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Here, scalarization techniques for multi-objective optimization problems are addressed. A new 

scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new 

algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. 

It is shown that we can restrict the parameters of the scalarized problem. The computed efficient 

points provide a nearly equidistant approximation of the whole Pareto front. The performance of 

the proposed algorithm is illustrated by various test problems and its effectiveness with respect to 

some existing methods is shown.  
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1. Introduction  
 

In many real-life applications, to make a decision it is necessary to maximize or minimize several 

conflicting objective functions. In general, it is not possible to attain a solution that optimizes all the 

conflicting functions, simultaneously. Therefore, one needs to trade off between different objectives 

to arrive at a compromise solution.  Multi-objective programming is concerned with finding the best 

trade-off, in some sense, between the existing objectives. A solutions set is obtained, while a trade-

off is made between the competing objective functions. Such a compromise solution is named  a 

Pareto optimal (an efficient) solution, and the set containing the images of these efficient solutions in 

the objective space, is referred to as the Pareto front (efficient curve).  

 

A widespread approach for solving a given multi-objective optimization problem (MOP) consists 

in reformulating the MOP as a scalarized one, i.e., a real-valued optimization problem, involving 

possibly a set of additional parameters and/or some constraints. The solution of the single-objective 

optimization problem can be obtained by standard optimization algorithms. Some scalarization 

methods applied in the literature are the weighted sum [8, 21], the modified weighted Tchebycheff 

[16], the (improved) 𝜀-constrained  [8], the Benson  [8] and the Pascoletti-Serafini and its 

generalization [1, 9, 12, 24, 26].  Further scalarization methods are discussed in [2, 8, 9, 13, 22, 25, 

26]. 

 

In general, the Pareto set is infinite. Theoretically, the Pareto front can be constructed by solving 

some scalarization problems.  However, in order to construct a reasonable approximation of the 
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efficient curve, it is mandatory to solve the utilized scalarization problem many times,  which turns 

to be costly.  Furthermore, the feasible set  and/or the Pareto front may be non-convex or 

disconnected, which causes the computational difficulties. Therefore, in order to get rid of these 

problems, researchers focused on providing algorithms to find a discrete approximation of the Pareto 

front by generating a reasonable number of Pareto solutions. After finding a discrete approximation, 

the obtained Pareto front is given to the decision maker and she chooses the solution which best fits 

her preferences. Hence, it is essential that the proposed algorithm be capable to produce an even 

approximation of the whole Pareto front.  

 

In recent years, researchers have developed methods for constructing even Pareto fronts. For 

example, Das and Dennis [4] proposed the normal boundary intersection (NBI) approach. Messac et 

al. [21] presented the normal constraint (NC) method which is more flexible as compared to the NBI 

method, by investigating a single-objective optimization problem with inequality constraints. 

Mueller-Gritschneder et al. [23] proposed the successive Pareto optimization (SPO) method. The 

weighted constraint method was used by Burachik et al. [2] and Rizvi [25] for generating the Pareto 

front of bi-objective optimization problems that may produce solutions that are not Pareto. Ghaznavi 

and Azizi [14] proposed an algorithm for generating the  Pareto  front of  a convex  MOP. The 

Pascoletti–Serafini (PS) scalarization approach was used by some authors for constructing the Pareto 

front. Eichfelder [9, 10] proposed an algorithm for solving nonlinear MOPs based on this approach. 

She adaptively controlled the scalarization parameters using sensitivity results. Thereafter, Khorram 

et al. [19] suggested a new algorithm based on the PS technique and provided new results to restrict 

the parameter set of this technique. More recently, Khaledian et al. [17, 18] and Dolatnezhadsomarin 

and Khorram [7] also utilized the PS method to obtain new algorithms for constructing the Pareto 

front.  

 

However, some of these algorithms may generate non-Pareto optimal solutions. Some other 

methods are unable to cover the whole Pareto front, and some methods are not able to solve MOPs 

with disconnected or non-convex Pareto fronts. Furthermore, proper efficient solutions can not be 

characterized using the PS scalarization approach. In fact, by the algorithms based on the PS 

approach, it is possible to find solutions with trade-off between their criteria being unbounded.  In 

order to resolve this drawback of the PS approach, more recently, Ghaznavi et al. [12] suggested a 

new scalarization approach called the unified  PS technique. They showed that, under some 

conditions, the optimal solutions of this new scalarization problem are properly efficient for the given 

MOP.  

 

Here, we are to utilize a unified Pascoletti-Serafini approach to provide a new algorithm for 

constructing a discrete approximation of the Pareto front of a given bi-objective optimization 

problem. We control the parameters of the scalarized problem via sensitivity results. The proposed 

algorithm can cover the whole Pareto front. Moreover, we provide some conditions on the algorithm 

to have a uniform distribution of the Pareto points. Unlike some other approaches, the proposed 

algorithm does not generate non-Pareto solutions. The proposed algorithm is not only applicable to 

bi-objective problems with disconnected and non-convex efficient curves, but also to problems with 

disconnected and non-convex feasible sets. We denote the effectiveness of the algorithm with various 

test problems, specially with ones having disconnected and non-convex Pareto fronts.  

