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Kadane, Importance Sampling and Metropolis-Hastings
within Gibbs Methods in the Poisson-Exponential
Distribution: A Comparative Study
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Here, we work on the problem of point estimation of the parameters of the Poisson-exponential
distribution through the Bayesian and maximum likelihood methods based on complete samples.
The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated
using three methods, namely the Tierney Kadane approximation method, the importance sampling
method and the Metropolis-Hastings within Gibbs algorithm. The interval estimators are also
obtained. The performance of the point and interval estimators are compared with each other by
means of a Monte Carlo simulation. Several conclusions are given at the end.
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1. Introduction

The exponential distribution is one of the popular lifetime distributions discussed by many authors
and researchers. It has a simple probability function and enjoys simple mathematical properties.
However, it suffers from a constant hazard rate function, which makes this distribution inappropriate
for many lifetime situations. Thus, several scientists tried to extend this distribution to a more flexible
distribution. Three old and famous extensions of the exponential distributions are the gamma, Weibull
and generalized exponential distributions.

Recently, Cancho et al. [2] introduced the Poisson-exponential (PE) distribution by adding a shape
parameter to the exponential distribution. The hazard rate function (hrf) of the PE distribution can be
increasing as well. The motivation behind introducing the PE distribution can be explained as follows.
Consider a parallel system whose number of components is not fixed. In other words, the number of
the components, denoted by M, is a positive discrete random variable. Let Ty, T,, :--, T, denote the
lifetimes of the components and therefore X = max(Ty,T,, -+, Ty) be the lifetime of the whole
system. Now, suppose that M follows a zero—truncated Poisson distribution with parameter 6 and
the T; are independent and identically distributed (iid) according to an exponential distribution with
parameter A. In addition, the T; and M are independent. Then, the random variable X follows a PE
distribution with parameters 6 and 1. Therefore, the PE distribution can be used to model a parallel
system, whose components’ lifetimes are iid exponential random variables and the number of
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components follows a zero-truncated Poisson distribution. For more details, see Cancho et al. [2] and
Louzada-Neto et al. [12].

The probability density function (pdf) of the PE distribution can be expressed as follows:
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where x >0, 6§ >0 and 4 > 0. We note that 6 and A are the shape and scale parameters,
respectively. As 8 approaches zero, the PE distribution converges to an exponential distribution with
parameter 1. The cumulative distribution function (cdf) of X is also given by
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We write X ~ PE(6, 4), if the pdf and cdf of X can be written as (1) and (2), respectively. Moreover,
the hrf of PE distribution is given by
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x>0, A>0, 6>0.

Figure 1 shows the PE pdfs and hrfs for selected values of 6 and A. From Figure 1, we see that the
pdf can be either decreasing or unimodal and the hrf is increasing.
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Figure 1. Pdfs (left panel) and hrfs (right panel) of the PE distribution for selected values of the
parameters.

The Bayesian estimation for the PE distribution based on complete samples has been studied by
Louzada-Neto et al. [12], Singh et al. [22] and Tomazella et al. [24]. Louzada-Neto et al. [12] and
Singh et al. [22] found the Bayes estimators using a non-informative prior for the scale parameter and
a gamma prior for the shape parameter. Tomazella et al. [24] focused on the Bayesian analysis using
a joint reference prior for the parameters. As we will see later, an important problem that arises in
Bayesian estimation of the parameters of the PE distribution is that the integrals pertaining to the
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Bayes estimates do not seem to possess explicit forms. Therefore, one may use a suitable method to
approximate these integrals. Louzada-Neto et al. [12], Singh et al. [22] and Tomazella et al. [24]
applied the Metropolis-Hastings within Gibbs sampling method in order to handle this problem.
However, there exist some other approximation methods that can also be implemented. Here, we are
to apply two other methods, namely the Tierney Kadane and importance sampling methods to deal
with the mentioned problem and then compare the methods by means of a Monte Carlo simulation.
Here, we note that Arabi Belaghi et al. [1], who worked on the Bayesian estimation of the parameters
of the PE distribution based on type-Il censored order statistics, employed the importance sampling
method as well as the Lindley approximation method. However, it seems that the Tierney Kadane
approximation method for approximating Bayesian estimates of parameters of the PE distribution has
not been investigated yet. We do not apply the Lindley method here because of its complexity.

