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Algorithm for the Uncertain p-Median Location Problem 

 
F. Baroughi1,*, A. Soltanpour2, B. Alizadeh3 

 

Here, we investigate the classical p-median location problem on a network in which the vertex 

weights and the distances between vertices are uncertain. We propose a programming model for 

the uncertain p-median location problem with tail value at risk objective. Then, we show that it is 

NP-hard. Therefore, a novel hybrid modified binary particle swarm optimization algorithm is 

presented to obtain the approximate optimal solution of the proposed model. The algorithm 

contains the tail value at risk simulation and the expected value simulation. Finally, by 

computational experiments, the algorithm is illustrated to be efficient. 

 

Keywords: Location problem, p-median, Uncertainty theory, Tail value at risk, Uncertain 

programming, Binary particle swarm optimization. 

 
Manuscript was received on 01/08/2019, revised on 05/11/2019 and accepted for publication on 09/12/2019. 

 

1. Introduction 

 

Location problems are important optimization problems recently been studied by many 

researchers. A famous location problems is the p-median location problem (pMLP) introduced as 

follows: Assume that 𝑁 =  (𝑉, 𝐸) is an undirected connected network with vertex set 𝑉 , |𝑉 |  =  𝑛, 

and edge set 𝐸. The distance between two points on 𝑁 is equal to the length of the shortest path 

connecting the two points. Each vertex is associated with a nonnegative weight the demand of the 

client at the vertex. In a pMLP, the aim is to find p locations for establishing facilities on edges or 

vertices of 𝑁 such that the sum of the weighted distances from the clients to the closest facility 

becomes minimum. The pMLP model is probably the most widely used model and most extensively 

researched in location problems [1, 17, 18, 32]. 

 

Concerning the median location problems on networks, Hakimi [23, 24] proved that optimal 

locations of the facilities exist at the vertices of the network. Kariv and Hakimi [26] showed that 

pMLP on a general network is NP-hard. Also, they designed an O(𝑝2𝑛2) time algorithm for the 

problem on tree networks. Goldman in 1971 presented simple one-pass solution algorithms for 1MLP 

on a tree network and a network which contained exactly one cycle [22]. The first algorithm is based 

on a reduction procedure for a useful simplification of problems involving general networks. 

Goldman showed that the 1-median on a tree is independent of edge lengths and based on this 
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condition he presented a linear time algorithm for the problem. For 2MLP on trees, by using the 

properties relating to the 1-median and the 2-median, Gavish and Sridhar developed an improved 

algorithm based on edge-deletion method in 𝑂(𝑛𝑙𝑜𝑔𝑛) time [21]. Tamir [45] improved the time 

complexity of pMLP on trees to O(𝑝𝑛2). In 2005, Benkoczi and Bhattacharya [6] designed an 

𝑂(𝑛 log𝑝+2 𝑛 ) time algorithm to solve pMLP on trees. Drezner [15] proposed optimal solution 

procedures when p = 2. Also, problems, with 𝑝 = 2, 3, were solved by Schobel and Scholz [42]. For 

1MLP on a cactus network, a linear time algorithm was developed in [9].     

 

In the context of the median location problems in the plane, the interested reader is referred to [7, 

8, 10, 11, 12, 16, 33, 34, 41, 43].      

 

In real life, we are usually faced with various types of uncertainty. For example, some parameters 

of the location problems, such as the vertex weights, the travel times between vertices, the 

establishment costs of facilities and the network modification costs may not be known certainly. The 

uncertainty theory introduced by Liu [29] is a suitable tool to deal with such parameters. Gao [19] 

modeled the single facility location problems with uncertain demands. Wen et al. [49] investigated 

the capacitated facility location-allocation problem with uncertain demands. Nguyen and Chi [37] 

studied I1-MLP on a tree with uncertain costs and showed that the inverse distribution function of the 

minimum cost can be obtained at O(𝑛2 log 𝑛) time. For a survey on uncertain location problems, see 

e.g., [20, 25, 31, 40, 46, 52]. 

 

Note that uncertainty leads to risk. Liu [30] introduced the risk concept in the uncertain 

environment. Measuring the risk is an important step in the decision-making process. The risk metrics 

contain techniques and data sets used to calculate the risk value of the problem under investigation. 

Tail value at risk (𝑇𝑉𝑎𝑅) metric [39] is a measure of risk that is widely acceptable among industry 

segments and market participants. For a survey on risk management in location problems with random 

and fuzzy variables, the reader is referred to [4, 5, 47, 48, 50]. 

 

Here, we concentrate on pMLP with uncertain vertex weights and uncertain distances. We propose 

a model for the uncertain p-median location problem (UpMLP) with tail value at risk objective. Then, 

we show that the problem is NP-hard. Considering the uncertain and NP-hardness of UpMLP, 

evolutionary and meta-heuristic algorithms can be efficiently used for successful generation of 

approximate optimal solutions. Hence, we present a hybrid modified binary particle swarm 

optimization (HMBPSO) algorithm to obtain the approximate optimal solution of the proposed 

model, containing the tail value at risk simulation and the expected value simulation. 