 

The remainder of our work is proceed as follows. In Section 2, the basic concepts in multi-

objective programming are recalled and the unified Pascoletti-Serafini scalarization approach is 

reviewed. The proposed algorithm is explained in Section 3 and some theoretical results are provided 

to control the parameters. In Section 4, efficiency of the proposed algorithm is shown by some test 

problems. Finally, concluding remarks are presented in Section 5. 
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2. Preliminaries  
 

Let 𝑋 ⊆ ℝ𝑛 and 𝑓: 𝑋 → ℝ𝑝. A multi-objective optimization problem is given by  

 

(𝑀𝑂𝑃):  min𝑓 (𝑥) = (𝑓1(𝑥), … , 𝑓𝑝(𝑥))

        s. t.     𝑥 ∈ 𝑋.                      
 (1) 

 

If 𝑝 = 2, then (1) is called a bi-objective optimization problem.  

 

The image of 𝑋 under 𝑓 is denoted by 𝑌 = 𝑓(𝑋) = {𝑦 ∈ ℝ𝑚: 𝑦 = 𝑓(𝑥), for some 𝑥 ∈ 𝑋}. The 

natural ordering cone is defined as  

 

ℝ≫
𝑝
= {𝑥 ∈  ℝ𝑝: 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑝}  

 

For any 𝑦, �̄� ∈ ℝ𝑝, we define 𝑦 < �̄� if 𝑦𝑖 < �̄�𝑖, for 𝑖 = 1,2,… , 𝑝. Moreover, 𝑦 ≪ �̄� if 𝑦𝑖 ≤ �̄�𝑖 , for 𝑖 =
1, 2, … , 𝑝, and 𝑦 ≤ �̄� means 𝑦𝑖 ≤ �̄�𝑖 , for 𝑖 = 1, 2, … , 𝑝, and 𝑦 ≠ �̄�. 

 

Definition 2.1.  A feasible solution 𝑥 ∈ 𝑋 is said to be  

 efficient (Pareto optimal) for (1), if there is no other 𝑥 ∈ 𝑋 such that 𝑓(𝑥) ≤ 𝑓(𝑥). 
 weakly efficient (weakly Pareto optimal) for (1), if there is no other 𝑥 ∈ 𝑋 such that 

𝑓(𝑥) < 𝑓(𝑥). 
 

The image of an efficient (a weakly efficient) solution in the decision space is called a non-

dominated (a weakly non-dominated) point. We denote the sets of all efficient solutions and non-

dominated points by 𝑋𝐸 and 𝑌𝑁 , respectively. Also, the sets of all weakly efficient solutions and 

weakly non-dominated points will be denoted by 𝑋𝑊𝐸 and 𝑌𝑊𝑁, respectively. 

 

Based on Definition 2.1, an efficient solution is a feasible solution for which it is not possible to 

improve one criterion without worsening the others. These trade-offs between the objectives can be 

characterized by calculating the increase in objective𝑓𝑖, say, per unit decrease in objective𝑓𝑗. 
However, sometimes, these trade-offs between criteria may be unbounded. Geoffrion [11] defined 

properly efficient points as efficient points with bounded trade-offs.  

 

Definition 2.2. A feasible solution 𝑥 ∈ 𝑋 is a properly efficient (a properly Pareto optimal) solution 

to (1), if it is efficient and there is some real positive number 𝑀 such that for each 𝑖 ∈ {1,2,… , 𝑝} and 

each 𝑥 ∈ 𝑋 satisfying 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥), there exists at least one index 𝑗 ∈ {1,2,… , 𝑝} such that 𝑓𝑗(𝑥) <

𝑓𝑗(𝑥) with 
𝑓𝑖(�̂�)−𝑓𝑖(𝑥)

𝑓𝑗(𝑥)−𝑓𝑗(𝑥)
≤ 𝑀.  

The point �̂� = 𝑓(𝑥) is then called a properly non-dominated point. The sets of all properly efficient 

solutions and properly non-dominated points will be denoted by𝑋𝑃𝐸 and 𝑌𝑃𝑁 , respectively. 

  

Definition 2.3. [8] The point 𝑦𝐼 = (𝑦1
𝐼 , … , 𝑦𝑝

𝐼) ∈ ℝ𝑝 in which 𝑦𝑖
𝐼 = min

𝑥∈𝑋
𝑓𝑖(𝑥), 𝑖 = 1,… , 𝑝, is said to 

be the ideal point of (1).  

