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Here, scalarization techniques for multi-objective optimization problems are addressed. A new
scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new
algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated.
It is shown that we can restrict the parameters of the scalarized problem. The computed efficient
points provide a nearly equidistant approximation of the whole Pareto front. The performance of
the proposed algorithm is illustrated by various test problems and its effectiveness with respect to
some existing methods is shown.
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1. Introduction

In many real-life applications, to make a decision it is necessary to maximize or minimize several
conflicting objective functions. In general, it is not possible to attain a solution that optimizes all the
conflicting functions, simultaneously. Therefore, one needs to trade off between different objectives
to arrive at a compromise solution. Multi-objective programming is concerned with finding the best
trade-off, in some sense, between the existing objectives. A solutions set is obtained, while a trade-
off is made between the competing objective functions. Such a compromise solution is named a
Pareto optimal (an efficient) solution, and the set containing the images of these efficient solutions in
the objective space, is referred to as the Pareto front (efficient curve).

A widespread approach for solving a given multi-objective optimization problem (MOP) consists
in reformulating the MOP as a scalarized one, i.e., a real-valued optimization problem, involving
possibly a set of additional parameters and/or some constraints. The solution of the single-objective
optimization problem can be obtained by standard optimization algorithms. Some scalarization
methods applied in the literature are the weighted sum [8, 21], the modified weighted Tchebycheff
[16], the (improved) e-constrained [8], the Benson [8] and the Pascoletti-Serafini and its
generalization [1, 9, 12, 24, 26]. Further scalarization methods are discussed in [2, 8, 9, 13, 22, 25,
26].

In general, the Pareto set is infinite. Theoretically, the Pareto front can be constructed by solving
some scalarization problems. However, in order to construct a reasonable approximation of the
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efficient curve, it is mandatory to solve the utilized scalarization problem many times, which turns
to be costly. Furthermore, the feasible set and/or the Pareto front may be non-convex or
disconnected, which causes the computational difficulties. Therefore, in order to get rid of these
problems, researchers focused on providing algorithms to find a discrete approximation of the Pareto
front by generating a reasonable number of Pareto solutions. After finding a discrete approximation,
the obtained Pareto front is given to the decision maker and she chooses the solution which best fits
her preferences. Hence, it is essential that the proposed algorithm be capable to produce an even
approximation of the whole Pareto front.

In recent years, researchers have developed methods for constructing even Pareto fronts. For
example, Das and Dennis [4] proposed the normal boundary intersection (NBI) approach. Messac et
al. [21] presented the normal constraint (NC) method which is more flexible as compared to the NBI
method, by investigating a single-objective optimization problem with inequality constraints.
Mueller-Gritschneder et al. [23] proposed the successive Pareto optimization (SPO) method. The
weighted constraint method was used by Burachik et al. [2] and Rizvi [25] for generating the Pareto
front of bi-objective optimization problems that may produce solutions that are not Pareto. Ghaznavi
and Azizi [14] proposed an algorithm for generating the Pareto front of a convex MOP. The
Pascoletti—Serafini (PS) scalarization approach was used by some authors for constructing the Pareto
front. Eichfelder [9, 10] proposed an algorithm for solving nonlinear MOPs based on this approach.
She adaptively controlled the scalarization parameters using sensitivity results. Thereafter, Khorram
et al. [19] suggested a new algorithm based on the PS technique and provided new results to restrict
the parameter set of this technique. More recently, Khaledian et al. [17, 18] and Dolatnezhadsomarin
and Khorram [7] also utilized the PS method to obtain new algorithms for constructing the Pareto
front.

However, some of these algorithms may generate non-Pareto optimal solutions. Some other
methods are unable to cover the whole Pareto front, and some methods are not able to solve MOPs
with disconnected or non-convex Pareto fronts. Furthermore, proper efficient solutions can not be
characterized using the PS scalarization approach. In fact, by the algorithms based on the PS
approach, it is possible to find solutions with trade-off between their criteria being unbounded. In
order to resolve this drawback of the PS approach, more recently, Ghaznavi et al. [12] suggested a
new scalarization approach called the unified PS technique. They showed that, under some
conditions, the optimal solutions of this new scalarization problem are properly efficient for the given
MOP.