 

To our knowledge, two papers considered the implementation of metaheuristic algorithms for 

location problems. Alizadeh and Bakhteh [2] studied the general inverse pMLPs on networks and 

presented a modified firefly algorithm for the problem under investigation. Mirzapolis Adeh et al. 

[36] investigated the general inverse ordered pMLP on crisp networks and designed a modified 

particle swarm optimization algorithm for it. There is no work on implementation of hybrid 

metaheuristic algorithms on inverse pMLPs in uncertain networks. However, many papers can be 

found in the literature for other classical location problems on uncertain networks; see, e.g., [3, 25, 

44, 49, 51]. 

 

The rest of our work is organized as follows. In the next section, we first introduce uncertainty 

theory and the 𝑇𝑉𝑎𝑅 metric in an uncertain environment. Then, we introduce the uncertain 

optimization model and present a new model with 𝑇𝑉𝑎𝑅 objective. In Section 3, we propose a 

programming model for UpMLP and solve it with 𝑇𝑉𝑎𝑅 objective. Then, we show that the problem 

under investigation is NP-hard. In Section 4, we present a novel HMBPSO algorithm to obtain an 
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approximate optimal solution of the proposed model. The algorithm contains the tail value at risk 

simulation and the expected value simulation. To show the effectiveness of the proposed HMBPSO 

algorithm, we give a numerical example in Section 5. We conclude in Section 6. 

 

2. Preliminaries  

 

In this section, we first present some definitions and theorems of uncertainty theory and 𝑇𝑉𝑎𝑅 

metric. Then, we introduce an uncertain optimization model and present a new model with 𝑇𝑉𝑎𝑅 

objective [29]. 

 

2.1. Uncertainty Theory 

 

Let Γ be a nonempty set and Θ be a 𝜎-algebra over Γ. An uncertain measure is a set function 𝑀:Θ →
[0,1] that satisfies the normality, duality and subadditivity axioms. The triple (Γ, Θ,𝑀) is called an 

uncertainty space. 

 

Definition 2.1. Let (Γ, Θ,𝑀) be an uncertainty space. A measurable function 𝜃 from (Γ, Θ,𝑀) to the 

set of real numbers is called an uncertain variable. 

 

Definition 2.2. Let 𝜃 be an uncertain variable. For any real number 𝑥, the function 𝛶(𝑥)  =  𝑀{𝜃 ≤
𝑥} is called an uncertainty distribution of 𝜃. 

 

Definition 2.3. Let 𝜃𝑖, 𝑖 = 1, . . . , 𝑛,  be the uncertain variables. We call 𝜃𝑖, 𝑖 = 1, . . . , 𝑛, independent 

if for any Borel sets 𝐵1, 𝐵2, . . . , 𝐵𝑛 of real numbers, we have 

 

𝛭 {⋂{𝜃𝑖 ∈ 𝐵𝑖}

𝑛

𝑖=1

} = min𝑖=1
𝑛 𝑀{𝜃𝑖 ∈ 𝐵𝑖}. 

 

Theorem 2.4.  Let 𝜃𝑖, 𝑖 = 1, . . . , 𝑛, be the independent uncertain variables and 𝛶𝑖
−1, 𝑖 = 1, . . . , 𝑛, be 

the inverse uncertainty distributions of 𝜃𝑖, 𝑖 = 1, . . . , 𝑛, respectively. Also, let 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) be a 

strictly increasing function with respect to 𝑥𝑖, 𝑖 = 1,2, . . . , 𝑚, and a strictly decreasing function with 

respect to 𝑥𝑖, 𝑖 = 𝑚 + 1, . . . , 𝑛. Then, the uncertain variable  𝜗 =  𝑓(𝜃1, 𝜃2, . . . , 𝜃𝑛) has the following 

inverse uncertainty distribution: 

 

ϒ−1(𝛼) = 𝑓 (ϒ1
−1(𝛼), . . . ,ϒ𝑚

−1(𝛼),ϒ𝑚+1
−1(1 − 𝛼),ϒ𝑚+2

−1(1 − 𝛼), . . . ,ϒ𝑛
−1(1 − 𝛼)), 

 

having the following expected value: 

 

𝐸(𝜗) = ∫ 𝑓(ϒ1
−1(𝛼), . . . ,ϒ𝑚

−1(𝛼),ϒ𝑚+1
−1(1 − 𝛼),ϒ𝑚+2

−1(1 − 𝛼), . . . ,ϒ𝑛
−1(1 − 𝛼)) 𝑑 ϒ

1

0

. 
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2.2. 𝑻𝑽𝒂𝑹 Metric in an Uncertain Environment 

 

Risk demonstrates a situation, in which there is a chance of loss or danger. The quantification of 

risk is a key step towards the management and mitigation of risk. In this section, we introduce the 

definition of the 𝑇𝑉𝑎𝑅 metric to account for the probability of loss and the severity of loss in an 

uncertain environment [39]. 