  

Definition 2.4. [8] The point 𝑦𝑈 ∈ ℝ𝑝 in which 𝑦𝑖
𝑈 = 𝑦𝑖

𝐼 − 𝛼𝑖, 𝑖 = 1,… , 𝑝, for some 𝛼 =
(𝛼1, … , 𝛼𝑝) > 0, is said to be a utopia point of (1).  
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Definition 2.5. [8] The non-dominated set 𝑌𝑁 is called externally stable, if for each 𝑦 ∈ 𝑌\𝑌𝑁 there 

exists a non-dominated point �̂� ∈ 𝑌𝑁 such that 𝑦 ∈ �̂� + ℝ≫
𝑝
. 

 

MOPs are often solved indirectly by using scalarization which requires formulating a single-

objective optimization problem. In general, scalarization consists in the transformation of a MOP into 

a suitable real-valued scalar optimization problem, possibly containing some additional parameters 

and/or constraints. Since there are a wide variety of procedures for solving a given scalar optimization 

problem, scalarization is very important in vector optimization. Solutions of a MOP can be attained as 

optimal solutions of a suitable scalarization problem. A large variety of scalarization techniques are 

discussed in [8, 9].  

 

Pascoletti-Serafini technique [24] is a well-known famous scalarization approach for solving a given 

MOP. However, the Pascoletti-Serafini scalarized problem has inflexible constraints. Moreover, it is 

not easy to check the conditions of proper efficiency (for more details, see [1]). Therefore, in order to 

resolve these drawbacks, Ghaznavi et al. [12] introduced the following modification of this scalarization 

method, called the unified Pascoletti-Serafini scalarization problem.   

 

Assume that 𝑎 ∈ ℝ𝑝 and 𝑟 ∈ ℝ≫
𝑝
\{0}. The unified Pascoletti-Serafini problem is given by          

 

𝑈𝑃𝑆(𝑎, 𝑟, 𝜆):  min  𝑡                   
                                                         s. t.   𝑎𝑖 + 𝑡𝑟𝑖 − 𝑓𝑖(𝑥) − max

𝑗∈{1,…,𝑝}
{𝜆𝑗𝑓𝑗(𝑥)} ≥ 0,   𝑖 = 1, 2, … , 𝑝 

𝑥 ∈ 𝑋, 𝑡 ∈ ℝ, 

 

 

where 𝜆𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑝. The single-objective problem UPS(𝑎, 𝑟, 𝜆) can be applied to prove 

necessary and sufficient conditions for different types of efficient solutions of (1).  In what follows, we 

review some theorems obtained via the proposed scalarized problem. For more details, see [12].  

 

Theorem 2.6. [12] If (�̂�, 𝑥) is an optimal solution of the scalarized problem UPS(𝑎, 𝑟, 𝜆) with 𝜆 ≫ 0, 
then 𝑥 is a weakly efficient solution of (1).  

 

Theorem 2.7. [12] If (�̂�, 𝑥) is an optimal solution of the scalarized problem UPS(𝑎, 𝑟, 𝜆) with 𝜆 ≫ 0 

and 𝑎𝑖 + �̂�𝑟𝑖 − 𝑓𝑖(𝑥) − max
𝑗∈{1,…,𝑝}

{𝜆𝑗𝑓𝑗(�̂�)} > 0, for 𝑖 = 1, 2,… , 𝑝, then 𝑥 ∈ 𝑋𝐸 .  

 

Theorem 2.8. [12] If (�̂�, 𝑥) is an optimal solution of the scalarized problem UPS(𝑎, 𝑟, 𝜆) with 𝜆 > 0 

and 𝑎𝑖 + �̂�𝑟𝑖 − 𝑓𝑖(𝑥) − max
𝑗∈{1,…,𝑝}

{𝜆𝑗𝑓𝑗(�̂�)} > 0 for 𝑖 = 1, 2,… , 𝑝, then 𝑥 ∈ 𝑋𝑃𝐸 .   

 

Theorem 2.9. [12] If 𝑌𝑁 is externally stable and 𝑥 ∈ 𝑋 is an efficient solution of (1), then, there exist a 

weight vector 𝜆 ≫ 0 and parameters 𝑎 ∈ ℝ𝑝, 𝑟 ∈ ℝ≫
𝑝
\{0} such that (�̂�, 𝑥) with �̂� = 0 is an optimal 

solution of UPS(𝑎, 𝑟, 𝜆).  
 

3. Parameter Set Restriction and Proposed Algorithm 
 

Our goal is to construct an approximation of the efficient set of (1) by solving the scalarization 

problem UPS(𝑎, 𝑟, 𝜆), for different parameters. Ghaznavi et al. [12] proved that all efficient solutions 

can be obtained by varying the constant parameters 𝑎 ∈ ℝ𝑝, 𝑟 ∈ ℝ≫
𝑝
\{0} and 𝜆 ≫ 0 (see Theorem 
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2.9). In the following theorem, we show that it is not necessary to consider all the parameters 𝑎 ∈
ℝ𝑝and 𝑟 ∈ ℝ≫

𝑝
\{0}.  We can restrict the sets from which we have to choose the parameters 𝑎 ∈ ℝ𝑝and 

𝑟 ∈ ℝ≫
𝑝
\{0} so that we still find all efficient points of the MOP. We show that by considering 𝑎 =

max
𝑗∈{1,..,𝑝}

{𝜆𝑗𝑓𝑗(𝑥)} and varying 𝑟 ∈ 𝐾 = {𝛽 ∈ ℝ𝑝| ‖𝛽‖2 = 1}, all efficient solutions of (1) can be 

attained. 

