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Optimization of A Thermal Coupled Flow Problem of
Semiconductor Melts
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In this paper we describe the formal Lagrange-technique to optimize the production process of
solid state crystals from a mixture crystal melt. After the construction of the adjoint equation system
of the Boussinesq equation of the crystal melt the forward and backward problems (KKT-system)
are discretized by a conservative finite volume method.
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1. Introduction

During the growth of crystals crystal defects are observed under some conditions of the growth
device. As a result of experiments, a transition from the two dimensional flow regime of a crystal
melt in cylinder-symmetric zone melting devices to an unsteady three dimensional behavior of the
velocity and temperature field is found experimentally. This behavior leads to striations as
undesirable crystal defects.

To avoid such crystal defects, it is important to know the parameters, which guarantee a stable
steady two dimensional melt flow during the growth process.

There are several possibilities for parameter finding. In this paper, optimization problems will be
discussed. From the experiment and the practical crystal production process it is known that an
unsteady behavior of the melt and vorticies near the fluid-solid-inter-phase decreases the crystal
guality. Thus, it makes sense to look for example, for

0] flows, which are nearly steady and
(i) flows, which have only a small vorticity in a certain region of the melt zone.

This leads to tracking type optimization problems with functionals like

1 (T 1 (T
](u,96)=—f f |u—ﬁ|2det+—f f (62 + 62 )dadt, (1)
2 0 Ja 2 0 JI, ‘

and problems with optimization functionals of the form
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1 (T 1 (T
J(u,8,) = —f f |curl u|?dQdt +—f f 62 dQdt, (2)
2J)y Jo 2J)y Jr,

where u is the velocity vector field in the melt and u is the state, which we want to have, and 6, is
the control temperature on the control boundary I'.. The melt flow is described by the Navier-Stokes
equation with the Boussinesq-approximation for the influence of natural convection coupled with the
convective heat conduction equation. In addition to the thermal effects, the solutal convection can be
considered optional by a diffusion equation.

2. Mathematical Model

The crystal melt is described by the Navier-Stokes equation for an incompressible fluid using the
Boussinesq approximation coupled with the convective heat conduction equation and the diffusion
equation. Heat conductivity and viscosity depend on the temperature. Because of the cylinder-
symmetric situation of the melting zone, we write down the equations in cylindrical coordinates.
Thus, we have the governing equations,

ue + (ruw), /r + (uv) , /r + (Wu), — v?/r =

—prt ((Tu)r/r)r + u(p(p/r2 - 2174,/1‘2 + Uzz, (3)

v + (ruv), /T + (vv) /1 + (WV), —uv/r = 4
— P /T + (V)1 /Ty + Vo /7% + 2Uy [T? + 1y, ()

we + (ruw), /1 + (vw)(p/r + ww), = —p, + (rwp), /T + Wq)(p/rz +w,, +p(@)g (5)
(rwy /T + vy /T + W, =0, (6)

0, + (rud),./r + (v9), + (Wh), = % [(r6,),/7 + (e(p)(p /T2 +(6,),] +q, (7

in the cylindrical melt zone (height H, radius R), where u, v, w and p are the primitive variables of
the velocity vector and the pressure, p and 8 denote the density and the temperature, Pr is the Prandtl
number, and g is the body force and g stands for an energy source.

For the velocity, no slip boundary conditions are used. At the interfaces between the solid material
and the fluid crystal melt we have for the temperature homogeneous Dirichlet data, i.e., the melting
point temperature. On the heated coat of the ampoule, the experimentors gave us measured
temperatures. After a homogenization, the boundary conditions are of the form

u=v=w =0 onthe whole boudary, (8)
0 =86, for r=1, 0<z<2a0¢c€(0,2n), (this is the control boundary I,) €)]
6=0, for0<r<1, z=0, z = 2a, @ € (0,2m). (10)

The initial state was assumed as the neutral position of the crystal melt (u = 0) and a temperature
field, which solves the non-convective heat conduction equation with the given temperature boundary
conditions.

