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Here, we work on the problem of point estimation of the parameters of the Poisson-exponential 

distribution through the Bayesian and maximum likelihood methods based on complete samples.  

The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated 

using three methods, namely the Tierney Kadane approximation method, the importance sampling 

method and the Metropolis-Hastings within Gibbs algorithm. The interval estimators are also 

obtained. The performance of the point and interval estimators are compared with each other by 

means of a Monte Carlo simulation. Several conclusions are given at the end. 
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1. Introduction 
 

The exponential distribution is one of the popular lifetime distributions discussed by many authors 

and researchers. It has a simple probability function and enjoys simple mathematical properties. 

However, it suffers from a constant hazard rate function, which makes this distribution inappropriate 

for many lifetime situations. Thus, several scientists tried to extend this distribution to a more flexible 

distribution. Three old and famous extensions of the exponential distributions are the gamma, Weibull 

and generalized exponential distributions.  

 

Recently, Cancho et al. [2] introduced the Poisson-exponential (PE) distribution by adding a shape 

parameter to the exponential distribution. The hazard rate function (hrf) of the PE distribution can be 

increasing as well. The motivation behind introducing the PE distribution can be explained as follows. 

Consider a parallel system whose number of components is not fixed. In other words, the number of 

the components, denoted by M, is a positive discrete random variable. Let 𝑇1, 𝑇2, ⋯ , 𝑇𝑀 denote the 

lifetimes of the components and therefore 𝑋 = max(𝑇1, 𝑇2,⋯ , 𝑇𝑀) be the lifetime of the whole 

system. Now, suppose that M follows a zero–truncated Poisson distribution with parameter 𝜃 and 

the 𝑇𝑖 are independent and identically distributed (iid) according to an exponential distribution with 

parameter 𝜆. In addition, the 𝑇𝑖 and M are independent. Then, the random variable X follows a PE 

distribution with parameters 𝜃 and 𝜆.  Therefore, the PE distribution can be used to model a parallel 

system, whose components’ lifetimes are iid exponential random variables and the number of 
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components follows a zero-truncated Poisson distribution. For more details, see Cancho et al. [2] and 

Louzada-Neto et al. [12]. 

 

The probability density function (pdf) of the PE distribution can be expressed as follows: 

 

𝑓(𝑥) =
𝜃𝜆𝑒−𝜆𝑥−𝜃𝑒−𝜆𝑥

1 − 𝑒−𝜃
 (1) 

 

where 𝑥 > 0, 𝜃 > 0 and 𝜆 > 0. We note that  𝜃 and 𝜆 are the shape and scale parameters, 

respectively. As 𝜃 approaches zero, the PE distribution converges to an exponential distribution with 

parameter 𝜆. The cumulative distribution function (cdf) of X is also given by 

 

𝐹(𝑥) = 1 −
1 − 𝑒−𝜃𝑒−𝜆𝑥

1 − 𝑒−𝜃
, 𝑥 > 0, 𝜆 > 0, 𝜃 > 0. (2) 

 

We write X ~ PE(𝜃, 𝜆), if the pdf and cdf of X can be written as (1) and (2), respectively. Moreover, 

the hrf of PE distribution is given by 

 

ℎ(𝑥) =
𝜃𝜆e−𝜆𝑥−𝜃e−𝜆𝑥

1−e−𝜃e−𝜆𝑥 ,       𝑥 > 0,       𝜆 > 0,     𝜃 > 0. 

 

Figure 1 shows the PE pdfs and hrfs for selected values of  𝜃 and 𝜆. From Figure 1, we see that the 

pdf can be either decreasing or unimodal and the hrf is increasing. 

 

 
Figure 1. Pdfs (left panel) and hrfs (right panel) of the PE distribution for selected values of the 

parameters. 

 

The Bayesian estimation for the PE distribution based on complete samples has been studied by 

Louzada-Neto et al. [12], Singh et al. [22] and Tomazella et al. [24]. Louzada-Neto et al. [12] and 

Singh et al. [22] found the Bayes estimators using a non-informative prior for the scale parameter and 

a gamma prior for the shape parameter. Tomazella et al. [24] focused on the Bayesian analysis using 

a joint reference prior for the parameters. As we will see later, an important problem that arises in 

Bayesian estimation of the parameters of the PE distribution is that the integrals pertaining to the 
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Bayes estimates do not seem to possess explicit forms. Therefore, one may use a suitable method to 

approximate these integrals. Louzada-Neto et al. [12], Singh et al. [22] and Tomazella et al. [24] 

applied the Metropolis-Hastings within Gibbs sampling method in order to handle this problem. 

However, there exist some other approximation methods that can also be implemented. Here, we are 

to apply two other methods, namely the Tierney Kadane and importance sampling methods to deal 

with the mentioned problem and then compare the methods by means of a Monte Carlo simulation. 

Here, we note that Arabi Belaghi et al. [1], who worked on the Bayesian estimation of the parameters 

of the PE distribution based on type-II censored order statistics, employed the importance sampling 

method as well as the Lindley approximation method. However, it seems that the Tierney Kadane 

approximation method for approximating Bayesian estimates of parameters of the PE distribution has 

not been investigated yet. We do not apply the Lindley method here because of its complexity. 

 

The outline of the remaining parts of paper can be summarized as follows. Section 2 is devoted to 

maximum likelihood (ML) estimation. The information matrix and the asymptotic confidence 

intervals for the parameters are also obtained.  In Section 3, we discuss the Bayesian estimation of 

the parameters under the SEL function. As we mentioned earlier and will see later, it seems that the 

integrals pertaining to the Bayes point estimates cannot be expressed explicitly. Therefore, we suggest 

using three methods to approximate these integrals. In this regard, we propose the Tierney Kadane 

approximation method, the importance sampling approximation method and the Metropolis-Hastings 

within Gibbs algorithm. The credible intervals for the parameters are also obtained using the method 

described by Chen and Shao [4]. We compare the performance of the point and interval estimators 

by means of a Monte Carlo simulation in Section 4.  Finally, our concluding remarks are given in 

Section 5. 