The outline of the remaining parts of paper can be summarized as follows. Section 2 is devoted to
maximum likelihood (ML) estimation. The information matrix and the asymptotic confidence
intervals for the parameters are also obtained. In Section 3, we discuss the Bayesian estimation of
the parameters under the SEL function. As we mentioned earlier and will see later, it seems that the
integrals pertaining to the Bayes point estimates cannot be expressed explicitly. Therefore, we suggest
using three methods to approximate these integrals. In this regard, we propose the Tierney Kadane
approximation method, the importance sampling approximation method and the Metropolis-Hastings
within Gibbs algorithm. The credible intervals for the parameters are also obtained using the method
described by Chen and Shao [4]. We compare the performance of the point and interval estimators
by means of a Monte Carlo simulation in Section 4. Finally, our concluding remarks are given in
Section 5.

2. Maximum Likelihood Estimation

The maximum likelihood method is a most popular classical method of estimation of unknown
parameters. Let x = (x4, -+, x,) be a set of an observed random sample of size n from PE(6, A).
Then, the likelihood function is given by

—Ax:
nan p—AXiL x—0 XL, e i

L(6,2|x) = A=y : 3)

The log-likelihood function of the parameters is given by

n n

2(0,2) =nlog() — 1 Y x; — 92 e i —nlog(1—e7?).

i=1 i=1

The ML estimates of the parameters will be obtained by means of maximizing £(6, 1) with respect
to (w.r.t.) 6 and A, see Louzada-Neto et al. [12] for the nonlinear equations which can help us obtain
the ML estimates; In our work here, we compute the ML estimates by using the optim function in R
[16].

Though the main purpose of this paper does not involve interval estimation, we state here how we
can obtain asymptotic confidence intervals for the unknown parameters. Let 8, and A,z denote
the ML estimators of 6 and A, respectively. Then, under the regularity conditions (see Lehmann and
Casella [11]), as n tends to infinity, we have
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((éMLE'iMLE) - (9’/1)) - N, (0:%1_1(9: A)),

Where by — we mean convergence in distribution, N,(.,.) denotes the two-variate normal
distribution, 0 is a two-dimensional vector whose elements are both zero and 1=1(6, 1) is the inverse
of the information matrix, 1(8,1); see Louzada-Neto et al. [12] who derived the elements of the
information matrix.

The unknown parameters that appear in the elements of 171(6,1) may be replaced by their
corresponding ML estimators to get an estimator of 1=1(6, 1), which may be denoted as /=1(6, 1).
Therefore, the estimators of the asymptotic variances of 8,z and 4,5, that are denoted by
Var(0y.e) and Var(Ay,r ), respectively, are given by the first and second diagonal elements of

%1‘—1(9,/1), respectively. Now, the modified asymptotic 100(1 — a)% two-sided equi-tailed
confidence intervals (MATE Cls) for 8 and A are given by

<max{0, éMLE - Z% /VEr(@MLE)}, éMLE +24/2 ’V/Er(éMLE))
<maX {0, AAMLE — Za/Z ’VET(/?MLE)}, },{MLE + Za/z ’VET(/AlMLE)),

respectively, where z, /, is the right (a/2)-th quantile of the standard normal distribution.

and

Let
920  o%en] !
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Suppose that f~1(6, 1) is the estimate of J=1(8,1) being obtained by replacing the unknown
parameters appearing in the elements of J~1(8, 1) with their corresponding ML estimates. In practical

situations, we can use J=1(8, 1) instead of the observed matrix%i‘l(f),l).