 

In order to define the 𝑇𝑉𝑎𝑅 metric, we first introduce the definition of loss function [30]. 

 

Definition 2.5. Consider 𝜃𝑖, 𝑖 =  1, . . . , 𝑛, as the uncertain factors of a system. A function 𝑓 is said 

to be a loss function if some specified loss occurs whenever 

 

𝑓(𝜃1, 𝜃2, . . . , 𝜃𝑛) >  0. 
 

In the uncertain environment, 𝑇𝑉𝑎𝑅 of loss function is defined as follows [39]. 

 

Definition 2.6. Let 𝜃𝑖, 𝑖 =  1, . . . , 𝑛,  be the uncertain factors and 𝑓 be the loss function of a system. 

Then, 𝑇𝑉𝑎𝑅 of 𝑓 is defined to be 

 

𝑇𝑉𝑎𝑅𝛼(𝑓) =
1

𝛼
∫ sup{𝜆|𝑀{𝑓(𝜃1, 𝜃2, . . . , 𝜃𝑛) ≥ 𝜆} ≥ 𝛽} 𝑑𝛽.
𝛼

0

 

 

for each given risk confidence level 𝛼 ∈  (0,1]. 
 

Theorem 2.7. Let 𝜃𝑖, 𝑖 =  1, . . . , 𝑛,  be the uncertain factors of a system and 𝛶𝑖
−1, 𝑖 =  1, . . . , 𝑛,  be 

the inverse uncertainty distributions of 𝜃𝑖, 𝑖 =  1, . . . , 𝑛. Also assume that the loss function 

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) is a strictly increasing function with respect to 𝑥𝑖, 𝑖 =  1,2, . . . , 𝑛. Then, for each 

risk confidence level 𝛼 ∈  (0,1], we have 

 

𝑇𝑉𝑎𝑅𝛼(𝑓) =
1

𝛼
∫ 𝑓(ϒ1

−1(1 − 𝛽),ϒ2
−1(1 − 𝛽), . . . ,ϒ𝑛

−1(1 − 𝛽))𝑑𝛽.
𝛼

0

 

 
2.3. Uncertainty Optimization  

 

Let 𝑥 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a decision vector, and 𝜃 =  ( 𝜃1, 𝜃2, . . . , 𝜃𝑛) be an uncertain vector. 

Consider the following optimization model: 

 

min  𝑓(𝑥, 𝜃) 
                                     s. t.  𝑔𝑗(𝑥, 𝜃) ≤ 0     𝑗 = 1,… , 𝑝, 

                                                   𝑧𝑙(𝑥) ≤ 0     𝑙 = 1,… ,𝑚, 
                                 𝑥 ≥ 0. 

(1) 

 

where 𝑓 and 𝑔𝑗, 𝑗 = 1,… , 𝑝, are uncertain functions and 𝑧𝑙, 𝑙 = 1,… ,𝑚, are crisp functions. 

Since the objective function of the model (1) involves uncertainty, it cannot be directly 

optimized. Therefore, by considering 𝑓(𝑥, 𝜃) as a loss function, we minimize its 𝑇𝑉𝑎𝑅. In 

addition, we use the expected value of uncertain constraints to get a crisp feasible set. Thus, 

the model (1) can be reformulated as 
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min  𝑇𝑉𝑎𝑅𝛼(𝑓(𝑥, 𝜃)) 

                            s. t.  𝐸 (𝑔𝑗(𝑥, 𝜃)) ≤ 0     𝑗 = 1,… , 𝑝, 

                                                   𝑧𝑙(𝑥) ≤ 0     𝑙 = 1,… ,𝑚, 
                                 𝑥 ≥ 0. 

(2) 

     

According to theorems 2.4 and 2.7, we can rewrite problem (2) as follows: 

 

min  
1

𝛼
∫ 𝑓(𝑥,ϒ1

−1(1 − 𝛽),ϒ2
−1(1 − 𝛽), . . . ,ϒ𝑛

−1(1 − 𝛽))𝑑𝛽
𝛼

0
 

               s. t.  ∫ 𝑔𝑗 (ϒ1
−1(𝛾), … ,ϒ𝑚

−1(𝛾),ϒ𝑚+1
−1(1 − 𝛾),ϒ𝑚+2

−1(1 − 𝛾), … ,
1

0

ϒ𝑛
−1(1 − 𝛾))𝑑ϒ ≤ 0     𝑗 = 1,… , 𝑝, 

   𝑧𝑙(𝑥) ≤ 0     𝑙 = 1,… ,𝑚, 
𝑥 ≥ 0.                