A three-dimensional finite volume code is used for the numerical solution of the above described
non-linear initial boundary value problem.
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The material properties and the dimensionless parameters for the investigated crystal close the
initial boundary value problem for the description of the melt flow.

3. Optimization

For the calculus of optimization and the derivation of an optimization system we use the
mathematical model in Cartesian coordinates, which turns to be

u+u-V)u—Au+Vp—p(@)g=0 onQ, (12)
—divu=0 onQy, (12)

1
9t+(u-V)9—ﬁA9—q:0 on Qr, (13)
u=0 only, (14)
6=6, onl,x(0,T), (15)
=0 only;x(0,7), (16)

where ' = T, U T is the boundary of the spatial region Q c R3, on which the problem lives, I’ =
I' x (0,T), I, is the control boundary and I, is the Dirichlet part of the boundary. For t = 0, we have
the initial condition u = 0 and a temperature field, which solves the non-convective heat conduction
equation with the given temperature boundary conditions 8 = 6, on Q.

The use of formal Lagrange parameters technique with respect to the functional of type (1) means
the consideration of the Lagrange functional

L(u' p' 9' 9(," W, E' K' X) = (17)
J(u,6.) + (w,moment)q, —(§,div u)q, + (k,energy)q, + (x,0 — O0c)r.x(o1)

where moment and energy respectively stand for the left sides of the equations (11) and (13), and
for example for (w, moment),,. we have

(w, moment)q,. = f [u; + (u-V)u—Au+ Vp — p(6)g] - wdQdt, (18)
Qr
where w, &, k and y are Lagrange parameters, and it is cleary, that

L(u’ p’ 9’ HC’ w’ f’ K’X) = ](u’ HC)I

if u,p and 8 comprise a solution of the above described thermal coupled boundary value problem.
We will not discuss the functional analytical aspects of the used Lagrange method, i.e., function
spaces, smoothness properties, etc. A very good overview over the functional analytical background
and the foundation of the optimization of Navier-Stokes problems is developed in M. Hinze (2000).

To find candidates u(8.) and 6., which minimize the functional (1), we need the necessary
conditions:
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Lytt = Jyfi + (w,moment,),, — (§, div i), + (k,energy,)q, = 0, (19)
Ly = (V, W), = 0, (20)
Lof = (~pa B, Wha, + (K, energyg)a, + (. Or xcom = 0, (21)
Lecéc = ]Qcéc +(=x éc)FCX(O,T) = 0. (22)

Let us have a closer look at the condition (19). For /i, we find
Juil = f [u—1] -7 dodt, (23)
Qr
where term (w, moment, ), means the derivative of the Navier-Stokes equation, i.e.,
(w,moment)g,. = f [ty — AL+ (u - V)i + (@ - V)u] - w dQdt, (24)
Qr
The discussion of the term (k, ener gy, )q, gives
(K, energyy)o, = f [(@ - V)O] k dQdt, (25)
Qr

Using the rules of integration by parts from (23)-(25) and (19), we get for all test vector functions ii:

Lyt :f [-w, — Aw + (Vu)!w — (u- V)w + V&€ + (u — 1) + VO] - 1 dQdt = 0,
Q

T

or
-w; —Aw+ (Vu)!w— (u-V)w+ V& = —(u—u) —«VO in Q, (26)
with the boundary condition
w=0 on I'x(0,T), (27)
and the final condition
w(T)=0 in Q, (28)
The necessary condition (20) gives for all test functions p the equation
—divw =0 in Q. (29)

The condition (21) means
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Q7 Or

or after the integration by parts for all test functions 8 we get the equation

- 1 . - -
[Gt——AG +u-ve]xd9dt+f x6 dT.dt = 0,
Pr r.x(0,T)

1
—Kt—ﬁAK—U'VK:—pgg)'W in Qr, (30)

with the boundary condition

k=0 on Iy, (31)
and the final condition
k(T)=0 in Q, (32)
and the choice of y as
1 dk
X=p 55 ©on I. x(0,7).