Here, we are to utilize a unified Pascoletti-Serafini approach to provide a new algorithm for
constructing a discrete approximation of the Pareto front of a given bi-objective optimization
problem. We control the parameters of the scalarized problem via sensitivity results. The proposed
algorithm can cover the whole Pareto front. Moreover, we provide some conditions on the algorithm
to have a uniform distribution of the Pareto points. Unlike some other approaches, the proposed
algorithm does not generate non-Pareto solutions. The proposed algorithm is not only applicable to
bi-objective problems with disconnected and non-convex efficient curves, but also to problems with
disconnected and non-convex feasible sets. We denote the effectiveness of the algorithm with various
test problems, specially with ones having disconnected and non-convex Pareto fronts.

The remainder of our work is proceed as follows. In Section 2, the basic concepts in multi-
objective programming are recalled and the unified Pascoletti-Serafini scalarization approach is
reviewed. The proposed algorithm is explained in Section 3 and some theoretical results are provided
to control the parameters. In Section 4, efficiency of the proposed algorithm is shown by some test
problems. Finally, concluding remarks are presented in Section 5.
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2. Preliminaries

Let X € R™and f: X — RP. A multi-objective optimization problem is given by

(MOP): min f (x) = (f1 (%), ., fp (X)) (1)

s.t. x€X.

If p = 2, then (1) is called a bi-objective optimization problem.

The image of X under f is denoted by Y = f(X) = {y € R™:y = f(x), for some x € X}. The
natural ordering cone is defined as

R§>={xe RP:x; > 0, i=1,2,...,p}

Forany y,y € RP,we definey < y ify; < y;,fori = 1,2, ...,p. Moreover,y L y if y; < y;, fori =
1,2,..,p,andy <ymeansy; < y;, fori =1,2,..,p,and y # y.

Definition 2.1. A feasible solution X € X is said to be
o efficient (Pareto optimal) for (1), if there is no other x € X such that f(x) < f(X).
o weakly efficient (weakly Pareto optimal) for (1), if there is no other x € X such that

f) < f().

The image of an efficient (a weakly efficient) solution in the decision space is called a non-
dominated (a weakly non-dominated) point. We denote the sets of all efficient solutions and non-
dominated points by X and Yy, respectively. Also, the sets of all weakly efficient solutions and
weakly non-dominated points will be denoted by Xy, and Yy, respectively.

Based on Definition 2.1, an efficient solution is a feasible solution for which it is not possible to
improve one criterion without worsening the others. These trade-offs between the objectives can be
characterized by calculating the increase in objectivef;, say, per unit decrease in objectivef;.
However, sometimes, these trade-offs between criteria may be unbounded. Geoffrion [11] defined
properly efficient points as efficient points with bounded trade-offs.

Definition 2.2. A feasible solution X € X is a properly efficient (a properly Pareto optimal) solution

to (1), if it is efficient and there is some real positive number M such that for each i € {1,2, ..., p} and

each x € X satisfying f;(x) < f;(X), there exists at least one index j € {1,2, ..., p} such that f;(X) <
o Fi(®)—fi(x)

f](x) with m < M.

The point y = f(%) is then called a properly non-dominated point. The sets of all properly efficient

solutions and properly non-dominated points will be denoted byXp,y and Yy, respectively.

Definition 2.3. [8] The point y! = (¥4, ...,¥}) € RP in which y{ = min f;(x), i =1,...,p, is said to
X
be the ideal point of (1).