(3) 

 

where 𝑔𝑗(𝑥, 𝜃1, 𝜃2,...,𝜃𝑛) is strictly increasing with respect to 𝜃1, 𝜃2, . . . , 𝜃𝑚 and strictly 

decreasing with respect to 𝜃𝑚+1, 𝜃𝑚+2, . . . , 𝜃𝑛. 

 

3. Problem Formulation 
 

Let 𝑁 = (𝑉, 𝐸) be an undirected connected network with vertex set 𝑉, |𝑉| = 𝑛, edge set 𝐸 and a 

constant 𝑝 ≤  𝑛. The length of each edge 𝑒 ∈ 𝐸 is positive and each vertex 𝑣𝑖 ∈ 𝑉 is associated with 

a nonnegative weight as the demand of the client at the vertex. Let 𝑑(𝑥, 𝑦) denote the distance 

between 𝑥, 𝑦 ∈ 𝑁 which is equal to the distance of the shortest path connecting these two points. In 

the classical pMLP, the aim is to locate 𝑝 pairwise different facilities 𝑚1, . . . , 𝑚𝑝 on the network 𝑁 

(i.e., on edges or vertices) such that the sum of weighted distances from each vertex to its closest 

facility is minimized. In fact, the optimal solution of the following problem is a p-median: 

 

min
𝑋𝑝⊂𝑁,|𝑋𝑝|=𝑝

 ∑ 𝑤𝑖𝑑(𝑣𝑖, 𝑥𝑝),

𝑣𝑖∈𝑉

 (4) 

 

where 

 

𝑑(𝑣𝑖, 𝑋𝑝) = min
𝑗=1,2,...,𝑝

𝑑(𝑣𝑖, 𝑚𝑗)                      𝑋𝑝 = {𝑚1, . . . , 𝑚𝑝}. 

 

Hakimi [26] proved the existence of an optimal solution among the set of vertices. 

 

Let 𝑑𝑖𝑗 =  𝑑(𝑣𝑖 , 𝑣𝑗) be the distance between vertices 𝑣𝑖 ∈ 𝑉 and 𝑣𝑗 ∈ 𝑉. Also, let 𝑤 = {𝑤𝑖|𝑣𝑖 ∈

𝑉} and 𝑑 =  {𝑑𝑖𝑗|𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} denote the set of vertex weights and the set of distances between 

vertices, respectively. Then, the optimal objective value of pMLP is a function of 𝑤 and 𝑑, which we 

denoted by 𝑓𝑝(𝑤, 𝑑) hereafter. 
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In the following, we are going to present a 0-1 linear programming formulation of the problem 

under investigation. Let 𝑦𝑖𝑗 be a variable that is equal to 1, if the demands of the vertex 𝑣𝑖 are served 

by a facility at the vertex 𝑣𝑗, and 0, otherwise. Also, let the variable 𝑥𝑗 be equal to 1, if there is an 

open facility at the vertex 𝑣𝑗, and 0, otherwise. Then, the 0-1 linear programming formulation of the 

classical discrete pMLP can be stated as follows: 

 

min∑∑𝑤𝑖𝑑𝑖𝑗𝑦𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (5) 

                     s. t.  ∑𝑦𝑖𝑗

𝑛

𝑗=1

= 1,     ∀𝑖 = 1,… , 𝑛, (5.1) 

                                       𝑦𝑖𝑗 ≤ 𝑥𝑗,     ∀𝑖, 𝑗 = 1,… , 𝑛, (5.2) 

∑𝑥𝑗

𝑛

𝑗=1

= 𝑝 (5.3) 

                                      𝑦𝑖𝑗 , 𝑥𝑗 ∈ {0,1}      ∀𝑖, 𝑗 = 1,… , 𝑛. (5.4) 

 

This objective is to minimize the total weighted distance between each demand vertex and the nearest 

facility. Constraints (5.1) require each demand vertex to be assigned to exactly one facility. 

Constraints (5.2) allow for the demand of vertex 𝑣𝑖 to be assigned to a vertex 𝑣𝑗 only if there is an 

open facility in this location. Constraints (5.3) state that exactly 𝑝 facilities are to be located. Finally, 

the last constraints are the standard integrality conditions [13,35]. 

 

Let 𝑥𝑖𝑗 be the demand of customer in vertex 𝑣𝑖 which is provided by facility in 𝑣𝑗. Then, the model 

can be rewritten as follows: 

 

min∑∑𝑑𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

  

                                     s. t.  ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑤𝑖                ∀𝑖 = 1,… , 𝑛,  

                                                       𝑥𝑖𝑗 ≤ 𝑤𝑖𝑥𝑗             ∀𝑖, 𝑗 = 1,… , 𝑛, (6) 

    ∑𝑥𝑗

𝑛

𝑗=1

= 𝑝  

                                                   𝑥𝑖𝑗 ≥ 0, 𝑥𝑗 ∈ {0,1}      ∀𝑖, 𝑗 = 1,… , 𝑛.  