 

2. Maximum Likelihood Estimation 
 

The maximum likelihood method is a most popular classical method of estimation of unknown 

parameters. Let 𝒙 = (𝑥1, ⋯ , 𝑥𝑛) be a set of an observed random sample of size 𝑛 from PE(𝜃, 𝜆). 

Then, the likelihood function is given by 

 

𝐿(𝜃, 𝜆|𝒙) =
𝜃𝑛𝜆𝑛 𝑒−𝜆∑ 𝑥𝑖

𝑛
𝑖=1 −𝜃∑ 𝑒−𝜆𝑥𝑖𝑛

𝑖=1

(1 − 𝑒−𝜃)𝑛
. (3) 

 

The log-likelihood function of the parameters is given by 

 

ℓ(𝜃, 𝜆) = 𝑛 log(𝜃𝜆) − 𝜆 ∑𝑥𝑖

𝑛

𝑖=1

− 𝜃 ∑𝑒−𝜆𝑥𝑖

𝑛

𝑖=1

− 𝑛 log(1 − 𝑒−𝜃). 

 

The ML estimates of the parameters will be obtained by means of maximizing ℓ(𝜃, 𝜆) with respect 

to (w.r.t.)  𝜃 and 𝜆; see Louzada-Neto et al. [12] for the nonlinear equations which can help us obtain 

the ML estimates; In our work here, we compute the ML estimates by using the optim function in R 

[16].  

 

Though the main purpose of this paper does not involve interval estimation, we state here how we 

can obtain asymptotic confidence intervals for the unknown parameters. Let 𝜃𝑀𝐿𝐸 and 𝜆̂𝑀𝐿𝐸 denote 

the ML estimators of 𝜃 and 𝜆, respectively. Then, under the regularity conditions (see Lehmann and 

Casella [11]), as n tends to infinity, we have 
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((𝜃𝑀𝐿𝐸 , 𝜆̂𝑀𝐿𝐸) − (𝜃, 𝜆)) → 𝑁2 (𝟎,
1

𝑛
𝐼−1(𝜃, 𝜆)), 

 

Where by → we mean convergence in distribution, 𝑁2(. , . ) denotes the two-variate normal 

distribution, 𝟎 is a two-dimensional vector whose elements are both zero and 𝐼−1(𝜃, 𝜆) is the inverse 

of the information matrix, 𝐼(𝜃, 𝜆);  see Louzada-Neto et al. [12] who derived the elements of the 

information matrix. 

 

The unknown parameters that appear in the elements of 𝐼−1(𝜃, 𝜆) may be replaced by their 

corresponding ML estimators to get an estimator of 𝐼−1(𝜃, 𝜆), which may be denoted as 𝐼−1(𝜃, 𝜆). 

Therefore, the estimators of the asymptotic variances of  𝜃𝑀𝐿𝐸 and 𝜆̂𝑀𝐿𝐸, that are denoted by 

𝑉𝑎𝑟̂(𝜃𝑀𝐿𝐸) and 𝑉𝑎𝑟̂(𝜆̂𝑀𝐿𝐸), respectively, are given by the first and second diagonal elements of 
1

𝑛
𝐼−1(𝜃, 𝜆), respectively. Now, the modified asymptotic 100(1 − 𝛼)% two-sided equi-tailed 

confidence intervals (MATE CIs) for 𝜃 and 𝜆 are given by 

 

(max{0, 𝜃𝑀𝐿𝐸 − 𝑧𝛼

2

√𝑉𝑎𝑟̂(𝜃̂𝑀𝐿𝐸)} , 𝜃𝑀𝐿𝐸 + 𝑧𝛼/2√𝑉𝑎𝑟̂(𝜃𝑀𝐿𝐸)),                    

 

and   

    

(max{0, 𝜆̂𝑀𝐿𝐸 − 𝑧𝛼 2⁄ √𝑉𝑎𝑟̂(𝜆̂𝑀𝐿𝐸)} , 𝜆̂𝑀𝐿𝐸 + 𝑧𝛼 2⁄ √𝑉𝑎𝑟̂(𝜆̂𝑀𝐿𝐸)),       

 

respectively, where 𝑧𝛼 2⁄  is the right (𝛼 2⁄ )-th quantile of the standard normal distribution. 

 

Let 

 

𝐽−1(𝜃, 𝜆) = [
−

𝜕2ℓ(𝜃,𝜆)

𝜕𝜃2 −
𝜕2ℓ(𝜃,𝜆)

𝜕𝜃𝜕𝜆

−
𝜕2ℓ(𝜃,𝜆)

𝜕𝜆𝜕𝜃
−

𝜕2ℓ(𝜃,𝜆)

𝜕𝜆2

]

−1

,  

 

where 

 

−
𝜕2ℓ(𝜃,𝜆)

𝜕𝜃2 =
𝑛

𝜃2 −
𝑛𝑒−𝜃

(1−𝑒−𝜃)
2,       −

𝜕2ℓ(𝜃,𝜆)

𝜕𝜃𝜕𝜆
= −∑ 𝑥𝑖𝑒

−𝜆𝑥𝑖𝑛
𝑖=1 ,       −

𝜕2ℓ(𝜃,𝜆)

𝜕𝜆2 =
𝑛

𝜆2 + 𝜃 ∑ 𝑥𝑖
2𝑒−𝜆𝑥𝑖𝑛

𝑖=1 . 

 

Suppose that 𝐽−1(𝜃, 𝜆) is the estimate of 𝐽−1(𝜃, 𝜆) being obtained by replacing the unknown 

parameters appearing in the elements of 𝐽−1(𝜃, 𝜆) with their corresponding ML estimates. In practical 

situations, we can use 𝐽−1(𝜃, 𝜆) instead of the observed matrix 
1

𝑛
𝐼−1(𝜃, 𝜆). 