Definition 2.4. [8] The point yY € RP in which vy’ =y! —a;,i=1,..,p, for some a =
(ay, ..., ap) > 0, is said to be a utopia point of (1).


http://iors.ir/journal/article-1-643-en.html

[ Downloaded from iors.ir on 2025-11-27 ]

52 Ghaznavi and Abkhizi

Definition 2.5. [8] The non-dominated set Yy, is called externally stable, if for each y € Y\Yy there
exists a non-dominated point § € Yy such thaty € y + RY.

MOPs are often solved indirectly by using scalarization which requires formulating a single-
objective optimization problem. In general, scalarization consists in the transformation of a MOP into
a suitable real-valued scalar optimization problem, possibly containing some additional parameters
and/or constraints. Since there are a wide variety of procedures for solving a given scalar optimization
problem, scalarization is very important in vector optimization. Solutions of a MOP can be attained as
optimal solutions of a suitable scalarization problem. A large variety of scalarization techniques are
discussed in [8, 9].

Pascoletti-Serafini technique [24] is a well-known famous scalarization approach for solving a given
MOP. However, the Pascoletti-Serafini scalarized problem has inflexible constraints. Moreover, it is
not easy to check the conditions of proper efficiency (for more details, see [1]). Therefore, in order to
resolve these drawbacks, Ghaznavi et al. [12] introduced the following modification of this scalarization
method, called the unified Pascoletti-Serafini scalarization problem.

Assume that a € (17 and r € R \{0}. The unified Pascoletti-Serafini problem is given by

UPS(a,r,A): min t
s.t. a; +tr; — fi(x) jer{r}?fp}{/ljjj(x)} =>0,i=12,..,p
x €X, t eR,

where A; >0, i = 1,2, ...,p. The single-objective problem UPS(a,r,1) can be applied to prove
necessary and sufficient conditions for different types of efficient solutions of (1). In what follows, we
review some theorems obtained via the proposed scalarized problem. For more details, see [12].

Theorem 2.6. [12] If (£, %) is an optimal solution of the scalarized problem UPS(a,r, 1) with 1 > 0,
then % is a weakly efficient solution of (1).

Theorem 2.7. [12] If (£, %) is an optimal solution of the scalarized problem UPS(a,r, 1) with 2 > 0
and a; + tr; — f; (%) — max }{Ajfj(a?)} >0,fori =1,2,...,p, then £ € X;.
] s

Theorem 2.8. [12] If (£, %) is an optimal solution of the scalarized problem UPS(a,r, 1) with 1 > 0
and a; + tr; — f;(®) — max }{Ajfj(a?)} >0fori=1,2,..,p,then & € Xpp.

] oD
Theorem 2.9. [12] If Yy, is externally stable and X € X is an efficient solution of (1), then, there exist a
weight vector 1 > 0 and parameters a € (17, r € RY \{0} such that (£, 2) with £ = 0 is an optimal
solution of UPS(a, 1, A).

3. Parameter Set Restriction and Proposed Algorithm

Our goal is to construct an approximation of the efficient set of (1) by solving the scalarization
problem UPS(a, r, 1), for different parameters. Ghaznavi et al. [12] proved that all efficient solutions
can be obtained by varying the constant parameters a € RP, r € Ri {0} and 4 > 0 (see Theorem
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2.9). In the following theorem, we show that it is not necessary to consider all the parameters a €
RPandr € IR{’;; {0}. We can restrict the sets from which we have to choose the parameters a € RPand
reE Ri\{O} so that we still find all efficient points of the MOP. We show that by considering a =

nax {2if;(®} and varying r € K = {8 € RP| ||B]l, = 1}, all efficient solutions of (1) can be
]
attained.

Theorem 3.1. LetK = {8 € RP|||B||, = 1} and Yy be externally stable. If X € X is an efficient
solution of (1), then there exists constant parameters r € K, and 1 = 0 and variable £ € R, such that
(£, %) is an optimal solution of UPS(a,r,1) witha = Ergax }{Aj fj (9?)}.