 

Now, consider 𝑁 = (𝑉, 𝐸) as an undirected connected network with uncertain vertex weights and 

uncertain distances. Some assumptions are listed as follows. 

 

1. The weight of each vertex 𝑣𝑖 is a positive uncertain variable 𝜂𝑖. 
2. The distance between two vertices 𝑣𝑖  and 𝑣𝑗 is a positive uncertain variable 𝜃𝑖𝑗. 

3. All the uncertain variables 𝜂𝑖 and 𝜃𝑖𝑗 are independent. 
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4. The uncertain variables 𝜂𝑖 and 𝜃𝑖𝑗 have regular uncertainty distributions 𝛷𝑖 and 𝛶𝑖𝑗, 

respectively. 

 

Therefore, the classical discrete pMLP with uncertain data can be formulated as follows: 

 

min∑∑𝜃𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

  

                                     s. t.  ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝜂𝑖                ∀𝑖 = 1,… , 𝑛,  

                                                       𝑥𝑖𝑗 ≤ 𝜂𝑖𝑥𝑗             ∀𝑖, 𝑗 = 1,… , 𝑛, (7) 

    ∑𝑥𝑗

𝑛

𝑗=1

= 𝑝  

                                                   𝑥𝑖𝑗 ≥ 0, 𝑥𝑗 ∈ {0,1}      ∀𝑖, 𝑗 = 1,… , 𝑛.  

 

Definition 3.1.  Let 𝑉𝑝 ⊆ 𝑉, |𝑉𝑝| = 𝑝 and 

 

𝑥𝑗 = {
1, 𝑣𝑗 ∈ 𝑉𝑝
0, o.w.

     𝑥𝑖𝑗 = {

𝐸(𝜂𝑖), if the location of the nearest facility

to the vertex 𝑣𝑖 in 𝑉𝑝 is the vertex 𝑣𝑗,

0, o.w.

 

 

Using the above notations, 𝑉𝑝 ⊆ 𝑉 is called an expected p-facility location if and only if 

 

{
 
 
 
 

 
 
 
 ∑𝑥𝑖𝑗

𝑛

𝑗=1

− 𝐸(𝜂𝑖) = 0,   ∀𝑖 = 1,… , 𝑛,

𝑥𝑖𝑗 − 𝐸(𝜂𝑖)𝑥𝑗 ≤ 0,   ∀𝑖, 𝑗 = 1,… , 𝑛,

∑𝑥𝑗

𝑛

𝑗=1

= 𝑝,                                             

𝑥𝑖𝑗 ≥ 0, 𝑥𝑗 ∈ {0,1},   ∀𝑖, 𝑗 = 1,… , 𝑛.

 

 

Now, let 𝑉𝑝 be an expected p-facility location. Define   

 

𝑆(𝑉𝑝) =∑∑𝜃ij𝑥ij

𝑛

𝑗=1

𝑛

𝑖=1

. 

 

It is clear that 𝑆(𝑉𝑝) is also an uncertain variable. 

 

Definition 3.2. For a risk confidence level 𝛼 ∈  (0,1], an expected p-facility location 𝑉𝑝  
∗ is called 

𝑇𝑉𝑎𝑅𝛼-p-median if 

 

𝑇𝑉𝑎𝑅𝛼(𝑆(𝑉
∗
𝑝))  ≤  𝑇𝑉𝑎𝑅𝛼 (𝑆(𝑉𝑝)) 
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holds for any expected p-facility location 𝑉𝑝. 

     Therefore, for a risk confidence level 𝛼 ∈  (0,1], the 𝑇𝑉𝑎𝑅𝛼-p-median of uncertain network 𝑁 is 

the optimal expected p-facility location of the following model: 

 

min∑∑(
1

𝛼
∫ ϒ𝑖𝑗

−1(1 − 𝛽)𝑑𝛽
𝛼

0

)𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

  

                             s. t.  ∑𝑥𝑖𝑗

𝑛

𝑗=1

= ∫ 𝛷𝑖
−1(1 − 𝛾)𝑑𝛾

1

0

                ∀𝑖 = 1,… , 𝑛,  

                                                      𝑥𝑖𝑗 ≤ (∫ 𝛷𝑖
−1(1 − 𝛾)𝑑𝛾

1

0

)𝑥𝑗             ∀𝑖, 𝑗 = 1,… , 𝑛, (8) 

∑𝑥𝑗

𝑛

𝑗=1

= 𝑝                                   

                                                   𝑥𝑖𝑗 ≥ 0, 𝑥𝑗 ∈ {0,1}      ∀𝑖, 𝑗 = 1,… , 𝑛.  