 

3.  Bayesian Estimation 
 

In the Bayesian analysis, it is assumed that the unknown parameters are random variables with a 

joint prior density function. The prior density function and its hyperparameters can be determined 

based on the past knowledge and experience. When no prior knowledge is available, non-informative 
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priors can be implemented for the purpose of Bayesian inference. Here, we assume that 𝜃 and 𝜆 are 

independent gamma random variables with prior densities as follows (see Arabi Belaghi et al. [1]): 

 

𝜋(𝜃|𝑎1, 𝑏1) =
𝑏1

𝑎1𝜃𝑎1−1𝑒−𝑏1𝜃

Γ(𝑎1)
     and    𝜋(𝜆|𝑎2, 𝑏2) =

𝑏2
𝑎2𝜆𝑎2−1𝑒−𝑏2𝜆

Γ(𝑎2)
 (4) 

 

where the hyperparameters 𝑎1, 𝑏1, 𝑎2 and 𝑏2 are all positive and known. The gamma prior possesses 

explicit expressions for its mean and variance and consequently we can include our prior information 

about the mean and/or variance of the parameter easier. From (4), the joint prior pdf of 𝜃 and 𝜆 is 

 

𝜋(𝜃, 𝜆) =  𝜋(𝜆|𝑎2, 𝑏2) 𝜋(𝜃|𝑎1, 𝑏1),   𝜃 > 0,   𝜆 > 0. (5) 

 

Let  𝒙 = (𝑥1,⋯ , 𝑥𝑛) be an observed vector of a random sample of size 𝑛 from PE(𝜃, 𝜆). Then, 

from (1) and (5), the joint posterior pdf of 𝜃 and 𝜆 given x is given by 

 

𝜋(𝜃, 𝜆|𝒙) =
𝜃𝑛+𝑎1−1𝜆𝑛+𝑎2−1𝑒−𝜃(𝑏1+∑ 𝑒−𝜆𝑥𝑖𝑛

𝑖=1 )−𝜆(𝑏2+∑ 𝑥𝑖
𝑛
𝑖=1 )

C0(1 − 𝑒−𝜃)𝑛
, (6) 

 

where 

 

𝐶0 = ∫ ∫
𝜃𝑛+𝑎1−1𝜆𝑛+𝑎2−1𝑒−𝜃(𝑏1+∑ 𝑒−𝜆𝑥𝑖𝑛

𝑖=1 )−𝜆(𝑏2+∑ 𝑥𝑖
𝑛
𝑖=1 )

(1 − 𝑒−𝜃)𝑛
d𝜃d𝜆

∞

0

∞

0

. 

 

Here, we derive the Bayes estimates under the SEL function, which is symmetric. Let 𝜃̃ be an 

estimator of parameter 𝜃. Then, the SEL function is defined as 𝐿𝑜𝑠𝑠1(𝜃̃, 𝜃) = (𝜃̃ − 𝜃)2. The 

Bayesian point estimate under the SEL function is the posterior mean of the parameter given the 

informative data. Therefore, in our case, the Bayes estimates of 𝜃 and 𝜆 are (provided that they exist) 

 

𝜃̃𝑆 = 𝐸(𝜃|𝒙) = ∫ ∫
𝜃𝑛+𝑎1𝜆𝑛+𝑎2−1𝑒−𝜃(𝑏1+∑ 𝑒−𝜆𝑥𝑖𝑛

𝑖=1 )−𝜆(𝑏2+∑ 𝑥𝑖
𝑛
𝑖=1 )

C0(1 − 𝑒−𝜃)𝑛
d𝜆d𝜃

∞

0

∞

0

, (7) 

𝜆̃𝑆 = 𝐸(𝜆|𝒙) = ∫ ∫
𝜃𝑛+𝑎1−1𝜆𝑛+𝑎2𝑒−𝜃(𝑏1+∑ 𝑒−𝜆𝑥𝑖𝑛

𝑖=1 )−𝜆(𝑏2+∑ 𝑥𝑖
𝑛
𝑖=1 )

C0(1 − 𝑒−𝜃)𝑛
d𝜆d𝜃

∞

0

∞

0

, (8) 

 

respectively. 

 

It seems that the integrals (7) and (8) do not have explicit forms and therefore numerical techniques 

may be used to approximate these integrals. In what follows, we explain three procedures for 

approximating these integrals, namely the Tierney Kadane approximation method, the importance 

sampling method and the Metropolis-Hastings within Gibbs method. 

 

3.1. Tierney Kadane Approximation Method 

 

The Tierney Kadane approximation method was proposed by Tierney and Kadane [23]. We want 

to approximate 𝐸(𝑢(𝜃, 𝜆)|𝒙). In this regard, we define the functions 𝐿0 and 𝐿∗,  respectively, as 

follows: 
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𝐿0(𝜃, 𝜆) =
1

𝑛
[log(𝐿(𝜃, 𝜆|𝒙)) + log(𝜋(𝜃, 𝜆))], 

𝐿∗(𝜃, 𝜆) = 𝐿0(𝜃, 𝜆) +
1

𝑛
log(𝑢(𝜃, 𝜆)). 

 

Assume that  (𝜃0, 𝜆̂0) and (𝜃∗, 𝜆̂∗) are the maximizing points of 𝐿0(𝜃, 𝜆) and 𝐿∗(𝜃, 𝜆), 

respectively, such that 𝜃0  and 𝜆̂0  are the unique maximizers of 𝐿0(𝜃, 𝜆) and are obtained by solving 

the equations  
𝐿0(𝜃,𝜆)

𝜕𝜃
= 0 and 

𝐿0(𝜃,𝜆)

𝜕𝜆
= 0 simultaneously and 𝜃∗  and 𝜆̂∗ are also obtained by solving 

the equations 
𝐿∗(𝜃,𝜆)

𝜕𝜃
= 0 and 

𝐿∗(𝜃,𝜆)

𝜕𝜆
= 0 simultaneously. Assume further that Σ0 and Σ∗ are minus the 

inverse Hessians of 𝐿0 and 𝐿∗ at (𝜃0, 𝜆̂0) and (𝜃∗, 𝜆̂∗), respectively. Then, the approximate value of 

𝐸(𝑢(𝜃, 𝜆)|𝒙) is obtained from the following relation 

 

𝐸̂(𝑢(𝜃, 𝜆)|𝒙) = √
|Σ∗|

|Σ0|
exp [𝑛 (𝐿∗(𝜃∗, 𝜆̂∗) − 𝐿0(𝜃0, 𝜆̂0))]. 

