients being parallel and pointing in opposite directions.
These generators permit to define the admissible search direction d from (3) but taking into account
that we only remove the non admissible contribution:

p
d = Vo= ) (@ V)i ©)

=1

with y; = 0if (q;, Vxu) = 0 and y; = 1if (q;, Vu) < 0.

5. A Multi-point Descent Algorithm

Our aim is to use existing platforms. Hence, to compute the ingredients above we use an available
single-point optimization environment which can easily be modified for parallel multi-point
calculations. This platform involves a direct simulation chain linking the parameters (x, a) to the state

u, solution of a state equation F (u(q (x, a))) = 0, and its adjoint v and to a functional j:

o Givexg, 0<p, Iy, Pmax-
e Optimization iterations: Forp = 1,..., Pax dO

- 1-M parallel state equation solutions F (u(q(xp),ak)) =0, ay € I,

2-M parallel evaluations of j(x,, ay ), a, € Iy,
- 3-M parallel solutions of the adjoint state v equation:
veE, (u(q(xp), ak)) =t ay €1y,
- 4-M parallel evaluations of V,j(x,, ay) = jx + (V' F)", ay € Iy,
- 5-define d the descent direction using (5),
- 6-minimization using d: (.9, Xp4+1 = Xp — pd),
- Stop if a given stopping criterion is achieved.

In multi-criteria problems, steps 2, 3 and 4 include the treatment of more than one functional
inducing a different definition of the descent direction d to account for other constraints (mainly
physical this time) than the moment-based ones mentioned above.
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Despite the natural presence of parallelism due to the M independent evaluations of the state,
functional and its gradient, computational complexity remains an issue. We have shown previously
how to reduce this effort optimizing the sampling size [28] together with the use of incomplete
sensitivity concept in the evaluation of the gradients which permits to avoid the solution of the M
adjoint equations [35]. This is particularly suitable when using black-box state equation solvers not
providing the adjoint of the state variables.

Such minimization problems have produced new interests to descent methods and this not only
because of their lower computational complexity, as compared to gradient free methods [1, 19, 37].
Indeed, beyond minimization, we saw that gradients are useful to see what should actually be the
search space in a context of robust multi-point design [29, 30]. Hence, beyond individual gradient
accuracy (i.e. at each of the sampling point), what is important in multi-point problems is the global
search space defined by the ensemble of the gradient vectors. This means that one might tolerate
higher error levels in each of the gradient defined at the different sampling point than for a single-
point optimization situation as what is important is for the global search space to remain nearly
unchanged. An interesting mathematical concept which permits to measure the deviation between
two subspaces is the principal angles between subspaces.

6. Angles Between Subspaces

We use the mathematical concept of principal angles between subspaces in the Euclidean space
(here RN), initially introduced by Jordan [21]. If the maximum principle angle between two subspaces
is small, then the two are nearly linearly dependent. Geometrically, this is the angle between two
hyperplanes embedded in a higher dimensional space.

Let us briefly recall the concept of principal angles and how to practically compute them [14, 20].
For simplicity, suppose 4 and B are two subspaces of dimension k of RN, N > 2k, although this is
not a prerequisite to define the principal angles. The k principal angles {6;,i =1,...,k} are
recursively defined as

a;, b; a,b
cos(8,) = (ai, b;) aX{ (a,b)

———=m tala,,blb,m=1,..i—1¢
Ila bl m " }

lallllbll
where aj €A and bj € B.

The principal angles 6; are between 0 and 7/2. This is an important point and will be used later
to take advantage of the positivity of the cosine of the angles. The procedure finds unit vectors a, €
A and b; € B minimizing the angle 8; between them. It then takes the orthogonal complement of a,
in A and b, in B and iterates. This procedure is not useful, in practice, as computationally inadequate.
We would like to be able to find the angles 6; from the inner products (a;, b;) of the elements of two
bases of A and B [42]. This would be interesting in our multi-point optimization context where we
can exhibit an orthonormal basis of the global search space for the multi-point optimization problem
using the Gram-Schmidt orthonormalization.