] ""p

Proof. Because Yy is externally stable, for all x € X\ Xy there exists x € X such thatf (x) < f(x).
Therefore,

e, O} < mac (0, vazo @

Define

FRRLY fi®<f;® @)
T la>0, ;= f@.

f(x)
lF @1l

= _ f® _ o _ ,
max {4;f;(®)}, r = TG andt = ||f(®)Il,. Wehave a; + tr; — f, (%) jmax, {4f;®)} =0,vi.

This implies that (£, X) is a feasible solution for UPS(a, 7, ). Now, we show that (£, £) is an optimal
solution of UPS(a, r, 1). By contradiction, assume that there exists a solution (¢, x) for UPS(a, 1, 1)
which is feasible and t < £. Since (t, x) is feasible, we have

Sincef (X) € RE\{0}, we conclude f(%) # 0. Also, it is obvious that ———— € K. We set a; =

a; +tr; —f; (x) — max {/1 fj(x)} >0, Vi.

Therefore,

fi(®)
IF @2

Since t < tand £ = ||f(&)|l,, it concludes from (2) and (4) that

er{r%?.).,(p}{/ljﬁ(f)} +t - filx) - max {A fj(x)} >0, Vi. (4)

fi(a?)—fi(x)— max {/1f](x) Af](x)}>0 vie{l,..,p}

je{1,..p

and
fr( J?) —fr ( x) - jer?lz,:l.f(p}{/ljfj () — Aif; (9?)} >0, for some r. (5)

Hence, from relations (3) and (5) we have f, (x) < f; (2), Vi € {1, ...,p} and f,.(x) < f,-(%), for
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some r € {1,2,...,p}, which is a contradiction to efficiency of X for (1).

Now, we present Algorithm 1, utilizing the proposed scalarization technique, for obtaining an
approximation of the Pareto front for bi-objective optimization problems.

Algorithm 1 (for bi-objective optimization problems).
Step 1: (Input) choose the desired number of points N.
Step 2: (Obtain the end points of the efficient curve)

2-1 Find the optimal solution %, of {min f1(x)
s.t. xeX
Leta; = fi(xy), fori =1, 2.

2-2 Find x; that solves {min f2(x)
s.t. xeX

b; = fi(xp), fori =1, 2.
2-3Setl; == fori=1, 2andsetd = I +I3.
2-4 Setk = 1. Let Y(k) = [f1(xg), f2(xg)]- Then, Y (k) is a weakly non-dominated point.
2-5Seti=1,5s=0,s1=0, s2=0.
Step 3: (Select X to construct the parameters aand r and solve the scalarized problem)
Project the point f(x;_,) €Y on the f; — axis, and then move [; units to the left. The

point (f;(x%_1) — &, 0) is obtained. From this point, move in apparel with thef, —axis and find £
min f, (x)

st fi(0)=filxg-1) — Lx({+ s2)
Step 4: (solve the UPS(a, 1, 1))

that solves

4-1 Select Aze [0,—|, for i = 1,2 and set a; = max (Alfl(a? ). A2f5(%)), fori = 1,2 and 1; =
fi(® ,

———— fori =1,2.

72,

4-2 Formulate the UPS(a, r, 1) problem using a and r obtained in Substep 4-1, and then solve it
to find the optimal solution (x;,%) and set X(s1) = [f;(xz), f(xx)]. We know that X(0) #

[f1 (=1, f2 (xe— )]

Step 5: (Perform the following substeps for uniformity of the Pareto set)
5-1 Compute d = ||Y(k) — f(xp)II3.
52 If (' <dand fy(xi-1) = () and fy(xi-1) < foi) and £ (xiy) # F()), then
accept f (x;) as a new non-dominated solution and update Y, that is, Y (k + 1) = [f; (xz), fo (xp)]-
Setk =k + 1 and go to Step 7.