 

In our case for the PE distribution, we have 

 

𝐿0(𝜃, 𝜆) = log(𝜃𝜆) −
𝜆

𝑛
∑𝑥𝑖

𝑛

𝑖=1

−
𝜃

𝑛
∑𝑒−𝜆𝑥𝑖

𝑛

𝑖=1

− log(1 − 𝑒−𝜃)

+
(𝑎1 − 1) log(𝜃) + (𝑎2 − 1) log(𝜆) − 𝜃𝑏1 − 𝜆𝑏2

𝑛
+ 𝐴, 

 

where 

 

𝐴 =
𝑎1 log(𝑏1) + 𝑎2 log(𝑏2) − log(Γ(𝑎1)) − log(Γ(𝑎2))

𝑛
. 

 

Thus, 𝜃0 and 𝜆̂0 are obtained by solving the following nonlinear equations simultaneously: 

 

𝜕𝐿0(𝜃, 𝜆)

𝜕𝜃
=

𝑛 + 𝑎1 − 1

𝑛𝜃
−

𝑒−𝜃

1 − 𝑒−𝜃
−

𝑏1 + ∑ 𝑒−𝜆𝑥𝑖𝑛
𝑖=1

𝑛
= 0, 

𝜕𝐿0(𝜃, 𝜆)

𝜕𝜆
=

𝑛 + 𝑎2 − 1

𝑛𝜆
+

𝜃 ∑ 𝑥𝑖𝑒
−𝜆𝑥𝑖𝑛

𝑖=1 − ∑ 𝑥𝑖
𝑛
𝑖=1 − 𝑏2

𝑛
= 0. 

 

Now, to approximate the Bayes estimate of 𝜃 under the SEL function, i.e., 𝐸(𝜃|𝒙), we set 

𝑢(𝜃, 𝜆) = 𝜃. As a result, we have 

 

𝐿∗𝑆(𝜃, 𝜆) = 𝐿0(𝜃, 𝜆) +
1

𝑛
log(𝜃). 

 

Then, 𝜃∗𝑆 and 𝜆̂∗𝑆 are obtained by solving the following nonlinear equations simultaneously: 

 

𝜕𝐿∗𝑆(𝜃, 𝜆)

𝜕𝜃
=

𝑛 + 𝑎1

𝑛𝜃
−

𝑒−𝜃

1 − 𝑒−𝜃
−

𝑏1 + ∑ 𝑒−𝜆𝑥𝑖𝑛
𝑖=1

𝑛
= 0, 
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𝜕𝐿∗𝑆(𝜃, 𝜆)

𝜕𝜆
=

𝑛 + 𝑎2 − 1

𝑛𝜆
+

𝜃 ∑ 𝑥𝑖𝑒
−𝜆𝑥𝑖𝑛

𝑖=1 − ∑ 𝑥𝑖
𝑛
𝑖=1 − 𝑏2

𝑛
= 0. 

 

Let 

 

𝐴11(𝜃, 𝜆) = −
𝜕2𝐿0(𝜃, 𝜆)

𝜕𝜃2
=

𝑛 + 𝑎1 − 1

𝑛𝜃2
−

𝑒−𝜃

(1 − 𝑒−𝜃)2
, 

𝐴12(𝜃, 𝜆) = −
𝜕2𝐿0(𝜃, 𝜆)

𝜕𝜃𝜕𝜆
= −

∑ 𝑥𝑖𝑒
−𝜆𝑥𝑖𝑛

𝑖=1

𝑛
, 

𝐴22(𝜃, 𝜆) = −
𝜕2𝐿0(𝜃, 𝜆)

𝜕𝜆2
=

𝑛 + 𝑎2 − 1

𝑛𝜆2
+

𝜃 ∑ 𝑥𝑖
2𝑒−𝜆𝑥𝑖𝑛

𝑖=1

𝑛
, 

𝐴11
∗ (𝜃, 𝜆) = −

𝜕2𝐿∗𝑆(𝜃, 𝜆)

𝜕𝜃2
=

𝑛 + 𝑎1

𝑛𝜃2
−

𝑒−𝜃

(1 − 𝑒−𝜃)2
. 

 

The approximate Bayes estimate of 𝜃 under the SEL function based on the Tierney Kadane method 

is given by 

 

𝜃̃𝑇−𝐾 = √
𝐴11(𝜃0, 𝜆̂0)𝐴22(𝜃0, 𝜆̂0) − [𝐴12(𝜃̂0, 𝜆̂0)]

2

𝐴11
∗ (𝜃̂∗𝑆, 𝜆̂∗𝑆)𝐴22(𝜃∗𝑆, 𝜆̂∗𝑆) − [𝐴12(𝜃∗𝑆, 𝜆̂∗𝑆)]

2 exp [𝑛 (𝐿∗𝑆(𝜃∗𝑆, 𝜆̂∗𝑆) − 𝐿0(𝜃0, 𝜆̂0))]. 

 

Similarly, we can derive the approximate Bayes estimates of 𝜆 under the SEL function based on the 

Tierney Kadane approximation method. 

 

3.2. Importance Sampling Method 

 

Another well-known method for approximating Bayesian estimates is called the importance 

sampling method. As mentioned earlier, this method was also used by Arabi Belaghi et al. [1] to 

approximate the Bayesian estimates of parameters of the PE distribution based on type-II censored 

data. Given the vector of random sample 𝒙, the joint posterior density function of 𝜃 and 𝜆, relation 

(6), can be rewritten as 

 

𝜋(𝜃, 𝜆|𝒙) = 𝑔1(𝜆|𝒙)𝑔2(𝜃|𝜆, 𝒙)ℎ(𝜃, 𝜆, 𝒙), 
 

where 𝑔1(𝜆|𝒙) is a gamma density function with parameters 𝑛 + 𝑎2 and 𝑏2 + ∑ 𝑥𝑖
𝑛
𝑖=1 ,   𝑔2(𝜃|𝜆, 𝒙) is 

a gamma density function with  parameters 𝑛 + 𝑎1 and 𝑏1 + ∑ e−𝜆𝑥𝑖𝑛
𝑖=1  and ℎ(𝜃, 𝜆, 𝒙) is given by 

 

ℎ(𝜃, 𝜆, 𝒙) =
Γ(𝑛 + 𝑎1)Γ(𝑛 + 𝑎2)

(𝑏1 + ∑ e−𝜆𝑥𝑖𝑛
𝑖=1 )

𝑛+𝑎1
(𝑏2 + ∑ 𝑥𝑖

𝑛
𝑖=1 )

𝑛+𝑎2
𝐶0(1 − e−𝜃)𝑛

. 