  

Theorem 3.1.  Let 𝐾 = {𝛽 ∈ ℝ𝑝| ‖𝛽‖2 = 1} and 𝑌𝑁 be externally stable. If 𝑥 ∈ 𝑋 is an efficient 

solution of (1),  then there exists constant parameters 𝑟 ∈ 𝐾, and 𝜆 ≥ 0  and variable �̂� ∈ ℝ, such that 

(�̂�, 𝑥) is an optimal solution of  UPS(𝑎, 𝑟, 𝜆) with 𝑎 = max
𝑗∈{1,..,𝑝}

{𝜆𝑗𝑓𝑗(𝑥)}. 

        

Proof. Because 𝑌𝑁 is externally stable, for all 𝑥 ∈ 𝑋\𝑋𝐸 there exists  �̄� ∈ 𝑋𝐸 such that𝑓 
(�̄�) ≤ 𝑓(𝑥). 

Therefore, 

   

max
𝑗∈{1,..,𝑝}

{𝜆𝑗𝑓𝑗(�̄�)} ≤ max
𝑗∈{1,..,𝑝}

{𝜆𝑗𝑓𝑗(𝑥)},    ∀ 𝜆 ≥ 0. (2) 

 

Define  

 

𝜆𝑗 = {
0 ,            𝑓𝑗 (�̅�) < 𝑓𝑗 (�̂�)

 𝛼 > 0 ,   𝑓𝑗 (�̄�) ≥ 𝑓𝑗 (𝑥).
 (3) 

 

Since𝑓(𝑋) ⊆ ℝ≥
𝑝
\{0}, we conclude 𝑓(𝑥) ≠ 0. Also, it is obvious that 

𝑓(𝑥)

‖𝑓(𝑥)‖2
∈ 𝐾. We set 𝑎𝑖 =

max  {𝜆𝑗𝑓𝑗(𝑥)} ,  𝑟 =
𝑓(𝑥)

‖𝑓(�̂�)‖2
 and �̂� = ‖𝑓(𝑥)‖2. We have 𝑎𝑖 + �̂�𝑟𝑖 − 𝑓𝑖 (𝑥) − max

𝑗∈{1,..,𝑝}
{𝜆𝑗𝑓𝑗(�̂�)} = 0, ∀𝑖. 

This implies that (�̂�, 𝑥) is a feasible solution for UPS(𝑎, 𝑟, 𝜆). Now, we show that (�̂�, 𝑥) is an optimal 

solution of UPS(𝑎, 𝑟, 𝜆). By contradiction, assume that there exists a solution (𝑡, 𝑥) for UPS(𝑎, 𝑟, 𝜆) 
which is feasible and 𝑡 < �̂�.  Since (𝑡, 𝑥) is feasible, we have 

 

𝑎𝑖 + 𝑡𝑟𝑖 − 𝑓𝑖 (𝑥) − max
𝑗∈{1,..,𝑝}

{𝜆𝑗𝑓𝑗(𝑥)} ≥ 0, ∀𝑖.  

 

Therefore, 

 

max
𝑗∈{1,…,𝑝}

{𝜆𝑗𝑓𝑗(𝑥)} + 𝑡
𝑓𝑖(𝑥)

‖𝑓(𝑥)‖2
 −  𝑓𝑖(𝑥) − max

𝑗∈{1,..,𝑝}
{𝜆𝑗𝑓𝑗(𝑥)} ≥ 0, ∀𝑖. (4) 

 

Since 𝑡 < �̂� and  �̂� = ‖𝑓(𝑥)‖2, it concludes from (2) and (4) that  

 

𝑓𝑖 ( 𝑥) − 𝑓𝑖 ( 𝑥) − max
𝑗∈{1,..,𝑝}

{𝜆𝑗𝑓𝑗(�̄�) − 𝜆𝑗𝑓𝑗(𝑥)} ≥ 0, ∀ 𝑖 ∈ {1,… , 𝑝}, 

 

and 

 

𝑓𝑟( 𝑥) − 𝑓𝑟 ( 𝑥) − max
𝑗∈{1,..,𝑝}

{𝜆𝑗𝑓𝑗(�̄�) − 𝜆𝑗𝑓𝑗(𝑥)} > 0, for some 𝑟. (5) 

 

Hence, from relations (3) and (5) we have 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (�̂�), ∀ 𝑖 ∈ {1,… , 𝑝} and 𝑓𝑟(𝑥) < 𝑓𝑟(𝑥), for 
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some 𝑟 ∈ {1,2,… , 𝑝},   which is a contradiction to efficiency of 𝑥 for (1). 