5-3 Else if (¢’ < dand f,(xi—,) < fi(x) and fo(xie—) = f5(x;)), then we set ¥ (k + 1) =
X(s1—1)andsl=sl+1andk =k + 1andgoto Step 7.
5-4 Elseifd > d, then
(min fa ()
5-4-1 Find x that solves { st f; () = f, &)
fo () < f2(%)
xX€EX
5-4-2 If (f1 @) <fi®andf,(x)<f, (9?)), then accept f(x;) as a new non-dominated
point and update Y, that is, Y (k + 1) = [f; (xx), f>(xx)]. Set k = k + 1 and go to Step 7.
5-4-3 Else obtain d” = f,(x;_,) — l; * (i + s2 — 0.05) and do the following:
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5-4-3-1 If d" < f;(xj_,) thenset s2 = s2 — 0.05 and go to Step 3.
5-4-3-2 Else set Y = [f;(x5), fo(x;) |, and set k = k + 1 and go to Step 7.
Step 6: (Determine efficient and weak efficient points )
If a; + try- fi(xp) — jé?la%{ljfj(x;)} >0, foralli =1,2,..,p, then xi, is efficient, else it is

weakly efficient.
Step 7: (Condition of termination algorithm)

2
If || Y(k) — a||2 <d, thensetY(k + 1) = [f1(Xo), f>(%o)] and stop, Y is an approximation of
the Pareto front, else go to Substep 2-5.

It is important to note that in Substeps 2-1 and 2-2 of Algorithm 1, the individual objective
functions subject to the constraints of (1) are minimized. The “outer” end points of the efficient curve
are obtained by these minimal solutions. It is obvious that optimal solutions of these scalar
optimization problems are at least weakly efficient points for (1).

In order to construct approximate solutions on the Pareto front uniformly, in Substep 2-3 we obtain
two distances I, and [, and using these distances we calculate the value of d which is the maximum
distance considered in the image space between two approximate solutions. In Substep 2-4 we define
the set Y, which is the set of approximate points of the Pareto front and is revised during the algorithm.
In Step 3, we solve an additional single-objective optimization problem to obtain a feasible solution
X. We note that if the feasible set in this single-objective optimization problem is non-empty, then
f(% ) locates in the front. If the Pareto front is connected, then the feasible set of the single-objective
optimization problem is non-empty.

In Substep 4-2, by solving the scalarized problem UPS(a,r,4), we find the optimal solution
(xz, ) and set X = {(f1(xz), f>(x£))}. We note that based on Theorem 2.6, x; is a weakly efficient
solution for (1). Hence, X is the set of all weakly efficient points that are obtained in an
implementation of the algorithm. If, at the end of a run, X contains a single point, then we accept the
same point as a new non-dominated point.

In the literature, many qualitative criteria have been suggested to evaluate the quality of
approximations of the Pareto front (see [3, 4, 5, 9], for example). For the scalarization approaches,
three of the most interesting metrics are the coverage error, cardinality and uniformity that were
discussed by Sayin [28]. An approximation possesses a high quality if the generated approximate
points are almost equidistant. Therefore, we perform Step 5 to find an almost equidistant
approximation and generate the approximation of the Pareto front uniformly. In Substep 5-1, we
obtain the distance between f(xj) and the previous optimal point obtained by the algorithm
(i.e, f(xx—1)). If this distance is less than or equal to the specified distance d (Substep 5-2), then we
accept f(xy) as a new point on the Pareto front. If this distance is less than or equal to the specified

distance d (Substep 5-3), that is, the point f(x;) places on f(x;_,) or lies after or below it, then we
do not accept the point f(x;) and select a point from the set X\{f (xy)}, which has the smallest

distance to f(x;_;), as a new point on the Pareto front. Consider this distance to be bigger than the

specified distance d (Substep 5-4). If d’ > d, then we solve the problem in Substep 5-4-1. In Substep
5-4-2, we accept f(x;) as a new point on the Pareto front. Otherwise, transfer to Substep 5-4-3.