 

Now, the Bayesian estimates of the parameters can be approximated using Algorithm 1 below. 

 

Algorithm 1: 

Step 1. Generate 𝜆1from 𝑔1(𝜆|𝒙) and then given 𝜆1, generate 𝜃1from 𝑔2(𝜃|𝜆1, 𝒙). 

Step 2. Repeat Step 1, M times to obtain (𝜃1, 𝜆1),⋯ , (𝜃𝑀, 𝜆𝑀), where M is a large number. 

Step 3. The approximate Bayes estimates of 𝜃 and 𝜆 under the SEL function are given by 
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𝜃̃𝐼−𝑆 =
∑ 𝜃𝑖ℎ(𝜃𝑖,𝜆𝑖,𝒙)𝑀

𝑖=1

∑ ℎ(𝜃𝑖,𝜆𝑖,𝒙)𝑀
𝑖=1

,     and   𝜆̃𝐼−𝑆 =
∑ 𝜆𝑖ℎ(𝜃𝑖,𝜆𝑖,𝒙)𝑀

𝑖=1

∑ ℎ(𝜃𝑖,𝜆𝑖,𝒙)𝑀
𝑖=1

, 

 

respectively. 

  

Equivalently, the approximate Bayes estimates of 𝜃 and 𝜆 under the SEL function based on the 

importance sampling method can be rewritten as 

 

𝜃̃𝐼−𝑆 =
∑ 𝜃𝑖ℎ

∗(𝜃𝑖,𝜆𝑖,𝒙)𝑀
𝑖=1

∑ ℎ∗(𝜃𝑖,𝜆𝑖,𝒙)𝑀
𝑖=1

,     and   𝜆̃𝐼−𝑆 =
∑ 𝜆𝑖ℎ

∗(𝜃𝑖,𝜆𝑖,𝒙)𝑀
𝑖=1

∑ ℎ∗(𝜃𝑖,𝜆𝑖,𝒙)𝑀
𝑖=1

, 

 

respectively, where 

 

ℎ∗(𝜃, 𝜆, 𝒙) =
1

(𝑏1 + ∑ e−𝜆𝑥𝑖𝑛
𝑖=1 )

𝑛+𝑎1(1 − e−𝜃)𝑛
. 

 

3.3. Metropolis-Hastings within Gibbs Method 

 

The Metropolis-Hastings algorithm is one of the most popular methods being applied by 

researchers to deal with complicated integrals related to Bayesian inference. The algorithm was first 

proposed by Metropolis et al. [13] and then generalized by Hastings [7]. Using a Metropolis-Hastings 

algorithm, one tries to simulate a Markov chain whose stationary distribution is approximately the 

same as the posterior distribution of interest. To this end, the algorithm generates numbers from a 

proposal distribution and updates them step by step so that the generated sample can be considered 

sensibly as a sample from the target posterior distribution. Here, since we have two parameters, the 

univariate proposal distribution of each parameter can be updated at a time by the newest generated 

value of that parameter and thus, we use a method that is somehow similar to the Gibbs sampling. 

Therefore, the method is called the “Metropolis-Hastings within Gibbs method”, but note that it is 

naturally different from the Gibbs sampling; see, for example, Carlin and Louis [3] for more details. 

 

Louzada-Neto et al. [12], Singh et al. [22] and Tomazella et al. [24] applied the Metropolis-

Hastings within Gibbs sampling method in order to approximate the Bayes estimates of the 

parameters of the PE distribution. Louzada-Neto et al. [12] and Tomazella et al. [24] utilized a 

transformation procedure to apply the Metropolis-Hastings within Gibbs more efficiently. Here, we 

follow their procedure and describe the procedure in detail. The conditional posterior density of 𝜃 

given 𝜆 and x is 

 

𝜋(𝜃|𝜆, 𝒙) ∝
𝜃𝑛+𝑎1−1𝑒−𝜃(𝑏1+∑ 𝑒−𝜆𝑥𝑖𝑛

𝑖=1 )

(1 − 𝑒−𝜃)𝑛
.             

 

Moreover, the conditional posterior density of 𝜆 given 𝜃 and x is 

 

𝜋(𝜆|𝜃, 𝒙) ∝ 𝜆𝑛+𝑎2−1𝑒−𝜃 ∑ 𝑒−𝜆𝑥𝑖𝑛
𝑖=1 −𝜆(𝑏2+∑ 𝑥𝑖

𝑛
𝑖=1 ).             

 

These conditional densities do not belong to the known distributions (note that if the conditional 

distributions belong to the known distributions and we could generate samples directly from them, 

then there will be no need to use the Metropolis-Hastings algorithm and we can use the Gibbs 

sampling procedure). Now, let 𝜂 = log(𝜃) and 𝛾 = log(𝜆), where −∞ < 𝜂 < ∞ and −∞ < 𝛾 < ∞.  

The joint distribution of 𝜂 and 𝛾 is given by 
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𝜋(𝜂, 𝛾|𝒙) =
𝑒𝜂(𝑛+𝑎1)+𝛾(𝑛+𝑎2)𝑒−𝑒𝛾(𝑏2+∑ 𝑥𝑖

𝑛
𝑖=1 )𝑒

−𝑒𝜂(𝑏1+∑ 𝑒−𝑒𝛾𝑥𝑖𝑛
𝑖=1 )

𝐶0(1 − 𝑒−𝑒𝜂)𝑛
. 