Now, let{a;,i = 1,...,k}and{b;,i = 1,..., k} be two arbitrary orthonormal bases for A and B.
Orthonormal bases are easy to obtain through the Gram-Schmidt orthonormalization procedure.
Consider M being the matrix of the projection operator Pr, of B onto A, defined by
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k

Pry(b;) = Z<bi' aa;, M= (b aj>)i,j'

j=1

The principal angles can be linked to this operator [42] through
M = GIHY,

where G and H are orthogonal matrices and £ = diag(cos(6;)).

With G and H being orthogonal matrices, this is a Singular Vector Decomposition (SVD) of M. G
and H are unknown at this point. But we will show that we do not need them to get the 6;. Otherwise,
the approach will again be computationally useless.

We recall that the columns of G are the left-singular vectors of M and eigenvectors of MM* and
the columns of H are the right-singular vectors of M and eigenvectors of Mt M. And most importantly,
the cos?(8;) are the eigenvalues of PrfPr,, written in matrix form as: M*M = (GZHY)*(GIH?) =
HE2Ht with 22 = diag(cos?(6;)).

Therefore, to find the principal angles between subspaces A and B, knowing an orthonormal basis
in each subspace, one should calculate M and find the eigenvalues of M*M and take the square root
of them. This last operation is valid as the angles are between 0 and /2, and the cosine is therefore
always positive.

We presented the approach for subspaces of the same dimension k, but it is not necessary for the
two subspaces to be of the same size in order to find the angles between them. We need N > 2k to
be able to exhibit two orthogonal subspaces. If N < 2k, then some principal angles necessarily
vanish, and for N = k, they all vanish. This procedure is still valid if the subspaces have different
dimensions. The projection operator can be defined as well as its transpose; and the eigenvalues of
MM are real as this is a symmetric square matrix.

In our optimization applications, we always proceed first with a reduction in size of the search
space using a sampling reduction size algorithm [28]. This makes the calculation of the whole set of
eigenvalues feasible in terms of computing complexity. However, if this is out of reach, one can
evaluate the bounds on the angles to see the global pertinence of our reduced order models and
gradient approximations. This can be done without an exact calculation of all the eigenvalues. It is
sufficient to use the Gershgorin circle theorem to find the bounds, as every eigenvalue of M*M lies
within at least one of the Gershgorin discs D((MtM);;, R;) centred on (MtM);; and with radius R; =
Yj=i |(MfM)ij|. And because MM is symmetric, the eigenvalues being real, we only consider the
intersection of the discs with the horizontal axis. Alternatively, the largest and smallest principal
angles can be found using the iterative power and the inverse power methods applied to Mt M.

Principal angles between multi-point search spaces are interesting to measure the pertinence of
sensitivity definitions based on different models or numerics. Indeed, the design will be unaffected
by a reduction in the model's complexity if the search subspaces, generated by the gradients at the
sampling points of the functioning parameter interval and their approximations, remain the same.
This is therefore an original quantification tool for epistemic uncertainties.
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7. Inversion for Uncertain Data
Let us expand the class of problems introduced in Section 3 to the following

. . * * 14 n N
xren(}?d](x,a,u), u* € RP, a €l c R" 0,; C RY, (6)

where u* represents either measurements or state estimations which is a vector of random variables.
We are interested in functionals j of the following form

J& a,u) =jxa) + % IMu(x, @) —uw* (@I (7)

The first term is what has been discussed up to now. Operator II: R¥Y — RP (typically, a linear
interpolation operator) makes the state available at data locations. Inverse problems are in this class
[17, 45]. This formulation also permits to see the state as uncertain as a whole with II the identity
operator. One can also introduce zoning techniques to discriminate through the level of confidence
one might have on the state evaluation following the variability one observes in practice.

To summarize, we assume the components of u* to be independent, uncertain and given by their
Gaussian PDF, for instance, V'(p;, 07 ), i = 1,...,p with mean y; and variance of a?. Covy- is
therefore a diagonal matrix.

The simplest way to measure the effect of these uncertainties on the inversion result is again to
proceed with Monte Carlo simulations. This implies a sampling of the variation domain of the data
consistent with their PDF. This means we proceed with M independent inversions for M data sets
defined by independent choices compatible with the PDF of u* given by

N(w,o?)-> @™,  i=1..p ~m=1..M.