Therefore, to obtain a weak efficient point with a maximum distance from the point f(x;_),
transfer is made to Substep 5-4-3. In this substep, we reduce the distance [, to get a new point between

f(xx) and the previous optimal point obtained by the algorithm (i.e., f (x;_)). If by decreasing l;,
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the new point is placed before the previous optimal pointf (xj_,), then Substep 5-4-3-1 is performed.
In this Substep, by decreasing s2, we decrease the value of [; to obtain another new point with
distance being less than d’. Otherwise, Substep 5-4-3-2 is performed. In Step 6, we utilize the
theorems provided in Section 2 to determine (properly) efficient and weak efficient points. In Step
7, if distance of the optimal point, obtained by the algorithm, from the end point of the front is less
than the specified distance d, then the algorithm terminates. It is obvious that this algorithm is finite.

4. Numerical Results

In order to test the numerical algorithm developed in Section 3, in this section some test problems
with specific difficulties such as non-convexity and disconnectivity of the feasible region and/or
Pareto front are solved. By these test problems it can be seen that the proposed algorithm can generate
approximation points that cover all regions of the Pareto front and keep an almost even distribution
of the Pareto points. The results of our algorithm are compared with the numerical results due to
Algorithm 7 of [26] using the Pascoletti—Serafini scalarization technique.

The algorithm was coded in MATLAB (R2015a) and all test problems were implemented on a
laptop with a core i5 processor with 4 GB RAM and 2.5 GHz running Windows 7 Ultimate system.
Moreover, the SQP optimization algorithm has been used in the MATLAB’s optimization solver
fmincon to solve the nonlinear single-objective optimization problems.

Test problem 1. Consider the following convex bi-objective problem of [10] as considered in [26]:

min (w/l +x12,x.% —4x; + x5 + 5)
s.t. x;%2—4x; +x, +5>3.5
X1 =0 ) > 0.

The Pareto front of this test problem is convex and connected. We ran Algorithm 7 of [26], which
uses the Pascoletti-Serafini scalarization technique, with N = 15 and a = (—1, —10) and uniformly

distributed weights. Also, we ran our proposed algorithm with N = 15 and A; = 5—(1)0, fori = 1,2. Fig.

1 shows the obtained non-dominated points with the algorithm using the Pascoletti-Serafini method.
This algorithm generates 16 points. In Fig. 2, the generated Pareto front utilizing our proposed
algorithm is shown. As seen in this figure, Algorithm 1 produces 21 efficient points, a larger number
of points than those obtained by Algorithm 7 of [26]. By comparing the results of Figs. 1 and 2 it is
clear that a uniform distribution of the approximation is generated by Algorithm 1. Moreover, by the
same number of iterations (N = 15), the number of approximation points obtained via the proposed
algorithm (21 points) is greater than that of Algorithm 7 of [26] (16 pints).
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Figure 1. Points found by Algorithm 7 of [26]. Figure 2. Points found by Algorithm 1.

Test problem 2. Consider the following test problem which has a non-convex image, and additionally
its non-dominated set is disconnected and non-convex:

(min (x1,25)

s.t. —x;2—x,2+1+0.1cos (16 arctan (%)) <0

2
| (x; —0.5)2 + (x;, — 0.5)2—-0.5<0
k X1, X, € [0, m].

For Algorithm 7 of [26], we took a = (—1,—10), N = 22 and uniformly distributed weights and

then ran the algorithm. Also, we ran Algorithm 1 with N = 22 and 4; = %, for i =1, 2. In an
implementation with N = 22, Algorithm 7 of [26] and Algorithm 1 generated the points depicted in
Figs. 3 and 4, respectively. Algorithm 7 of [26] found 20 points, two of which were not non-
dominated. Furthermore, this algorithm could not construct the Pareto front uniformly. With
Algorithm 1, 23 non-dominated points were found and the points were uniformly distributed in the
front. Moreover, our Algorithm 1 produced all the end points of the Pareto front, which demonstrates
the capability of the suggested technique for solving problems with disconnected and non-convex
Pareto fronts.

i i i i i . i
o 0.2 0.4 06 0.8 1 1.2
fl

Figure 3. Points found by Algorithm 7 of [26]. Figure 4. Points found by Algorithm 1.