3. Bayesian Estimation

In the Bayesian analysis, it is assumed that the unknown parameters are random variables with a
joint prior density function. The prior density function and its hyperparameters can be determined
based on the past knowledge and experience. When no prior knowledge is available, non-informative
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priors can be implemented for the purpose of Bayesian inference. Here, we assume that 6 and 4 are
independent gamma random variables with prior densities as follows (see Arabi Belaghi et al. [1]):

bf19a1—1e—b16 bgzlaz—le—bzl
7] b)) = d A b)) =———— 4
m(6lay, by) (ay) and mw(4|ay, by) I'(ay) (4)

where the hyperparameters a4, b,, a, and b, are all positive and known. The gamma prior possesses

explicit expressions for its mean and variance and consequently we can include our prior information
about the mean and/or variance of the parameter easier. From (4), the joint prior pdf of 8 and 4 is

w(6,1) = n(A|ay, b,) m(6lay, by), 6 >0, 1>0. 5)

Let x = (xq,::+,x,) be an observed vector of a random sample of size n from PE(6, 1). Then,
from (1) and (5), the joint posterior pdf of 8 and A given X is given by

n+a; -1 n+a,-1 e—@(b1+2?:1 e"l"i)—/l(bz +X %)

Co(1 —e )

(0, Alx) = . (6)

where

00 00 9n+a1—1/1n+a2—16—9(b1+2?:1 e ™M)= A(by+31, x0)
Co =f f doadA.
0 0
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Here, we derive the Bayes estimates under the SEL function, which is symmetric. Let 8 be an
estimator of parameter 6. Then, the SEL function is defined as Loss,(6,0) = (6 — 6). The
Bayesian point estimate under the SEL function is the posterior mean of the parameter given the
informative data. Therefore, in our case, the Bayes estimates of 8 and A are (provided that they exist)

) ® 00 gn+as ynt+az—1,-0(by+3f, e *i)-A(by+ Lk, ;)

0 = E(0|x) = f f — dAde, (7
o Jo Co(1—e=®)m

_ © o gnta;—1jn+az,—0(b1+¥i, e~ M) = A(by+3, x1)

ls =E(|x) = f f — dAde, (8)
o Jo Co(1—e ")

respectively.

It seems that the integrals (7) and (8) do not have explicit forms and therefore numerical techniques
may be used to approximate these integrals. In what follows, we explain three procedures for
approximating these integrals, namely the Tierney Kadane approximation method, the importance
sampling method and the Metropolis-Hastings within Gibbs method.

3.1. Tierney Kadane Approximation Method
The Tierney Kadane approximation method was proposed by Tierney and Kadane [23]. We want

to approximate E(u(8,1)|x). In this regard, we define the functions L, and L,, respectively, as
follows:
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1
Lo(6,2) = - [log(L(6, Alx)) + log(m(6, 1))],

L,(6,1) =Ly(6,4) + %log(u(e,l)).

Assume that (8y,4,) and (6.,4.) are the maximizing points of Ly(6,4) and L.(6,2),
respectively, such that 8, and 1, are the unique maximizers of L,(6, 1) and are obtained by solving
the equations M =0and =—— L"(e D=0 simultaneously and 8, and 4, are also obtained by solving
the equations *(el) = 0 and 2222 (6 '1) = 0 simultaneously. Assume further that £° and =* are minus the

inverse Hessians of L, and L, at (90,20) and (8., 1.), respectively. Then, the approximate value of
E(u(6, A)|x) is obtained from the following relation

Eu(8,M)Ix) = \/ET exp [n (L. (0., 1.) = Lo(80. 4o) ) -

In our case for the PE distribution, we have

n n
A 0
Lo(6,4) =log(6A) — 52 X; — ZZ e i — log(l - e‘e)

i=1 i=1
N (a; —1)log(@) + (a; — 1) log(A) — by — Ab,
n

+ A4,

where

_ & log(b,) + a, log(b,) — IOg(F(Ch)) - log(l"(az)).
n

Thus, 8, and 1, are obtained by solving the following nonlinear equations simultaneously:

0Ly(6,) n+a;—1 e-9 b+ 3L e

00 néo 1—e~ n =0,
0Ly(0,) n+a,—1 921 Lxje i1 ¥ —b,
= = 0.
dA ni n

Now, to approximate the Bayes estimate of 6 under the SEL function, i.e., E(0]x), we set
u(0,1) = 6. As a result, we have

1
L.g(6,1) =Ly(6,4) + Elog(e).

Then, 8,5 and A, are obtained by solving the following nonlinear equations simultaneously:

0L.s(6,) n+a; e”? b +3L e M
0  nh 1—ef n

=0,
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OL*S(G,/I)_n+a2—1 O Vi xie =N x; — by

or . A . N
Let
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o =D Taxe
Aypr(8,1) = 0 Laog,l) _n +na;2_ 1 921 1: o |
A;1(6,2) = — 0 L;SB(S,A) _ nn-|-9(211 - _ee_e)z.