 

Thus, we can obtain the p-median with minimal risk measure and expected value of constraints by 

setting 𝑑𝑖𝑗
𝛼 = (

1

𝛼
)∫ ϒ𝑖𝑗

−1(1 − 𝛽)𝑑𝛽
𝛼

0
,  𝑣𝑖 , 𝑣𝑗 ∈  𝑉 , for each risk confidence level 𝛼 ∈  (0,1], and 

𝑤𝑖 = ∫ 𝛷𝑖
−1(1 − 𝛾)𝑑𝛾

1

0
, 𝑣𝑖 ∈  𝑉 . Kariv and Hakimi [26] showed that pMLP on general networks is 

NP-hard. Therefore, we conclude the following proposition immediately. 

 

Proposition 3.3. UpMLP with 𝑇𝑉𝑎𝑅 criterion on general networks is NP-hard. 

 

The above proposition implies that it is not possible to present exact polynomial time methods to 

solve UpMLP on general networks. Therefore, we propose an efficient HMBPSO algorithm for 

approximating the optimal solution of (8). 

 

4. HMBPSO Algorithm 
 

Kennedy and Eberhart [27] in 1995 developed the particle swarm optimization (PSO) algorithm as 

a nature-inspired evolutionary computation algorithm. Consider the following model: 

 

min    𝑓(𝑧) 
s. t.  𝑧 ∈ 𝑍, 

 

where 𝑍 is the continuous and restricted space. In a PSO algorithm, a potential solution is presented as 

a particle 𝑧𝑙 ∈ 𝑍 and a direction 𝑣𝑙 ∈ 𝑅 in which the particle will move. A swarm of particle is defined 

to be a set {𝑧1, 𝑧2, . . . , 𝑧𝑁}, in which 𝑁 is the number of particles. Each particle 𝑧𝑙 retains a record of the 

position of its previous best performance in a vector called 𝑃𝑏𝑒𝑠𝑡,𝑙. The particle with best performance 

so far in the population is maintained in a vector  𝐺𝑏𝑒𝑠𝑡. An iteration involves evaluating each 𝑧𝑙, and 

then randomly setting 𝑣𝑙  in the direction of particle 𝑧𝑙’s  best previous position  𝑃𝑏𝑒𝑠𝑡,𝑙  and the best 

previous position 𝐺𝑏𝑒𝑠𝑡  of any particle in the population. 
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Group particle optimization algorithm is inherently a continuous optimization algorithm. However, 

many optimization problems have a discrete space. Kennedy and Eberhart in [28] presented the PSO 

algorithm with discrete binary variables. They used the following transfer function, to calculate the 

particle position: 
 

𝑀(𝑣𝑙𝑘) =
1

1 + 𝑒𝑥𝑝( − 𝑣𝑙𝑘)
, (9) 

 

where 𝑣𝑙𝑘 is the probability of changing the 𝑘-th component of 𝑧𝑙  towards one. Therefore, after 

calculating 𝑣𝑙  for each particle 𝑧𝑙, the new position of the particle is obtained as follows: 
 

𝑧𝑙𝑘 = {
1, rand ≤  𝑀(𝑣𝑙𝑘)
0, rand > 𝑀(𝑣𝑙𝑘),

 (10) 

 

in which rand is a random value between zero and one.  
 

     Now, consider the model (8) of UpMLP. First, for each risk confidence level 𝛼 ∈  (0,1], we obtain 

the shortest distance between vertices by applying Algorithm 1. Then, we consider a particle of UpMLP 

as 𝑧𝑙  =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) such that ∑ 𝑥𝑗 = 𝑝
𝑛
1 , 𝑥𝑗  ∈  {0,1}. Using the distances of vertices obtained by 

Algorithm 1, we set  
 

𝑥𝑖𝑗 = {

𝑤𝑖, if 𝑥𝑗= 1 and it is the location of

the nearest facility to the client 𝑖,
0, o. w.

 (11) 

 

 

Algorithm 1: Find shortest distance between two vertices 𝑣𝑖 and 𝑣𝑗 for risk confidence level 𝛼 ∈ (0,1]. 

 
1: Set 𝑑𝑖𝑗

𝛼 = 0. 

2: for 𝑟 =  1, . . . , 𝑀 do 

3:      compute 𝑑𝑖𝑗
𝑟 = ϒ𝑖𝑗

−1(1 −
𝑟

𝑀
𝛼),  

4:      set 𝑑𝑖𝑗
𝛼 = 𝑑𝑖𝑗

𝛼 +
𝑟

𝑀
𝛼𝑑𝑖𝑗

𝑟 . 

5: end for 

6: Compute 𝑑𝑖𝑗
𝛼 =

1

𝛼
𝑑𝑖𝑗
𝛼 . 

7: Report 𝑑𝑖𝑗
𝛼  as the shortest distance between two vertices  𝑣𝑖 and 𝑣𝑗. 