 

Thus, the conditional densities of 𝜂 and 𝛾 are given by 

 

𝜋(𝜂|𝛾, 𝒙) ∝
𝑒𝜂(𝑛+𝑎1)𝑒

−𝑒𝜂(𝑏1+∑ 𝑒−𝑒𝛾𝑥𝑖𝑛
𝑖=1 )

(1 − 𝑒−𝑒𝜂)𝑛
, 

 

and  

 

𝜋(𝛾|𝜂, 𝒙) ∝ 𝑒𝛾(𝑛+𝑎2)𝑒−𝑒𝛾(𝑏2+∑ 𝑥𝑖
𝑛
𝑖=1 )𝑒−𝑒𝜂 ∑ 𝑒−𝑒𝛾𝑥𝑖𝑛

𝑖=1 , 
 

respectively.  

 

Following Tomazella et al. [24], we use the random walk procedure to generate samples from 

𝜋(𝜂, 𝛾|𝒙). We can also use the thinning approach, namely we discard all the generated samples but 

every k-th generated pairs of numbers, to reduce the autocorrelation of the chain. So, we employ 

Algorithm 2 below.  

 

Algorithm 2: 

Step 1. Start with a guess vector (𝜂0, 𝛾0) and set 𝑞 = 1. 
Step 2. Generate a random normal variate Z with the mean zero and variance 𝜏1

2. Given the vector 

(𝜂𝑞−1, 𝛾𝑞−1), set 𝜂𝑞 = 𝜂𝑞−1 + 𝜎𝑍 with probability 

𝑃 = min{1,
𝜋(𝜂𝑞|𝛾𝑞−1, 𝒙)

𝜋(𝜂𝑞−1|𝛾𝑞−1, 𝒙)
} ; 

Otherwise, set 𝜂𝑞 = 𝜂𝑞−1. 

Step 3. Generate another random normal variate Z with the mean zero and variance 𝜏2
2. Given the 

vector (𝜂𝑞 , 𝛾𝑞−1), set 𝛾𝑞 = 𝛾𝑞−1 + 𝜎𝑍 with probability 

𝑃 = min {1,
𝜋(𝛾𝑞|𝜂𝑞 , 𝒙)

𝜋(𝛾𝑞−1|𝜂𝑞, 𝒙)
} ; 

Otherwise, set 𝛾𝑞 = 𝛾𝑞−1. 

Step 4. Set 𝑞 = 𝑞 + 1 and repeat Steps 2 and 3, 𝑁 times, where 𝑁 is a large number. 

Step 5. For 𝑞 = 1,… ,𝑁, set 𝜃𝑞 = 𝑒𝜂𝑞  and 𝜆𝑞 = 𝑒𝛾𝑞. Then, the generated sample from 𝜋(𝜃, 𝜆|𝒙) will 

be ((𝜃𝑇+1, 𝜆𝑇+1), (𝜃𝑇+𝑘+1, 𝜆𝑇+𝑘+1),… , (𝜃𝑇+𝑘(𝑁′−1)+1, 𝜆𝑇+𝑘(𝑁′−1)+1)), where 𝑇 is a burn-in period, 

k is the thinning parameter and 𝑁′ is the size of the generated sample. Let us denote the generated 

sample by ((𝜃1
′ , 𝜆1

′ ), (𝜃2
′ , 𝜆2

′ ),… , (𝜃𝑁′
′ , 𝜆𝑁′

′ )), for the sake of simplicity. 

       

Here, we set (𝜂0, 𝛾0) = (log(𝜃) , log(𝜆̂)), where 𝜃 and 𝜆̂ are the ML estimates of 𝜃 and 𝜆, 

respectively. In addition, we take the scale parameter 𝜎 to be 2 (see Tomazella et al. [24]). We discuss 

how to choose 𝜏1
2 and 𝜏2

2 in the Appendix. Now, given the generated sample 

((𝜃1
′ , 𝜆1

′ ), (𝜃2
′ , 𝜆2

′ ), … , (𝜃𝑁′
′ , 𝜆𝑁′

′ )), the approximate Bayes of 𝜃 and 𝜆 under the SEL function based 

on the Metropolis-Hastings within Gibbs method are given by 

 

𝜃̃𝑀𝐻𝐺𝑖𝑏𝑏𝑠 =
1

𝑁′
∑ 𝜃𝑖

′𝑁′

𝑖=1 ,     and   𝜆̃𝑀𝐻𝐺𝑖𝑏𝑏𝑠 =
1

𝑁′
∑ 𝜆𝑖

′𝑁′

𝑖=1 , 
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respectively.  

 

We can also find credible intervals for 𝜃 and 𝜆 using the method described by Chen and Shao [4]. To 

this end, first sort the generated sample (𝜃1
′ , … , 𝜃𝑁′

′ ) to get 𝜃(1) ≤ 𝜃(2) ≤ ⋯ ≤ 𝜃(𝑁′). Construct the 

intervals (𝜃(𝑗), 𝜃(𝑗+[(1−𝛼)𝑁′])), for 𝑗 = 1,… ,𝑁′ − [(1 − 𝛼)𝑁′], where [𝑥] is the integer part of x. 

Then, the Chen and Shao shortest credible interval (CSS CrI) for 𝜃 is given by the shortest interval 

among all the (𝜃(𝑗), 𝜃(𝑗+[(1−𝛼)𝑁′])). Similarly, we can find the CSS CrI for  𝜆. 