The approximate Bayes estimate of 6 under the SEL function based on the Tierney Kadane method
is given by

~ A ~ 2 ~ A 2
~ A11(0g,Ag)A22(80,49) — |A12(8p, A ~ A ~
QT—K = . 1,1\( 0,\ 0) 22(,\ 2 ,\0) [ 12( E 0?] 2 exp [TL (L*S(G*S; A*S) - LO(GOJAO))]'
A11(Oesi Aus)A22(Bes) Aus) — [A12(Bes) Aos)]

Similarly, we can derive the approximate Bayes estimates of A under the SEL function based on the
Tierney Kadane approximation method.

3.2. Importance Sampling Method

Another well-known method for approximating Bayesian estimates is called the importance
sampling method. As mentioned earlier, this method was also used by Arabi Belaghi et al. [1] to
approximate the Bayesian estimates of parameters of the PE distribution based on type-1l censored
data. Given the vector of random sample x, the joint posterior density function of 8 and A, relation
(6), can be rewritten as

77,'(6, Alx) =01 (Alx)gZ (9'/1, x)h(B, A' X),

where g, (4|x) is a gamma density function with parameters n + a, and b, + Y11 x;, g,(0]4,x) is
a gamma density function with parameters n + a; and b; + Y™, e~**i and h(6, A, x) is given by

'm+a)I'(n+a,)
(by + 37, e=2)" " (b, + ¥ )" Co(1 — e O

h(6,1,x) =

Now, the Bayesian estimates of the parameters can be approximated using Algorithm 1 below.

Algorithm 1:

Step 1. Generate 1,from g, (1]x) and then given 1,, generate 6;from g, (6|1, x).

Step 2. Repeat Step 1, M times to obtain (64,4,), -, (6, Ay), Where M is a large number.
Step 3. The approximate Bayes estimates of 8 and A under the SEL function are given by
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5 _ 3N 0ir(8iA1x)

g _ _ M AiR(0:,2:%)
[=5 = M h@ur0)

and di—s = S rouan
respectively.

Equivalently, the approximate Bayes estimates of 8 and A under the SEL function based on the
importance sampling method can be rewritten as

~ M 6;n*(0,4,%) 5 IM o 4nt(6,4:,%)
O1-s = S wopnm * 2" s = S e
respectively, where
1
h* (0,1, x) =

(br + 2, o) @ — e
3.3. Metropolis-Hastings within Gibbs Method

The Metropolis-Hastings algorithm is one of the most popular methods being applied by
researchers to deal with complicated integrals related to Bayesian inference. The algorithm was first
proposed by Metropolis et al. [13] and then generalized by Hastings [7]. Using a Metropolis-Hastings
algorithm, one tries to simulate a Markov chain whose stationary distribution is approximately the
same as the posterior distribution of interest. To this end, the algorithm generates numbers from a
proposal distribution and updates them step by step so that the generated sample can be considered
sensibly as a sample from the target posterior distribution. Here, since we have two parameters, the
univariate proposal distribution of each parameter can be updated at a time by the newest generated
value of that parameter and thus, we use a method that is somehow similar to the Gibbs sampling.
Therefore, the method is called the “Metropolis-Hastings within Gibbs method”, but note that it is
naturally different from the Gibbs sampling; see, for example, Carlin and Louis [3] for more details.

Louzada-Neto et al. [12], Singh et al. [22] and Tomazella et al. [24] applied the Metropolis-
Hastings within Gibbs sampling method in order to approximate the Bayes estimates of the
parameters of the PE distribution. Louzada-Neto et al. [12] and Tomazella et al. [24] utilized a
transformation procedure to apply the Metropolis-Hastings within Gibbs more efficiently. Here, we
follow their procedure and describe the procedure in detail. The conditional posterior density of 6
given A and X is

n+a;—1,-6(b1+¥i, e M%)

(1—e9)n

m(0]A, x)

Moreover, the conditional posterior density of A given 6 and x is
(116, x) o An*+a2=1g=0 % e Mi-A(bp 43, x1) |