These independent inversions will produce M optimal control parameters xg,., m = 1,..., M, from
which statistical moments can be defined (typically, the mean and variance) with again a rate of
convergence in M~%/2 peing independent of p. Such generation of scenarios is already very
demanding when involving only a direct simulation chain. In our problem, each of the scenarios
involves an inversion, each requiring several solutions of the direct and adjoint problems. This
complexity makes the approach be clearly out of reach, even if the calculations were independent and
could be carried out in parallel.

7.1. Low-complexity uncertainty evaluation
In the sequel, we discuss two low-complexity constructions of Covy, the covariance matrix of the
control parameters from Cov,+, the covariance matrix of the data. We want these constructions to

have a cost comparable to a deterministic inversion and, again, we want to avoid any sampling of a
large dimension space.

8. a-Quantile
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Consider a random variable v with its PDF known (either analytic or tabulated). The tail of the
PDF can be characterized defining, for a given probability level (0 < a < 1), the following threshold
value:

VaR, =inf{lleR: P(v>1) <1-—a}

Different a-quantiles are available. One very well known is the Value at Risk (VaR) which has been
widely used in financial engineering as a measure of risk of loss on a given asset [22]. We do not
need the time dependency issue here, this is however interesting as it permits to account for possible
improvement of measurement accuracy as discussed in [31].

8.1. Bounding the uncertainty domain

We would like to use the concept of a-quantile (we call it in the sequel VaR) to define a closed
domain of variation for the uncertain data [31]. Given a threshold 0 < a < 1,adatau;j,i = 1,...,p,
belongs to the interval [y; + VaRyg, u; + VaR}], VaRy; < 0 < VaR{, with probability a. For Gaussian
probability density functions, we have VaR; = —VaR/, and the values at risk are explicitly known to
be

VaR99(N(0,1)) = 2.33 and VaR(5(N(0,1)) = 1.65,

and VaR,(N(0,62%)) = 02VaR,(N(0,1)). We have therefore, with probability a, an uncertainty
domain for the data, given by

14
By (W) = n[m — 1.6507, u; + 1.6507| c RP.

=1
This is a large domain and we do not want to proceed with any sampling.
8.2. Directional Extreme Scenarios (DES)

However, using the sensitivity of the functional with respect to the data, we can identify two
directional extreme sets of data corresponding to the intersection of B,(u) and d = u + tdj/ou”,
t € R. Let us call these two data sets (u*)*, defined as

(8)

dj/ou*
(u*)* = pu £ 1.6507 (]/—u) .
i

lloj/ou|
To measure of the impact of this variability on the result of the inversion, we proceed with two
minimizations with the target data given by (u*) starting from x* = Xope(W" = ). Letus call (x*)E

the results of these inversions.

We assume monotonic behaviour of the outcome of the inversion with respect to the data. That is

Ix*(w) =x* Wl 7 if llu=vll 7 (9)
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This assumption is reasonable and means that larger deviations in data sets bring larger variations
in the outcome of the optimization. This also suggests that the maximum deviation for the results of
the inversion due to the uncertainty of the data can be estimated by X* = (x*)* — (x*)~. Hence, we
introduce a first approximation to the covariance matrix Cov,+ [49] for x as follows

Covee = E((XHXH)) - EXHEXH ~ (xH(xH)! — (XF)(XF)', (10)
with (X*) = (x)* + (x*)~ — 2x")/2.

The monotonicity hypothesis can be checked a posteriori, at least partially, measuring the distance
between (x*)* and x* + pV,j(x*,u*), p > 0. This expression permits to identify two bounds p* and
two intervals [0, p] on which the monotonicity is verified. Larger values of parameters pt a
posteriori enforce the hypothesis.

If one looks at optimization from the view point of controllability for dynamical systems [41,35],
guantiles can be introduced in optimization algorithms [31]. The notion of over-solving appears then
naturally where it becomes useless to solve accurately near an optimum when the variations in control
parameters between two iterations of the optimizer fall below the uncertainties defined through a local
uncertainty ball: all the points inside this ball being indeed equivalent in term of the confidence one
can have on their performance.