 

4. Simulation  
 

Our main goal here, as pointed out earlier, is to compare three methods of approximating the 

integrals that are related to Bayes estimates of the parameters of the PE distribution. These methods 

are the Tierney Kadane method, importance sampling procedure and the Metropolis-Hastings within 

Gibbs algorithm, as described earlier. We also compare MATE CIs with CSS CrIs in terms of average 

width (AW) and coverage probability (CP). To this end, we conduct a simulation study. We consider 

two sample sizes 𝑛 = 70 and 150. We also use the standard exponential priors (the standard 

exponential distribution is a special case of the gamma distribution), namely we set 𝑎1 = 𝑏1 = 𝑎2 =
𝑏2 = 1. We take the values of the scale parameter to be 𝜆 = 0.5, 1 and 2, and the values of the shape 

parameter to be 𝜃 = 3 and 5. For the importance sampling method, we take 𝑀 = 3000 which seems 

to be sufficiently large. In applying the Metropolis-Hastings within Gibbs method, we implemented 

the thinning technique. For the Metropolis-Hastings within Gibbs method, the settings are as follows: 

𝑁 = 20000𝑘 + 𝑇, where  𝑇 = 2000 is the burn-in period and k, the thinning parameter, is mostly 

taken to be 2 but also taken to be 3 or 4 for some iterations. So, the size of each generated Markov 

chain Monte Carlo (MCMC) sample is 𝑁′ = 20000. In addition, the convergence of the MCMC 

samples generated by the Metropolis-Hastings within Gibbs method are checked using the Geweke’s 

test (see Geweke [5]),  Raftery and Lewis’s diagnostic (see Raftery and Lewis [17,18]) and 

Heidelberger and Welch’s convergence diagnostic (see Heidelberger and Welch [10]). It is worth 

mentioning that Heidelberger and Welch [10] combined the works of Heidelberger and Welch [8], 

Heidelberger and Welch [9], Schruben [19], Schruben et al. [20] and Schruben et al. [21]. The results 

of our simulation are based on 𝐽 = 1000 Monte Carlo replicates. The generated Metropolis-Hastings 

within Gibbs Markov chains for 𝜃 =  3, 𝜆 = 2 and 𝑛 = 70  for one of the iterations are given in 

Figure 2, from which we can verify the convergence.  
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Figure 2. Metropolis-Hastings within Gibbs Markov chains for 𝜃 =  3, 𝜆 = 2 and 𝑛 = 70. 

 

Assume that 𝜃 is an estimator of 𝜃 and  𝜃𝑖 is the corresponding estimate of  𝜃  obtained in the i-th 

replication. Then, the estimated mean squared error (EMSE) of 𝜃 is given by 

 

𝐸𝑀𝑆𝐸(𝜃) =
1

𝐽
∑(𝜃𝑖 − 𝜃)

2

𝐽

𝑖=1

. 

 

Similarly, we can define the EMSE of an estimator of 𝜆. The simulation results regarding the point 

estimators are presented in tables 1 and 2 and the ones regarding the interval estimators are given in 

Table 3. From tables 1 and 2, we observe that there exist some cases in which the Bayes estimates 

being approximated based on the Tierney Kadane method perform better than the other estimates. 

This is also true for the other estimates specially for the ML estimates. From these tables, we cannot 

draw a general conclusion for identifying the best estimator. We cannot say which approximation is 

the best either, as we must compare the approximate Bayes estimates with the true values of the 

integrals not the true values of the parameters. From Table 3, we see that CSS CrIs have smaller AWs 

than the MATE CIs for most cases but MATE CIs have larger CPs in all the cases. 

 

 

 

 

 

 

 

 

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

30
 ]

 

                            11 / 16

http://iors.ir/journal/article-1-644-en.html


Approximating Bayes Estimates in the Poisson-exponential distribution  75 

 

Table 1. The EMSEs of the point estimators of 𝜃 and 𝜆 when  𝑛 = 70. 

Point Estimators of 𝜃 

Metropolis-Hastings 

within Gibbs 

Importance Sampling Tierney Kadane ML Estimator (𝜃, 𝜆) 

0.71640 0.51979 0.72451 0.66491 (3,0.5) 

0.76780 0.53763 0.79023 0.66405 (3,1) 
0.89359 0.56926 0.91876 0.71863 (3,2) 
1.14446 4.89455 1.13655 1.33691 (5,0.5) 
1.20097 5.12868 1.19437 1.17753 (5,1) 
1.19276 5.05687 1.18567 1.37910 (5,2) 

Point Estimators of 𝜆 

Metropolis-Hastings 

within Gibbs 

Importance Sampling Tierney Kadane ML Estimator (𝜃, 𝜆) 

0.00421 0.01274 0.00445 0.00400 (3,0.5) 

0.01743 0.05317 0.24707 0.01543 (3,1) 
0.08233 0.22127 0.08934 0.06805 (3,2) 
0.00315 0.03015 0.00315 0.00317 (5,0.5) 
0.01219 0.12250 0.01218 0.01104 (5,1) 
0.05352 0.50689 0.05353 0.04931 (5,2) 

 

Table 2. The EMSEs of the point estimators of 𝜃 and 𝜆 when  𝑛 = 150. 

Point Estimators of 𝜃 

Metropolis-Hastings 

within Gibbs 

Importance Sampling Tierney Kadane ML Estimator (𝜃, 𝜆) 

0.29349 0.47261 0.29279 0.26950 (3,0.5) 

0.30360 0.47837 0.30102 0.26990 (3,1) 
0.30914 0.49955 0.30592 0.27709 (3,2) 
0.51747 5.51200 0.51682 0.56022 (5,0.5) 
0.45528 5.58900 0.45341 0.47218 (5,1) 
0.51523 5.60340 0.51414 0.54667 (5,2) 

Point Estimators of 𝜆 

Metropolis-Hastings 

within Gibbs 

Importance Sampling Tierney Kadane ML Estimator (𝜃, 𝜆) 

0.00182 0.02017 0.00187 0.00173 (3,0.5) 

0.00792 0.08136 0.00791 0.00744 (3,1) 
0.03132 0.33416 0.03131 0.02923 (3,2) 
0.00127 0.04225 0.00127 0.00126 (5,0.5) 
0.00499 0.16982 0.00503 0.00496 (5,1) 
0.02231 0.68597 0.02225 0.02157 (5,2) 
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Table 3. The AWs and CPs of the interval estimators of 𝜃 and 𝜆. 
Interval Estimators of 𝜃 

𝑛 = 150 𝑛 = 70   
CSS CrI MATE CI CSS CrI MATE CI  (𝜃, 𝜆) 
2.0550 

0.9390 

2.0776 

0.9660 

2.9866 

0.8840 

3.0983 

0.9600 

AW 

CP 
(3,0.5) 

2.0529 

0.9320 

2.0752 

0.9620 

2.9904 

0.8730 

3.0998 

0.9590 

AW 

CP 
(3,1) 