These conditional densities do not belong to the known distributions (note that if the conditional
distributions belong to the known distributions and we could generate samples directly from them,
then there will be no need to use the Metropolis-Hastings algorithm and we can use the Gibbs
sampling procedure). Now, let n = log(6) and y = log(4), where —co <1 < oo and —oo < y < oo,
The joint distribution of n and y is given by
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—eVx:
en(n+a1)+y(n+a2)e—eV(b2+2’i1:1xi)e—en(lh"'zln:le € xl)

Co(1—e—e)n

n(n,ylx) =

Thus, the conditional densities of  and y are given by

—e¥x:
en(n+a1)e—en(b1+2?:1€ € x‘)

(I—e°)n '

r(nly,x) <

and
1 (yIn, x) o e¥M+az)g=e (br+Eilyx) g=eT Sty e
respectively.

Following Tomazella et al. [24], we use the random walk procedure to generate samples from
m(n,y|x). We can also use the thinning approach, namely we discard all the generated samples but
every k-th generated pairs of numbers, to reduce the autocorrelation of the chain. So, we employ
Algorithm 2 below.

Algorithm 2:

Step 1. Start with a guess vector (n,,y,) and set g = 1.

Step 2. Generate a random normal variate Z with the mean zero and variance t%. Given the vector
(Mg-1,¥q-1), Set ng = n4—1 + oZ with probability

p= min{l, 7(nal¥q-1,%) };
7T(’7q—1|7/q—1"'c)

Otherwise, setn, = 14-1.
Step 3. Generate another random normal variate Z with the mean zero and variance 3. Given the
vector (14, ¥q-1), Set ¥4 = Yq-1 + 0Z with probability

P mm{l,M};
(¥g-1|14, %)

Otherwise, sety; = vg-1-
Step 4. Set ¢ = g + 1 and repeat Steps 2 and 3, N times, where N is a large number.
Step5.Forq =1,...,N, set6, = e and A, = e”a. Then, the generated sample from (6, A|x) will
be ((Br+1, A741)s (Braks1s Ar+k+1)s s (BN’ -1y 41 AT+i(n’~1)+1) )» Where T is a burn-in period,
k is the thinning parameter and N' is the size of the generated sample. Let us denote the generated
sample by ((61,21), (85, 23), ..., (641, A1), for the sake of simplicity.

Here, we set (17o,70) = (log(8),log(4)), where Hand 1 are the ML estimates of 6 and 2,
respectively. In addition, we take the scale parameter o to be 2 (see Tomazella et al. [24]). We discuss
how to choose 72 and 72 in the Appendix. Now, given the generated sample
((61,21), (03, 25), ..., (851, Ay1)), the approximate Bayes of 6 and A under the SEL function based
on the Metropolis-Hastings within Gibbs method are given by

~ _ 1 NI ’ ~ _ 1 N’ ’
Omncivps = 37 2i=10i,  ad Aypgipps = 737 2i=14is
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respectively.

We can also find credible intervals for 8 and A using the method described by Chen and Shao [4]. To
this end, first sort the generated sample (9{, ., 0] ,) to get 61y < Hz) < -+ < 6y Construct the
intervals (6(y, 6(j+[1-an'py)s fOr j = 1, ..., N’ = [(1 — @)N'], where [x] is the integer part of x.
Then, the Chen and Shao shortest credible interval (CSS Crl) for 6 is given by the shortest interval
among all the (6, 6j+[1-ayn'y)- Similarly, we can find the CSS Crl for 2.