 

Now, we present Algorithm 1, utilizing the proposed scalarization technique, for obtaining an 

approximation of the Pareto front for bi-objective optimization problems. 

 

Algorithm 1 (for bi-objective optimization problems). 

Step 1: (Input) choose the desired number of points 𝑁.  
Step 2: (Obtain the end points of the efficient curve) 

2-1 Find the optimal solution �̄�0 of {min 𝑓1(𝑥)
s. t.  𝑥 ∈ 𝑋

 

Let 𝑎𝑖 = 𝑓𝑖(�̄�0), for 𝑖 = 1, 2. 

2-2 Find 𝑥0
∗ that solves {min 𝑓2(𝑥)

s. t.  𝑥 ∈ 𝑋
  

𝑏𝑖 = 𝑓𝑖(𝑥0
∗), for 𝑖 = 1,  2. 

2-3 Set 𝑙𝑖 =
|𝑏𝑖−𝑎𝑖|

𝑁
,  for 𝑖 = 1,  2 and set 𝑑 = 𝑙1

2 + 𝑙2
2. 

2-4 Set 𝑘 = 1. Let  𝑌(𝑘) = [𝑓1(𝑥0
∗), 𝑓2(𝑥0

∗)]. Then, 𝑌(𝑘) is a weakly non-dominated point.  

2-5 Set  𝑖 = 1,  𝑠 = 0,  𝑠1 = 0,  𝑠2 = 0. 
Step 3: (Select 𝑥 to construct the parameters 𝑎and r and solve the scalarized problem) 

         Project the point 𝑓(𝑥𝑘−1
∗ ) ∈ 𝑌   on the 𝑓1 − axis, and then move 𝑙1 units to the left. The 

point (𝑓1(𝑥𝑘−1
∗ ) − 𝑙1 ,  0) is obtained. From this point, move in apparel with the𝑓2 −axis and find 𝑥 

that solves {
min 𝑓2 

(𝑥)                                                 

s. t.  𝑓1 
(𝑥) = 𝑓1(𝑥𝑘−1

∗ ) −  𝑙1 ∗ (𝑖 + 𝑠2)
.         

Step 4: (solve the UPS(𝑎, 𝑟, 𝜆))                                                                                                     

4-1 Select 𝜆𝑖𝜖 [0,
1

100
], for 𝑖 = 1, 2 and set 𝑎𝑖 = max (𝜆1𝑓1(�̂� ), 𝜆2𝑓2(�̂� )), for 𝑖 = 1, 2 and 𝑟𝑖 =

𝑓𝑖(𝑥)

‖𝑓(�̂� )‖
2

,  for 𝑖 = 1,2. 

4-2 Formulate the UPS(𝑎, 𝑟, 𝜆) problem using a and r obtained in Substep 4-1, and then solve it 

to find the optimal solution (𝑥𝑘
∗ , �̂�) and set 𝑋(𝑠1) = [𝑓1(𝑥𝑘

∗), 𝑓2(𝑥𝑘
∗)]. We know that 𝑋(0) ≠

[𝑓1(𝑥𝑘−1
∗ ), 𝑓2(𝑥𝑘−1

∗ )]. 
Step 5: (Perform the following substeps for uniformity of the Pareto set) 

5-1 Compute 𝑑′ = ‖Y(𝑘) − 𝑓(𝑥𝑘
∗)‖2

2. 

5-2 If (𝑑′ ≤ 𝑑 and 𝑓1(𝑥𝑘−1
∗ ) ≥ 𝑓1(𝑥𝑘

∗) and 𝑓2(𝑥𝑘−1
∗ ) ≤  𝑓2(𝑥𝑘

∗) and 𝑓(𝑥𝑘−1
∗ ) ≠ 𝑓(𝑥𝑘

∗)), then 

accept 𝑓(𝑥𝑘
∗) as a new non-dominated solution and update Y, that is, 𝑌(𝑘 + 1) = [𝑓1(𝑥𝑘

∗), 𝑓2(𝑥𝑘
∗)]. 

Set 𝑘 = 𝑘 + 1 and go to Step 7. 

5-3 Else if (𝑑′ ≤ 𝑑 and  𝑓1(𝑥𝑘−1
∗ ) ≤ 𝑓1(𝑥𝑘

∗) and 𝑓2(𝑥𝑘−1
∗ ) ≥  𝑓2(𝑥𝑘

∗)), then we set  𝑌(𝑘 + 1) = 

𝑋(𝑠1 − 1) and 𝑠1 = 𝑠1 + 1 and 𝑘 = 𝑘 + 1 and go to Step 7.  