2.0584 

0.9340 

2.0809 

0.9610 

2.9693 

0.8350 

3.0982 

0.9540 

AW 

CP 
(3,2) 

2.5801 

0.9160 

2.7517 

0.9440 

3.6469 

0.8680 

4.1709 

0.9660 

AW 

CP 
(5,0.5) 

2.5769 

0.9190 

2.7495 

0.9630 

3.6151 

0.8820 

4.1190 

0.9640 

AW 

CP 
(5,1) 

2.5713 

0.9160 

2.7572 

0.9520 

3.6454 

0.8720 

4.2164 

0.9590 

AW 

CP 
(5,2) 

Interval Estimators of 𝜆 

𝑛 = 150 𝑛 = 70   
CSS CrI MATE CI CSS CrI MATE CI  (𝜃, 𝜆) 
0.1680 
0.9540 

0.1670 
0.9560 

0.2470 

0.9400 
0.2454 
0.9590 

AW 

CP 
(3,0.5) 

0.3358 
0.9400 

0.3340 
0.9520 

0.4960 
0.9180 

0.4929 
0.9540 

AW 

CP 
(3,1) 

0.6724 
0.9380 

0.6684 
0.9520 

0.9878 
0.8920 

0.9860 
0.9430 

AW 

CP 
(3,2) 

0.1381 
0.9420 

0.1402 
0.9540 

0.2022 
0.9200 

0.2073 
0.9410 

AW 

CP 
(5,0.5) 

0.2767 
0.9400 

0.2809 
0.9640 

0.4059 
0.9310 

0.4156 
0.9580 

AW 

CP 
(5,1) 

0.5519 
0.9330 

0.5612 
0.9500 

0.8057 
0.9080 

0.8297 
0.9480 

AW 

CP 
(5,2) 

 

5. Concluding Remarks 
 

We discussed three approximation methods for approximating the Bayesian estimates of the 

parameters of the PE distribution and then presented a simulation study for the purpose of comparison. 

We also compared the classical and Bayesian interval estimators. We could not draw a general 

conclusion that which one of the approximation methods always performed the best. Our 

computations were performed using Maple 17 and R [16] using the packages nleqslv (see Hasselman 

[6]) and coda (see Plummer et al. [14] and Plummer et al. [15]) in R. 
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Appendix 
       

      Here, we discuss how to choose 𝜏1
2 and 𝜏2

2 in Algorithm 2. Suppose that 𝜂∗ and 𝛾∗ maximize 

𝜋(𝜂, 𝛾|𝒙). The logarithm of 𝜋(𝜂, 𝛾|𝒙) is given by 

 

log 𝜋(𝜂, 𝛾|𝒙) = −log𝐶0 +𝜂(𝑛 + 𝑎1) + 𝛾(𝑛 + 𝑎2) − 𝑒𝛾 (𝑏2 + ∑𝑥𝑖

𝑛

𝑖=1

) − 𝑒𝜂 (𝑏1 + ∑𝑒−𝑒𝛾𝑥𝑖

𝑛

𝑖=1

)

− 𝑛 log(1 − 𝑒−𝑒𝜂
). 

 

Solving the following two nonlinear equations help us find 𝜂∗ and 𝛾∗: 

 

𝜕 log 𝜋(𝜂, 𝛾|𝒙)

𝜕𝜂
= 𝑛 + 𝑎1 − 𝑒𝜂 (𝑏1 + ∑𝑒−𝑒𝛾𝑥𝑖

𝑛

𝑖=1

) −
𝑛𝑒𝜂−𝑒𝜂

1 − 𝑒−e𝜂 = 0, 

𝜕 log 𝜋(𝜂, 𝛾|𝒙)

𝜕𝛾
= 𝑛 + 𝑎2 − 𝑒𝛾 (𝑏2 + ∑𝑥𝑖

𝑛

𝑖=1

) + 𝑒𝜂+𝛾 ∑𝑥𝑖𝑒
−𝑒𝛾𝑥𝑖

𝑛

𝑖=1

= 0. 

 

Define matrix 𝑉 as follows: 

 

𝑉 =

[
 
 
 
 −

𝜕2 log 𝜋(𝜂, 𝛾|𝒙)

𝜕𝜂2
−

𝜕2 log 𝜋(𝜂, 𝛾|𝒙)

𝜕𝜂𝜕𝛾

−
𝜕2 log 𝜋(𝜂, 𝛾|𝒙)

𝜕𝛾𝜕𝜂
−

𝜕2 log 𝜋(𝜂, 𝛾|𝒙)

𝜕𝛾2 ]
 
 
 
 

(𝜂,𝛾)=(𝜂∗,𝛾∗)

, 

 

where 

 

−
𝜕2log 𝜋(𝜂, 𝛾|𝒙)

𝜕𝜂2
= 𝑒𝜂 (𝑏1 + ∑𝑒−𝑒𝛾𝑥𝑖

𝑛

𝑖=1

) +
𝑛(1 − 𝑒𝜂 − 𝑒−𝑒𝜂

)𝑒𝜂−𝑒𝜂

(1 − 𝑒−𝑒𝜂)2
, 

−
𝜕2log𝜋(𝜂, 𝛾|𝒙)

𝜕𝛾2
= 𝑒𝛾 (𝑏2 + ∑𝑥𝑖

𝑛

𝑖=1

) − 𝑒𝜂 ∑(1 − 𝑥𝑖𝑒
𝛾)𝑥𝑖

𝑛

𝑖=1

𝑒𝛾−𝑥𝑖𝑒
𝛾
, 
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−
𝜕log𝜋(𝜂, 𝛾|𝒙)

𝜕𝜂𝜕𝛾
= −𝑒𝜂 ∑𝑥𝑖

𝑛

𝑖=1

𝑒𝛾−𝑥𝑖𝑒
𝛾
. 

 

We choose 𝜏1
2 and 𝜏2

2 as the first and second diagonal elements of 𝑉−1, respectively, where 𝑉−1 is 

the inverse matrix of V (see Tomazella et al. [24]). 
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