4. Simulation

Our main goal here, as pointed out earlier, is to compare three methods of approximating the
integrals that are related to Bayes estimates of the parameters of the PE distribution. These methods
are the Tierney Kadane method, importance sampling procedure and the Metropolis-Hastings within
Gibbs algorithm, as described earlier. We also compare MATE Cls with CSS Crls in terms of average
width (AW) and coverage probability (CP). To this end, we conduct a simulation study. We consider
two sample sizes n = 70 and 150. We also use the standard exponential priors (the standard
exponential distribution is a special case of the gamma distribution), namely we seta; = b; = a, =
b, = 1. We take the values of the scale parameter to be A = 0.5, 1 and 2, and the values of the shape
parameter to be 8 = 3 and 5. For the importance sampling method, we take M = 3000 which seems
to be sufficiently large. In applying the Metropolis-Hastings within Gibbs method, we implemented
the thinning technique. For the Metropolis-Hastings within Gibbs method, the settings are as follows:
N = 20000k + T, where T = 2000 is the burn-in period and k, the thinning parameter, is mostly
taken to be 2 but also taken to be 3 or 4 for some iterations. So, the size of each generated Markov
chain Monte Carlo (MCMC) sample is N’ = 20000. In addition, the convergence of the MCMC
samples generated by the Metropolis-Hastings within Gibbs method are checked using the Geweke’s
test (see Geweke [5]), Raftery and Lewis’s diagnostic (see Raftery and Lewis [17,18]) and
Heidelberger and Welch’s convergence diagnostic (see Heidelberger and Welch [10]). It is worth
mentioning that Heidelberger and Welch [10] combined the works of Heidelberger and Welch [8],
Heidelberger and Welch [9], Schruben [19], Schruben et al. [20] and Schruben et al. [21]. The results
of our simulation are based on ] = 1000 Monte Carlo replicates. The generated Metropolis-Hastings
within Gibbs Markov chains for 6 = 3, A = 2 and n = 70 for one of the iterations are given in
Figure 2, from which we can verify the convergence.
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Figure 2. Metropolis-Hastings within Gibbs Markov chains for & = 3,41 = 2 and n = 70.

Assume that 8 is an estimator of 8 and 8; is the corresponding estimate of 6 obtained in the i-th
replication. Then, the estimated mean squared error (EMSE) of 8 is given by

J
EMSE(9) = ;Z(eﬁ- ~6)".
i=1

Similarly, we can define the EMSE of an estimator of 1. The simulation results regarding the point
estimators are presented in tables 1 and 2 and the ones regarding the interval estimators are given in
Table 3. From tables 1 and 2, we observe that there exist some cases in which the Bayes estimates
being approximated based on the Tierney Kadane method perform better than the other estimates.
This is also true for the other estimates specially for the ML estimates. From these tables, we cannot
draw a general conclusion for identifying the best estimator. We cannot say which approximation is
the best either, as we must compare the approximate Bayes estimates with the true values of the
integrals not the true values of the parameters. From Table 3, we see that CSS Crls have smaller AWs
than the MATE Cls for most cases but MATE Cls have larger CPs in all the cases.
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Table 1. The EMSEs of the point estimators of 8 and A when n = 70.

Point Estimators of 6
6,2) ML Estimator | Tierney Kadane | Importance Sampling | Metropolis-Hastings
within Gibbs
(3,0.5) 0.66491 0.72451 0.51979 0.71640
(3,1 0.66405 0.79023 0.53763 0.76780
(3,2) 0.71863 0.91876 0.56926 0.89359
(5,0.5) 1.33691 1.13655 4.89455 1.14446
(5,1 1.17753 1.19437 5.12868 1.20097
(5,2) 1.37910 1.18567 5.05687 1.19276
Point Estimators of 1
6,2) ML Estimator | Tierney Kadane | Importance Sampling | Metropolis-Hastings
within Gibbs
(3,0.5) 0.00400 0.00445 0.01274 0.00421
(3,1 0.01543 0.24707 0.05317 0.01743
(3,2) 0.06805 0.08934 0.22127 0.08233
(5,0.5) 0.00317 0.00315 0.03015 0.00315
(5,1 0.01104 0.01218 0.12250 0.01219
(5,2) 0.04931 0.05353 0.50689 0.05352
Table 2. The EMSEs of the point estimators of 8 and 1 when n = 150.
Point Estimators of 6
6,2 ML Estimator | Tierney Kadane | Importance Sampling | Metropolis-Hastings
within Gibbs
(3,0.5) 0.26950 0.29279 0.47261 0.29349
(3,1 0.26990 0.30102 0.47837 0.30360
(3,2) 0.27709 0.30592 0.49955 0.30914
(5,0.5) 0.56022 0.51682 5.51200 0.51747
(5,1) 0.47218 0.45341 5.58900 0.45528
(5,2) 0.54667 0.51414 5.60340 0.51523
Point Estimators of 1
6,2 ML Estimator | Tierney Kadane | Importance Sampling | Metropolis-Hastings
within Gibbs
(3,0.5) 0.00173 0.00187 0.02017 0.00182
(3,1 0.00744 0.00791 0.08136 0.00792
(3,2) 0.02923 0.03131 0.33416 0.03132
(5,0.5) 0.00126 0.00127 0.04225 0.00127
(5,1 0.00496 0.00503 0.16982 0.00499
(5,2) 0.02157 0.02225 0.68597 0.02231
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Table 3. The AWs and CPs of the interval estimators of 8 and A.