5-4   Else if 𝑑′ > 𝑑, then 

5-4-1 Find �̄� that solves  

{
 
 

 
 min  𝑓2 

(𝑥)              

s. t.  𝑓1 
(𝑥) ≤ 𝑓1 

(�̂�)

       𝑓2 
(𝑥) ≤ 𝑓2(𝑥)

𝑥 ∈ 𝑋

 

5-4-2 If  (𝑓1 (�̄�) < 𝑓1 (�̂�) and 𝑓2 (�̄�) < 𝑓2 (�̂�)), then accept 𝑓(𝑥𝑘
∗) as a new non-dominated 

point and update Y, that is, 𝑌(𝑘 + 1) = [𝑓1(𝑥𝑘
∗), 𝑓2(𝑥𝑘

∗)]. Set 𝑘 = 𝑘 + 1 and go to Step 7.            

5-4-3 Else obtain 𝑑′′ = 𝑓1(𝑥𝑘−1
∗ ) −  𝑙1 ∗ (𝑖 + 𝑠2 − 0.05) and do the following: 
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5-4-3-1 If  𝑑″ < 𝑓1(𝑥𝑘−1
∗ ) then set 𝑠2 = 𝑠2 − 0.05 and go to Step 3.  

5-4-3-2 Else set 𝑌 = [𝑓1(𝑥𝑘
∗) , 𝑓2(𝑥𝑘

∗) ], and set 𝑘 = 𝑘 + 1 and go to Step 7.  

Step  6: (Determine efficient and weak efficient points )                                                                                       

        If 𝑎𝑖 + �̂�𝑟𝐼- 𝑓𝑖 (𝑥𝑘
∗) − max

𝑗∈{1,..𝑝}
{𝜆𝑗𝑓𝑗(𝑥𝑘

∗)} > 0,  for all 𝑖 = 1,2, … , 𝑝, then 𝑥𝑘
∗  is efficient, else it is 

weakly efficient. 

Step 7: (Condition of termination algorithm) 

         If || Y(𝑘) − 𝑎||
2

2
≤ 𝑑, then set 𝑌(𝑘 + 1)  = [𝑓1(𝑥0), 𝑓2(𝑥0)]

 
and stop, Y is an approximation of 

the Pareto front, else go to Substep 2-5.  

      

It is important to note that in Substeps 2-1 and 2-2 of Algorithm 1, the individual objective 

functions subject to the constraints of (1) are minimized. The “outer” end points of the efficient curve 

are obtained by these minimal solutions. It is obvious that optimal solutions of these scalar 

optimization problems are at least weakly efficient points for (1).  

  

In order to construct approximate solutions on the Pareto front uniformly, in Substep 2-3 we obtain 

two distances 𝑙1 and 𝑙2 and using these distances we calculate the value of d which is the maximum 

distance considered in the image space between two approximate solutions. In Substep 2-4 we define 

the set 𝑌, which is the set of approximate points of the Pareto front and is revised during the algorithm. 

In Step 3, we solve an additional single-objective optimization problem to obtain a feasible solution 

𝑥. We note that if the feasible set in this single-objective optimization problem is non-empty, then 

𝑓(𝑥 ) locates in the front. If the Pareto front is connected, then the feasible set of the single-objective 

optimization problem is non-empty. 

 

In Substep 4-2, by solving the scalarized problem UPS(𝑎, 𝑟, 𝜆),   we find the optimal solution 

(𝑥𝑘
∗ , �̂�) and set 𝑋 = {(𝑓1(𝑥𝑘

∗), 𝑓2(𝑥𝑘
∗))}. We note that based on Theorem 2.6, 𝑥𝑘

∗  is a weakly efficient 

solution for (1). Hence, 𝑋 is the set of all weakly efficient points that are obtained in an 

implementation of the algorithm. If, at the end of a run, 𝑋 contains a single point, then we accept the 

same point as a new non-dominated point. 

 

In the literature, many qualitative criteria have been suggested to evaluate the quality of 

approximations of the Pareto front (see [3, 4, 5, 9], for example). For the scalarization approaches, 

three of the most interesting metrics are the coverage error, cardinality and uniformity that were 

discussed by Sayin [28]. An approximation possesses a high quality if the generated approximate 

points are almost equidistant. Therefore, we perform Step 5 to find an almost equidistant 

approximation and generate the approximation of the Pareto front uniformly. In Substep 5-1, we 

obtain the distance between 𝑓(𝑥𝑘
∗) and the previous optimal point obtained by the algorithm 

(i.e, 𝑓(𝑥𝑘−1
∗ )). If this distance is less than or equal to the specified distance 𝑑 (Substep 5-2), then we 

accept 𝑓(𝑥𝑘
∗) as a new point on the Pareto front. If this distance is less than or equal to the specified 

distance 𝑑 (Substep 5-3), that is, the point 𝑓(𝑥𝑘
∗) places on 𝑓(𝑥𝑘−1

∗ ) or lies after or below it, then we 

do not accept the point 𝑓(𝑥𝑘
∗) and select a point from the set 𝑋\{𝑓(𝑥𝑘

∗)}, which has the smallest 

distance to 𝑓(𝑥𝑘−1
∗ ), as a new point on the Pareto front. Consider this distance to be bigger than the 

specified distance 𝑑 (Substep 5-4). If 𝑑′ > 𝑑,  then we solve the problem in Substep 5-4-1. In Substep 

5-4-2, we accept 𝑓(𝑥𝑘
∗) as a new point on the Pareto front. Otherwise, transfer to Substep 5-4-3. 