Test problem 3. For the third test problem, we investigate the following non-convex bi-objective test
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problem from [26], that not only the efficient curve but also the feasible set itself is non-convex and
disconnected.

min (x4, x,)
2 2 X1
s.t. —x1“—x+1+0.1cos (16 arctan (E)) <0
1.69x,% + 1.01x,2 — 2.60x;x, — 0.02 > 0
(x, —0.5)2+ (x, —05)2—-05<0
X1, X5 € [0,7].

For Algorithm 7 of [26], we took a = (—1,—10), N = 22 and uniformly distributed weights. Then,
we implemented this algorithm. Also we set N = 22 and 4; = ﬁ, for i = 1,2 in Algorithm 1 and

ran this algorithm. Figs. 5 and 6 show the generated points by algorithm 7 of [26] and Algorithm 1,
respectively. As it can be seen in Fig. 5 with N = 22, Algorithm 7 of [26] produced 17 points that
two of them were not non-dominated. Furthermore, the non-dominated points found by this algorithm
were not uniformly distributed. Hence, this algorithm approximated the Pareto front poorly. However,
with our proposed algorithm, 21 non-dominated points were found and the points were uniformly
distributed. Moreover, this algorithm generated all the end-points of the Pareto front, which
demonstrates the capability of the proposed algorithm for solving problems with disconnected and
non-convex feasible sets.

Figure 5. Points found by Algorithm 7 of [26]. Figure 6. Points found by Algorithm 1.
Test problem 4. The fourth test problem, from [27], is

min f;(x) = xf + x5 — x? + x2 — 10x;x, + 0.25x; + 20
min f; (x) = (x; — 1)? + x5
s.t. xq,x, € [-3,3].

The Pareto front of this test problem is disconnected and non-convex. In Algorithm 7 of [26], we
chose the pointa = (—1, —10) to be the utopia point. With N = 50 and uniformly distributed weights

we ran the algorithm. We also ran Algorithm 1 for N =50 and A; = ﬁ, fori=1,2. In an
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implementation with N = 50, Algorithm 7 of [26] and Algorithm 1 found the points depicted in Figs.
7 and 8, respectively. As seen in Fig. 7, Algorithm 7 of [26] produced only 36 efficient points from
the lower part of the Pareto front. However, our proposed algorithm produced equidistant points over
the whole Pareto front. The number of points computed by our algorithm is 55. A comparison of
Figs. 7 and 8 verifies that the distribution of points generated by our proposed algorithm is better than
that of [26], so that the points generated by Algorithm 1 can cover the whole Pareto front by having
a good spread.

2 1D ettt
10 A s i s s o s B s s s G s e o
1
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o Bf- O B e R RS R A e i

Figure 7. Points found by Algorithm 7 of [26]. Figure 8. Points found by Algorithm 1.

5. Conclusions

A numerical algorithm was proposed for generating an approximation of the Pareto front for a bi-
objective optimization problem. This algorithm was based on a new scalarization method called the
unified Pascoletti-Serafini method. The proposed approach can be utilized for solving any bi-objective
problem with connected, disconnected, convex and non-convex feasible and efficient sets, and does
not require any extra condition. In the proposed algorithm, a parameter restriction was utilized and
by a cutting procedure an almost even approximations of the Pareto front were obtained. The
effectiveness of the algorithm was shown by different test problems with non-convex or disconnected
efficient curve and it was seen that the distribution of the points computed by the proposed algorithm
was even and the whole Pareto front was covered by the points generated by the proposed algorithm
having a good spread.

Extending the proposed algorithm for a multi-objective optimization problem with more than two
objective functions can be a worthwhile research area for a future work.
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