 

Note that we set  𝑥𝑖𝑗 = 𝑤𝑖, (𝑥𝑗 =  1), only for one nearest facility to the client 𝑖.  We calculate the 

weight of vertex 𝑣𝑖, i.e., 𝑤𝑖, by using Algorithm 2 [38]. 

 

Algorithm 2: Find the weight of vertex 𝑣𝑖. 
 

1: Set 𝑤𝑖 = 0. 

2: for 𝑘 =  1, . . . ,99 do 

3:    compute 𝑤𝑘 = 0.01(𝛷𝑖
−1(1 − 0.0𝑘)),  

4:    set 𝑤𝑖 =  𝑤𝑖 +  𝑤𝑘. 

5: end for 

6: Report  𝑤𝑖 as the weight of vertex 𝑣𝑖. 
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Therefore, we first randomly generate the particle 𝑧𝑙 of UpMLP. Repeat this process 𝑁 times and 

get 𝑁 initial feasible particles 𝑧1, 𝑧2, . . . , 𝑧𝑁. Then, we assume that the fitness of each 𝑧𝑙 is 𝑇𝑉𝑎𝑅, i.e., 

𝐹𝑖𝑡(𝑧𝑙) = 𝑇𝑉𝑎𝑅𝛼(𝑧𝑙). Thus, the particle with smallest objective value has the best fitness. The fitness 

of each particle 𝑧𝑙 is obtained as follows: 

 

𝑇𝑉𝑎𝑅𝛼(𝑧𝑙) =∑∑𝑑𝑖𝑗
𝛼𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

. (12) 

 

In the process of updating the (𝑖 + 1)th iteration, we first denote 𝑃𝑏𝑒𝑠𝑡,𝑙(𝑖) for each particle 𝑧𝑙 and 

𝐺𝑏𝑒𝑠𝑡(𝑖), and then obtain the new directions of the particles using the following equation: 

 

𝑣𝑙(𝑖 + 1) = 𝑣𝑙(𝑖) + 𝐶1𝑟1[𝑃𝑏𝑒𝑠𝑡,𝑙(𝑖) − 𝑧𝑙(𝑖)] + 𝐶2𝑟2[𝐺𝑏𝑒𝑠𝑡(𝑖) − 𝑧𝑙(𝑖)], (13) 

 

where, 

 

𝑃𝑏𝑒𝑠𝑡,𝑙(𝑖) = {
𝑧𝑙(𝑖),               𝐹𝑖𝑡(𝑧𝑙(𝑖)) = 𝐹𝑖𝑡(𝑧𝑙(𝑖 − 1))

𝑃𝑏𝑒𝑠𝑡,𝑙(𝑖 − 1), o. w. ,
 

 

and 𝐺𝑏𝑒𝑠𝑡(𝑖) = 𝑃𝑏𝑒𝑠𝑡,𝑘(𝑖), with 𝑘 = argmin{𝑃𝑏𝑒𝑠𝑡,𝑙(𝑖) ∶ 𝑙 = 1, . . . , 𝑁}.  
 

In addition, 𝑟1 and 𝑟2 are uniformly distributed random numbers in the interval [0,1] and 𝐶1 and 𝐶2 

are learning rates, to well adjust the convergence of the particles. In the basic PSO algorithm, the values 

of 𝐶1 and 𝐶2 are fixed. But, if these coefficients depend on the repetition of the algorithm, we will get 

better results. Therefore, here, we propose modifications of 𝐶1 and 𝐶2 of the basic PSO. In other words, 

we consider 
 

𝐶1 = 𝐶2= 2 + (
𝑡

𝑡 + 1
), 

 

in which 𝑡 = 1, 2, . . . , 𝑀𝑎𝑥𝐼𝑡, and 𝑀𝑎𝑥𝐼𝑡 indicates the number of generations of the HMBPSO 

algorithm. It can easily be seen that 𝐶1, 𝐶2 ∈ [2,3]. 
 

After obtaining 𝑣𝑙 by (13), we use (10) to get a new particle of the next generation. We obtain a new 

generation of particles by repeating the above process 𝑁 times.  
     

Now, based on all the above explanations, we summarize the HMBPSO algorithm for solving the 

model (8) as follows. 

 

Algorithm 3: Obtain an approximate optimal solution of the model (8) 
 

1: Initialize the feasible particles 𝑧1 , 𝑧2 , . . . , 𝑧𝑁. 

2: Compute 𝑥𝑖𝑗, 𝑖, 𝑗 =  1, . . . , 𝑛 by (11). 

3: Compute the particles fitness by using (12) and evaluate each particle of UpMLP. 

4: Update all the particles by using equations (13) and (10). 

5: Repeat Steps 3 and 4 for 𝑀𝑎𝑥𝐼𝑡 times. 