 

Therefore, to obtain a weak efficient point with a maximum distance from the point 𝑓(𝑥𝑘−1
∗ ), 

transfer is made to Substep 5-4-3. In this substep, we reduce the distance 𝑙1 to get a new point between 

𝑓(𝑥𝑘
∗) and the previous optimal point obtained by the algorithm (i.e., 𝑓(𝑥𝑘−1

∗ )).  If by decreasing 𝑙1, 
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the new point is placed before the previous optimal point𝑓(𝑥𝑘−1
∗ ), then Substep 5-4-3-1 is performed. 

In this Substep, by decreasing 𝑠2, we decrease the value of 𝑙1 to obtain another new point with 

distance being less than  𝑑′.   Otherwise, Substep 5-4-3-2 is performed. In Step 6, we utilize the 

theorems provided in Section 2 to determine (properly) efficient and weak efficient points.  In Step 

7, if distance of the optimal point, obtained by the algorithm, from the end point of the front is less 

than the specified distance 𝑑, then the algorithm terminates. It is obvious that this algorithm is finite.  

4. Numerical Results 
 

In order to test the numerical algorithm developed in Section 3,  in this section some test problems 

with specific difficulties such as non-convexity and disconnectivity of the feasible region and/or 

Pareto front are solved. By these test problems it can be seen that the proposed algorithm can generate 

approximation points that cover all regions of the Pareto front and keep an almost even distribution 

of the Pareto points. The results of our algorithm are compared with the numerical results due to 

Algorithm 7 of [26] using the Pascoletti–Serafini scalarization technique.  

 

The algorithm was coded in MATLAB (R2015a) and all test problems were implemented on a 

laptop with a core i5 processor with 4 GB RAM and 2.5 GHz running Windows 7 Ultimate system. 

Moreover, the SQP optimization algorithm has been used in the MATLAB’s optimization solver 

fmincon to solve the nonlinear single-objective optimization problems. 

 

Test problem 1.  Consider the following convex bi-objective problem of [10] as considered in [26]: 

 

 {

min      (√1 + 𝑥1
2, 𝑥1

2 − 4𝑥1 + 𝑥2 + 5)

s. t.           𝑥1
2 − 4𝑥1 + 𝑥2 + 5 ≥ 3.5        

𝑥1 ≥ 0 , 𝑥2 ≥ 0.

 

 

The Pareto front of this test problem is convex and connected. We ran Algorithm 7 of  [26], which 

uses the Pascoletti-Serafini scalarization technique, with 𝑁 = 15 and 𝑎 = (−1,−10) and uniformly 

distributed weights. Also, we ran our proposed algorithm with 𝑁 = 15 and 𝜆𝑖 =
1

500
, for 𝑖 = 1,2. Fig. 

1 shows the obtained non-dominated points with the algorithm using the Pascoletti-Serafini method. 

This algorithm generates 16 points. In Fig. 2, the generated Pareto front utilizing our proposed 

algorithm is shown. As seen in this figure, Algorithm 1 produces 21 efficient points, a larger number 

of points than those obtained by Algorithm 7 of [26]. By comparing the results of Figs. 1 and 2 it is 

clear that a uniform distribution of the approximation is generated by Algorithm 1. Moreover, by the 

same number of iterations (𝑁 = 15), the number of approximation points obtained via the proposed 

algorithm (21 points) is greater than that of Algorithm 7 of [26] (16 pints).  
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Figure 1. Points found by Algorithm 7 of [26]. Figure 2. Points found by Algorithm 1.   

 

Test problem 2. Consider the following test problem which has a non-convex image, and additionally 

its non-dominated set is disconnected and non-convex:  

 

 

{
 
 

 
 
min   (𝑥1, 𝑥2)                                                                             

s. t.  − 𝑥1
2 − 𝑥2

2 + 1 + 0.1 cos (16 arctan (
𝑥1

𝑥2
)) ≤ 0

(𝑥1 − 0.5)
2 + (𝑥2 − 0.5)

2 − 0.5 ≤ 0

𝑥1,  𝑥2 ∈ [0, 𝜋].