The evaluation of the condition (22) finally gives

1 dk
Ocpp +6c =X=p.3,; OO I x(0,7), (33)
with the time boundary conditions
6.,(0) =6.,(T) = 0. (34)

Now, we can summarize and the full optimization system consists of

o the forward model with the Boussinesq equations (11), (12), (13), the boundary conditions
(14), (15), (16) and the given initial state for the velocity field u, the pressure p and the
temperature 8, and

¢ the adjoint model with the equations (26), (29), (30), (33), the boundary conditions (27), (31),
(34) and the anal conditions (28), (32) for the adjoint variables w, &, k and the control 6.

The global existence for a solution of the forward problem is well-known; see Ladyzhenskaya
(1969), Constantin, Foias (1988). In three dimensions only the local uniqueness of the forward
solution could be shown. Hinze (2000) showed the existence and uniqueness of a solution of the
adjoint model. For the used minimization functionals (1) and (2), Hinze has showed the positive
definiteness of the Hessian j”’ (6,) of

i(ec) = ](u(Hc), Hc):

and with this result we have a sufficient second order optimality condition.
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4. Optimization with Infinite Degrees of Freedom vs. Optimization of
Finite Parameters

In our concept, we look for a boundary control 6., which has infinite degrees of freedom. The price
we have to pay for this is high, because of the very complicated optimization system consisting of the
forward and the adjoint system, which is hard to solve. Other concepts (for example Gunzburger et al.,
(2002) look for special control functions, which depend only of a few parameters. This restriction gives
the possibility to minimize a given functional in the case of two parameters by a Newton method, and
for one Newton iteration the forward problem must be solved three times.

Because of the more general concept a result, ., of the presented optimization strategy will be
optimal, in a more general sense, than prescribed temperature profiles, which depend only of one or
two parameters. But the easier implementation of the method, given in Gunzburger et al. (2002),
provides it to a valuable optimization tool.

5. Numerical Solution Method

The optimization system (11)-(16) and (26)-(34) is now under consideration for a numerical
solution. The Navier-Stokes equation and the convective heat conduction equation are solved with a
finite volume method; see Barwolff (1994, 1997).

If we have cylinder-symmetric conditions, we can transform the adjoint equations into a
cylindrical coordinate system. Using the adjoint divergence condition div w = 0, we can write the
adjoint equations in the following quasi-conservative form. We express the adjoint velocity w by

w=(l,v,w)

in the cylindrical coordinate system with the radial component y, the azimuthal component v and the
z-component w and from (26) we get

—ue — ((r)r /1)y — .ugo(p/rz + 2:“40/7"2 = Uzz t UUy + VU + QW

_ 35
~(rup), /1 = (O /7 — (Wi, + vV/1 + & = —(u — ) — K6, )
Ve = (V) /1)1 = Voo /7% = 2V [T% =V + sy, [T + V0, [T + W, [T (36)
+(vu —uw) /r — w), /1 + (W) /T —vu/T — (W), — &, /T = —(v — V) — KO, /T
—w; — (rw,), /T — a)(p(p/r2 — Wy, + U, +vv, + ww, 37
—(ruw), /1 = (v0)pfr — (W), +&, = —(w — W) — 0, 37
From equation (30), we get for the adjoint temperature x as follows
1 1
L E (TKr)r/r - Ektpq)/rz — Kzz — (T‘uK)T/T - (UK)(p/r - (WK)Z = —Pegw. (38)

Equation (38) is a convective heat conduction equation and the discretization can be done as in
Barwolff (1997). In the equations (35)-(37), the terms

(Vu)'w and «V#@
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are not known from the classical Navier-Stokes equations. Using a staggered grid finite volume
method, u and u live at the same grid-points, also v and v, w and w, and 8 and k. For the first
component of (Vu)‘w and xV8, we get, in a canonical way,

(uuy +vor + W) g1 2jk &
Hiv1/2 e[ (Wivssz e + Wivryz jk) — (Wirajz jie + Wicay2 j1)]/(2B%1412)