Interval Estimators of 6
n=70 n =150
6,2 MATE CI CSS Crl MATE CI CSS Crl
(3,0.5) AW 3.0983 2.9866 2.0776 2.0550
CP 0.9600 0.8840 0.9660 0.9390
(3,1 AW 3.0998 2.9904 2.0752 2.0529
CP 0.9590 0.8730 0.9620 0.9320
(3,2) AW 3.0982 2.9693 2.0809 2.0584
CP 0.9540 0.8350 0.9610 0.9340
(5,0.5) AW 4.1709 3.6469 2.7517 2.5801
CP 0.9660 0.8680 0.9440 0.9160
(5,1 AW 4.1190 3.6151 2.7495 2.5769
CP 0.9640 0.8820 0.9630 0.9190
(5,2) AW 4.2164 3.6454 2.7572 2.5713
CP 0.9590 0.8720 0.9520 0.9160
Interval Estimators of A
n=70 n =150
6,2) MATE CI CSS Crl MATE ClI CSS Crl
(3,0.5) AW 0.2454 0.2470 0.1670 0.1680
CP 0.9590 0.9400 0.9560 0.9540
(3,1 AW 0.4929 0.4960 0.3340 0.3358
CP 0.9540 0.9180 0.9520 0.9400
(3,2) AW 0.9860 0.9878 0.6684 0.6724
CP 0.9430 0.8920 0.9520 0.9380
(5,0.5) AW 0.2073 0.2022 0.1402 0.1381
CP 0.9410 0.9200 0.9540 0.9420
(5,1) AW 0.4156 0.4059 0.2809 0.2767
CP 0.9580 0.9310 0.9640 0.9400
(5,2) AW 0.8297 0.8057 0.5612 0.5519
CP 0.9480 0.9080 0.9500 0.9330

5. Concluding Remarks

We discussed three approximation methods for approximating the Bayesian estimates of the
parameters of the PE distribution and then presented a simulation study for the purpose of comparison.
We also compared the classical and Bayesian interval estimators. We could not draw a general
conclusion that which one of the approximation methods always performed the best. Our
computations were performed using Maple 17 and R [16] using the packages nlegslv (see Hasselman
[6]) and coda (see Plummer et al. [14] and Plummer et al. [15]) in R.
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Appendix

Here, we discuss how to choose 72 and 75 in Algorithm 2. Suppose that n, and y, maximize
m(n, y|x). The logarithm of 7 (n, y|x) is given by

n n
logm(n,y|x) = —logCy +n(n+a;) +y(n+a,) —e¥ <b2 + Z xl-> —el (bl + Z e“"yxl)
i=1 i=1
—nlog(1— e‘en).
Solving the following two nonlinear equations help us find n, and y.:

dlogm(n,y|x) oy nen-e"
T n+a, —e" b1+z e Xi _1——6_‘31’:0’
n

dlogm X
# n+a, —ev <b2 + Z xl) e’7+7’z x;e~¢"%i = (.

i=1

Define matrix V as follows:

[ 0%logn(n,ylx)  9*logm(n,y|x)]

_ an? ondy
| 0%logn(nylx)  8%logm(n,ylx) '
- - 2
doyon oy MY)=@¥)

where

6 logn(n ylx) (b N Z _eyx> n(l —e — e—e")en—en
1 ¢ )

677 (1—e€M)2

d%logm x
gay(n 24 ) <b2+2xl)—e’72(1—xe”)x e¥—xie?
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n

_Ologr(nylx) __ , z g
ondy .
i=1
We choose 72 and 73 as the first and second diagonal elements of V=1, respectively, where V=1 is
the inverse matrix of V (see Tomazella et al. [24]).
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