 

 

For  Algorithm 7 of  [26], we took 𝑎 = (−1,−10),𝑁 = 22 and uniformly distributed weights and 

then ran the algorithm. Also, we ran Algorithm 1 with 𝑁 = 22 and 𝜆𝑖 =
1

500
,   for  𝑖 = 1,  2. In an 

implementation with 𝑁 = 22, Algorithm 7 of  [26] and Algorithm 1 generated the points depicted in 

Figs. 3 and 4, respectively. Algorithm 7 of [26] found 20 points, two of which were not non-

dominated. Furthermore, this algorithm could not construct the Pareto front uniformly. With 

Algorithm 1, 23 non-dominated points were found and the points were uniformly distributed in the 

front. Moreover, our Algorithm 1 produced all the end points of the Pareto front, which demonstrates 

the capability of the suggested technique for solving problems with disconnected and non-convex  

Pareto fronts. 

 

 
 

Figure 3. Points found by Algorithm 7 of [26]. Figure 4. Points found by Algorithm 1. 

 

Test problem 3. For the third test problem, we investigate the following non-convex bi-objective test 
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problem from [26], that not only the efficient curve but also the feasible set itself is non-convex and 

disconnected. 

 

{
  
 

  
 
min   (𝑥1, 𝑥2)                                                                             

s. t.  − 𝑥1
2 − 𝑥2

2 + 1 + 0.1 cos(16 arctan (
𝑥1
𝑥2
)) ≤ 0

1.69𝑥1
2 + 1.01𝑥2

2 − 2.60𝑥1𝑥2 − 0.02 ≥ 0

(𝑥1 − 0.5)
2 + (𝑥2 − 0.5)

2 − 0.5 ≤ 0

𝑥1,  𝑥2 ∈ [0, 𝜋].

 

  

For Algorithm 7 of [26], we took 𝑎 = (−1,−10), 𝑁 = 22 and uniformly distributed weights. Then, 

we implemented this algorithm. Also we set 𝑁 = 22 and 𝜆𝑖 =
1

500
,   for  𝑖 = 1,2 in Algorithm 1 and 

ran this algorithm. Figs. 5 and 6 show the generated points by algorithm 7 of [26] and Algorithm 1, 

respectively. As it can be seen in Fig. 5 with 𝑁 = 22, Algorithm 7 of [26] produced 17 points that 

two of them were not non-dominated. Furthermore, the non-dominated points found by this algorithm 

were not uniformly distributed. Hence, this algorithm approximated the Pareto front poorly. However, 

with our proposed algorithm, 21 non-dominated points were found and the points were uniformly 

distributed. Moreover, this algorithm generated all the end-points of the Pareto front, which 

demonstrates the capability of the proposed algorithm for solving problems with disconnected and 

non-convex feasible sets.   

 

 

 

Figure 5. Points found by Algorithm 7 of [26]. Figure 6. Points found by Algorithm 1. 

 

Test problem 4. The fourth test problem, from [27], is  

 

min 𝑓1(𝑥) = 𝑥1
4 + 𝑥2

4 − 𝑥1
2 + 𝑥2

2 − 10𝑥1𝑥2 + 0.25𝑥1 + 20 
min 𝑓2 (𝑥) = (𝑥1 − 1)

2 + 𝑥2
2 

s. t.  𝑥1, 𝑥2 ∈ [−3,3]. 
 

The Pareto front of this test problem is disconnected and non-convex. In Algorithm 7 of [26], we 

chose the point 𝑎 = (−1,−10) to be the utopia point. With 𝑁 = 50 and uniformly distributed weights 

we ran the algorithm. We also ran Algorithm 1 for 𝑁 = 50 and 𝜆𝑖 =
1

500
,  for  𝑖 = 1,2 . In an 
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implementation with 𝑁 = 50, Algorithm 7 of  [26] and Algorithm 1 found the points depicted in Figs. 

7 and 8, respectively. As seen in Fig. 7, Algorithm 7 of [26] produced only 36 efficient points from 

the lower part of the Pareto front. However, our proposed algorithm produced equidistant points over 

the whole Pareto front. The number of points computed by our algorithm is 55.  A comparison of 

Figs. 7 and 8 verifies that the distribution of points generated by our proposed algorithm is better than 

that of [26], so that the points generated by Algorithm 1 can cover the whole Pareto front by having 

a good spread. 

 

 

5. Conclusions 
 

A numerical algorithm was proposed for generating an approximation of the Pareto front for a bi-

objective optimization problem. This algorithm was based on a new scalarization method called the 

unified Pascoletti-Serafini method. The proposed approach can be utilized for solving any bi-objective 

problem with connected, disconnected, convex and non-convex feasible and efficient sets, and does 

not require any extra condition. In the proposed algorithm, a parameter restriction was utilized and 

by a cutting procedure an almost even approximations of the Pareto front were obtained. The 

effectiveness of the algorithm was shown by different test problems with non-convex or disconnected 

efficient curve and it was seen that the distribution of the points computed by the proposed algorithm 

was even and the whole Pareto front was covered by the points generated by the proposed algorithm 

having a good spread. 

 

Extending the proposed algorithm for a multi-objective optimization problem with more than two 

objective functions can be a worthwhile research area for a future work.  

  

  
Figure 7. Points found by Algorithm 7 of [26]. Figure 8. Points found by Algorithm 1. 
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