(39)
Viv12 k| (Vier 12k + Vier jo1/26) — i jerjz e + Vi jo1/210) [/ (2B%141/2)
+ wiv1/2 j k| (Wist jrer1sz + Wivt jr-172) — Wi jrr1jz + Wi jr—1/2)]/(20%141,2)
with
Vierj2jk = (Vijrrjak + Vier je1/2k + Vijo1/2k + Vier jo12)/4 and
Wit1)2jk = (wi+1jk+1/2 twit1jk-172F Dijrs12 + wijk—l/z)/4r
and
K0 = 0.5(Kir1 j i + Kiji)[0ir1 j ik — Oijic]/DXiv1/2- (40)

The solution of the discretized system (11)-(16) and (26)-(34) is difficult and expensive, because
of the opposite time direction of the forward system (11)-(16) and the adjoint system (26)-(34). This
means we know the forward solution u, 8 on the whole time interval [0, T] to get the adjoint solution
w, k and vice versa.

If we discretize the time interval [0,T] by Z time-steps and the dimensions of the spatial
discretizations are N, M and P, a direct solution of the whole system means the solution of an
algebraic equation system with 2Z X N X M X P x 10 equations. Iterative methods of the following
form are under consideration:

i) Choose a suitable start value of u, 6.
ii) Solve the adjoint problem and get [w, k, 6,.](u, 6).
iii) Solve the forward problem and get [u, 8](6,.).
iv) If not converged then go to ii).
In general such algorithm turn to be very expensive.

A realizable algorithm will be discussed in the next section.
6. Sub-optimal Control

The starting point for sub-optimal or instantaneous control is a time discretization of the
Boussinesq equation system, i.e., in the case of an Euler backward time discretization with the time
step parameter T,

u—7Au+tVp =1p(0)g —t(u® - V)u® + u° in Q, (41)
—divu=0 in L, (42)
u=0 on T, (43)
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where the upper index o means the values at the actual time level. Quantities without an index are
considered at the new time level. The Euler backward time discretization of the heat conduction
equation leads to

1
0 — TEAQ +t(u°-V)8 =19°+6° in Q, (44)
6 =65 on I, (49)
60 =0 on Iy (46)

Now, we look for a control 85, which minimizes the functional

1 1 .
Js(u, 65) ==—j 62 dl"+—f lu —ul? dQ. (47)

For the solution of the boundary value problem (41)-(46) ${\bf u}$ for a control 6, the functional
J<(85) = J;(u(by),05) will be minimal, thus, we have a stationary optimization problem per time
step and with a sequence of such problems we will get a sub-optimal control 6, over the time period
[0, T]. The optimality system per time step is obtained following the same approach we used in the
above discussed time-dependent case.

For the adjoint variables w, &, k and the control 6, we get the Lagrange function,

L(u,p,0,05,w,¢,K,x) = (48)
Js(u, 65) + (w,moment)q — (£, div u)g + (k,energy)q + {(x,0 — bs)r,.

The necessary condition VL = 0 gives the adjoint system,

w—TAw+VE=—(u—1u) in Q, (49)
—1divw =0 in Q, (50)
w=0 on T, (51)
T

K— EAK —7(u° - V)k = —tpggw in Q, (52)
k=0 on T, (53)

T 0K
=— 54
s=pron " e (4)

The advantage of this technique is obvious, because we need to solve only a small stationary
optimization problem. The results of Hinze (2001) showed the efficiency of the sub-optimal or
instantaneous control strategy in the case of isotherm flows, and it could be shown that sub-optimal
controls are very effective compared to optimal controls, i.e., the value of J(8;) was only 10% higher
than f(6,) in the case of a boundary controlled backward facing step.

7. Conclusion

With the Lagrange parameter technique it is possible to derive an optimization system for a given
functional, to provide an optimal control. The numerical solution of the fully time-dependent
optimization system is not yet possible for realistic configurations.
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Sub-optimal strategies with the used linearizations of (41) and (44) lead to a sequence of time-
independent stationary optimization problems, which provide sub-optimal results near the optimal
control. The developed strategies are now applied to the above discussed crystal melt problem in two
and three dimensions.
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