We have presented the concept of Directional Extreme Scenarios for various applications in [29,
30, 34]. Directional Extreme Scenarios can be defined for x as well, considering the components of
the design vector as random variables. It is indeed interesting to account for uncertainties in large
dimensional spaces. We have also extended the DES considering ensemble-based simulations after
casting the multi-point optimization algorithm into the Ensemble Kalman Filters (EnKF) formalism
(see [32] for the details). The joint application of EnKF and DES leads to the concept of Ensemble
Directional Extreme Scenarios (EDES) which provides more exhaustive possible extreme scenarios
knowing the Probability Density Function of our optimization parameters.

9. From the Adjoint to the Covariance Matrix of the Optimization
Parameters

Another construction of Cov, takes advantage of our adjoint calculation leading to V,j, the
gradient of the functional with respect to the optimization parameters [33].

Let us recall the adjoint formulation for a generic state equation F(u(x, a)) = 0. The gradient of
J with respect to x is given by

t t
dj 9j\" ou aj aj\* (aF\~' oF dj aF\*
= (G5 2k (G G 50) =30 (50
ox du/ 0x ox du/ \du ox ox ox
where we have introduced the adjoint variable v to be the solution of

OF  [0j\'
e 9T _ (9 (11)
v ou <6u)'
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and used in the algorithm given in Section 5. When the governing equations are self adjoint (i.e., Z—z =

t .
(aF) ), one can use the corresponding solver with Z—l’l as the right-hand side and simply solve:

au

oOF  9j

ou  ou

Also, if F is linear, then Z—i is a constant operator independent of u. The interest of the adjoint

formulation is that the cost of getting Vj becomes independent of the size of x. But, the problem
with the adjoint approach is that, except for the two situations we mentioned (linear or self adjoint
state equations), it needs the development (and maintenance) of a new code. This is why we use
automatic differentiation when possible.

In multi-criteria problems the functional j is minimized under equality or inequality constraints
Ci=1,.,q» and we need to solve an adjoint problem for the functional and each of the active constraints
(needed to express the first order KKT conditions). This can be seen as a block diagonal matrix

inversion with all blocks being similar and the right-hand side given by (auj, 0uC1)--) aucq)twith q
active constraints. Automatic differentiation in reverse mode with multiple right-hand side capacity
can be used to address this problem. Otherwise, deflation techniques for linear systems with multiple
right-hand sides can be applied [26, 47] taking advantage of the fact that the blocks being the same
the Krylov decomposition needs to be conducted only once.

The functional j involves the least square deviation at data location between model and data, and
d,J in the right-hand side of (11) can be obtained by

1 1
j(x,u") =j+5||l'lu—u*||2 =j+§(1'lu—u*,l'[u—u*)

=]+ 5 (MTu,u) — (M, u) + - (u’, u),

Where we have d,j = d,j + IT¢TTu — [1*u*. On the other hand, the sensitivity of j with respect to the
data d,,:j needed in (8) is given by dj/du* = —(ITu — u*).

With V,;j at hand, let us establish another expression for the covariance matrix of x considered as
a vector of zero-mean random variables. Denote, for simplicity, by u the model solution (zero-mean
valued: u « u — ) at the data location and suppose it is linked to the parameters through a linear
model: u = Lx. The covariance matrix for u is therefore
Covy, = E(uut) = E(L xx* L) =L E(xx') L' =L Covy L.

If the dependency of u with respect to the parameter x is nonlinear, then the analysis still holds for
the linearized model. Introducing J = du/dx, we have

Covy = J Covy Jt.
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To get Covy, we need therefore to invert this expression and because the amount of data can be large
and probably impossible to exactly fit, we proceed with a least squares formulation looking for Covy
minimizing

1
E(J COUX Jt;J COUX Jt> - (COUu,J COUX Jt)
The first order optimality conditions with respect to Covy gives
JtJ Covy J*J = J* Covy J =0,
which leads to

Covy = (J* N~ J* Covy J (F* D7

and eventually, to
Covy = J_l Covy J_t = (Jt Covy J)_l- (12)

To get Covy, and knowing Cov,, it is therefore sufficient to evaluate J = du/dx. The second
expression in (12) is interesting as it involves the inversion of a square matrix and gives a least squares
sense to the inversion of rectangular matrices. Also, if the optimization is successful and the model u
and the data u* close, then we can assume that the data are independently collected and use the
covariance matrix of the observation instead of Cov,, that is

Covy ~ Covyyr,
which is then diagonal and its inversion is straightforward.