6: Return 𝐺𝑏𝑒𝑠𝑡 as the optimal solution of the model (8), and 𝑇𝑉 𝑎𝑅𝛼(𝐺𝑏𝑒𝑠𝑡) =  𝐹𝑖𝑡(𝐺𝑏𝑒𝑠𝑡) 
     as the corresponding optimal value. 
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5.  Computational Experiments 
 

In this section, we give a numerical example to show the efficiency of the HMBPSO algorithm. 

The results of the numerical experiments are obtained on a PC with processor Intel(R) Core(TM) i3 

CPU 2.27GHZ and 4GB of RAM under Windows 7. 

 

     Consider 𝑁 as a network with 18 vertices and 19 edges (see Figure 1). Let 𝑁 be a medicines 

distribution system. In this system, assume that 

(1) the vertices indicate urban areas, 

(2) at each area, there is a drugstore, 

(3) warehouses of the distribution company and drugstores are considered as facilities and 

clients, respectively, 

(4) the weight 𝜂𝑖 of the vertex  𝑣𝑖 is equal to the average monthly purchase of residents of this 

area from the drugstore located at vertex 𝑣𝑖, 
(5) the vertex weights and the distances between vertices (the travel times between vertices) of 

𝑁 are uncertain variables, 

(6) Our aim is to find three vertices on the network 𝑁 to locate warehouses of the distribution 

company to minimize the sum of 𝑇𝑉𝑎𝑅 of weighted distances from each urban area to its 

closest warehouse. 

 

We applied the HBPSO and HMBPSO algorithms for different instances of UpMLPs and observed 

that the HMBPSO algorithm in comparison with the HBPSO algorithm can solve these problems more 

efficiently. In the following, among all the tested instances, we present the instance which the HMBPSO 

algorithm uses for solving U3MLP with 𝑇𝑉𝑎𝑅 objective at a risk confidence level of 𝛼 = 0.8 on given 

network 𝑁. 

 

     Let the edge lengths 𝜃𝑒 , 𝑒 ∈  𝐸, be linear uncertain variables (see Table 1). For 𝛼 ∈  (0,1), the 

inverse uncertainty distribution of a linear uncertain variable ℒ(𝑎, 𝑏) is 

 

𝜙−1(𝛼) = (1 − 𝛼)𝑎 + 𝛼𝑏. 
 

Therefore, if 𝜃𝑒= ℒ(𝑎, 𝑏) is the uncertain variable of the edge  𝑒 ∈  𝐸, then  

 

𝑑𝑒
𝛼 =

1

𝛼
[∫ (𝛽𝑎 + (1 − 𝛽)𝑏)𝑑𝛽

𝛼

0

] =
𝛼

2
(𝑎 − 𝑏) + 𝑏. 
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Figure 1. The network 𝑁 

 

Table 1. The input data of the network 𝑁 

 
 

Thus, with the obtained crisp length edges and using the Dijkstra’s algorithm, we find the shortest 

distance between vertices (Dijkstra’s algorithm is a successful algorithm for finding shortest path 

between two vertices [14]). Also, let the vertex weights 𝜂𝑖 be linear uncertain variables (see Table 1). 

Therefore, we find the expected value of the vertex weight 𝜂𝑖  as follows: 

 

𝑤𝑖 = ∫ (𝛾𝑎 + (1 − 𝛾)𝑏)𝑑𝛾
1

0

=
(𝑎 + 𝑏)

2
. 

 

We use the HMBPSO and HBPSO algorithms for approximating the optimal solution and compare the 

obtained results. 

 

Table 2. Performance results of HBPSO and HMBPSO on U3MLP 
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Figure 2.  Convergence comparison with population of 50 

 

 

        
    Figure 3. Convergence comparison with population of 100 

 

 

Table 2 compares the best objective values in each population size calculated by the HBPSO and 

HMBPSO algorithms with 𝑁 = 50, 100 and 𝑀𝑎𝑥𝐼𝑡 = 400. Note that in Table 2, ‘Obj. v.’ is the 

objective value of the problem and ‘R. t.’ is the running time of the algorithm. From Table 2, we can 

conclude that the HMBPSO algorithm finds the solution of the problem under investigation more 

efficiently. The convergence comparisons are shown in figures 2 and 3, respectively. Based on the  

obtained results, it is obvious that the HMBPSO algorithm outperforms. Note that, there is no guarantee 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

03
 ]

 

                            13 / 16

http://iors.ir/journal/article-1-645-en.html


A Novel HMBPSO Algorithm to the Uncertain P-Median Problem 91 

 

 

that the HMBPSO and HBPSO algorithms with the smaller initial population will find better optimal 

solution. 

 

6. Conclusion 
 

We investigated the pMLP model with uncertain vertex weights and uncertain distances. We showed 

that UpMLP with TVaR objective is NP-hard. Thus, we proposed a novel HMBPSO algorithm for 

approximating the optimal solution of the problem, containing the tail value at risk simulation and the 

expected value simulation. Finally, by computational experiments, the efficiency of the algorithm was 

illustrated.  
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