The question is, therefore, how to efficiently evaluate J = du/dx. The model at data locations ITu
is obtained applying, for instance, a linear interpolation operator IT to the model solution u on the
mesh. Therefore, we have

_Hau
J= ox’

Now, recall that V,; is available and has been computed with an adjoint approach. We now use it to
access du/adx without extra calculation as follows

t t
0 9j\" ou\ _ 9j 5\ __,
V""&J’((%) &) =2 (Gw) M)

where the first terms in the right-hand side is zero if there is no direct dependency on x in j, and it is
non-zero, for instance, if a Tykhonov regularization term is introduced in the functional [46]. This
leads to

t Lt

(Ga) 0= (mi-5)
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and eventually to,

where the components of (dj/0u)~¢, which is a line vector, are given by the inverse of those of
(dj/0u) and scaled by the inverse of its size in order to have (dj/0u)~¢. (dj/du) = 1. Alternatively,
to avoid numerical difficulties with small components of (dj/du), (13) can again be seen in a least
squares sense with the inverse of a normal matrix as follows:

-1
. .t , N
=0\ (@) @) | w5 @

This expression involves the inverse of the information matrix (((aj/au))((aj/au))t>. One should

be aware that the condition number of this matrix can be very high. We do not discuss this issue here
but typically the Bunch and Kaufman [3] algorithm should be used in order to account for this possible
deficiency. In particular, if rank deficiency is detected, then the Moore-Penrose inverse should be
used based on the eigenvalue decomposition of the information matrix [7].

Under the hypothesis of the validity of the physical model, this analysis gives indications on the
level of backward sensitivity of the optimization parameters with respect to the model solution at data
locations which is also the sensitivity with respect to the deviation between the model and data at the
data locations (as the data are independent of the optimization parameters):

du d(u—u")
ox ox
These ingredients have been used in a generic way in several applications [28, 29, 30, 33] in the
presence of various sources of variability.

10.Concluding Remarks

In order to be easily integrated in engineering environments to quantify our confidence in optimal
solutions without intensive sampling of large dimensional parameter spaces, a cascade of geometric
uncertainty quantification concepts has been presented. The cascade is based on the application of
data analysis concepts together with existing deterministic simulation platforms.

The analysis starts with the geometric characterization of global sensitivity spaces through their
dimensions and relative positions by the principal angles between global search subspaces. Then,
joining a multi-point descent direction and extreme values information from the probability density
functions of design variables the concept of Directional Extreme Scenarios (DES) has been
introduced.

The construction goes beyond DES with Ensemble Kalman Filters (EnKF) after the multi-point
optimization algorithm is cast into an ensemble simulation environment. This permits to account for
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the variability on the functioning parameters through the multi-point formulation and for the
variability on the optimization parameters and observation data through the ensemble Kalman filter
formulation.

The joint application of the EnKF and DES leads to the concept of Ensemble Directional Extreme
Scenarios (EDES) which provides exhaustive possible extreme scenarios knowing the PDF of the
optimization parameters, and this being achieved without a sampling of the admissible space.

The UQ cascade ends with low-complexity solutions for reverse propagation of aleatory uncertain
target data in inverse design with two approximations of the covariance matrix of the optimization
parameters. These provide uncertainty quantification analysis for the inversion solution with
confidence margins in the design parameters in very large design spaces. The constructions also
permit to account for epistemic uncertainties considering a model or a solution procedure as always
being imperfect. Hence, seeing the associated error as uncertainty, these reverse propagation
constructions provide a quantification of the impact of these weaknesses on the design.
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