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Ant colony optimization (ACOR) is a meta-heuristic algorithm for solving continuous optimization 

problems (MOPs). In the last decades, some improved versions of ACOR have been proposed. 

The UACOR is a unified version of ACOR that is designed for continuous domains. By adjusting 

some specified components of the UACOR, some new versions of ACOR can be deduced. By doing 

that, it becomes more practical for different types of MOPs. Based on the nature of meta-heuristic 

algorithms, the performance of meta-heuristic algorithms are depends on the exploitation and 

exploration, which are known as the two useful factors to generate solutions with different 

qualities. Since all the meta-heuristic algorithms with random parameters use the probability 

functions to generate the random numbers and as a result, there is no any control over the 

amount of diversity; hence in this paper, by using the best parameters of UACOR and making 

some other changes, we propose a new version of ACOR to increase the efficiency of UACOR. 

These changes include using chaotic sequences to generate various random sequences and also 

using a new local search to increase the quality of the solution. The proposed algorithm, the two 

standard versions of UACOR and the genetic algorithm are tested on the CEC05 benchmark 

functions, and then numerical results are reported. Furthermore, we apply these four algorithms 

to solve the utilization of complex multi-reservoir systems, the three-reservoir system of Karkheh 

dam, as a case study. The numerical results confirm the superiority of proposed algorithm over 

the three other algorithms. 

 

Keywords: Ant colony algorithm; Continuous optimization; Chaotic sequences; Multi-reservoir 

systems; Genetic algorithm. 
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1. Introduction 

 

The first version of the ACO algorithm, namely the Ant System (AS), was attributed to Marco 

Dorigo in 1992, which is proposed in his Ph.D. thesis [21]. Ant-quantity, ant-cycle, and ant-density 

are the three main algorithms of the AS. The main contributions of these algorithms are based on 

when, how, and the density-value of pheromone that was deposited from the ants. For example, in 

the ant-cycle type, a pheromone is deposited when all ants had generated the path, and quality of the 

tour was considered as a function to update the pheromone‟ levels (refer to [21] to study more about 

how each of them works). Based on empirical results, the ant-cycle algorithm outperformed the 

other two algorithms and hence it was used to describe the AS. We can find numerous 

improvements and variants for the basic ACO since 1991 in the literature that are proposed, and 

studied by researchers. For more study, we can refer to the earlier ACO‟s developments briefly, 

such as the Elitist AS (see, e.g. [21], [23], [24] in 1991, 1992, and 1996 respectively), the Ant-Q 

                                                      
*
 Corresponding Author. 

1
 Department of Mathematics, Payame Noor University (PNU) usefzadeh.math@pnu.ac.ir 

2
 Department of Mathematics, Payame Noor University (PNU), d_darvishi@pnu.ac.ir. 

3
 Department of Mathematics, Payame Noor University (PNU) sayadisalararezoo@yahoo.com 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
8-

25
 ]

 

                             1 / 17

mailto:usefzadeh.math@pnu.ac.ir
http://iors.ir/journal/article-1-670-en.html


Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 77 

 

([18] in 1995), the Ant Colony System for TSP ([22] in 1996), the Max-Min Ant System ([42] and 

[43] in 1996 and 1997 respectively), the Rank-based AS ([4] in 1997),  the EANTS ([46] in 1999), 

the Best-worst AS ([34] and [35] in 2000 and 2002 respectively), the Hyper Cube ACO ([8] in 

2001), the Population based ACO ([25] in 2002), the Beam-ACO (see, e.g. [25] and [9] in 2002 and 

2005 respectively).  

 The nature of the initial ACO algorithm was designed to combinatorial optimization problems, 

and later on, it was updated for the continuous ones. Discretizing the real-valued variables is the 

most straightforward approach to apply the ACO algorithm for continuous optimization problems 

(COPs). Calling the ACO by utilizing this methodology has been implemented to the Protein-ligand 

docking problem [3].  

  After presenting the ACO algorithm for discrete optimization problems, several ant-inspired 

algorithms for COPs have been proposed (See, e.g. references [5], [10], [13], and [27]). The main 

difference between these algorithms is based on their focus on the search mechanisms [13]. 

 The first ACO algorithm considering the continuous domains is proposed by Socha and Dorigo 

2008 in [6]. They suggested an extended version of the ACO algorithm called the ACOR (where the 

index R indicates that the variables are real-valued) where they explicitly used the Gaussian kernel 

function instead of the probability density function. 

 Although numerical results show that the ACOR may be successful in some problems but for the 

problems with high feasible-dimensions (i.e., in real-world applications) has not been investigated 

yet. More studies show that the ACOR has a poor performance for large scale problems because it 

quickly loses its variety, and therefore negatively affects the quality of solutions. 

 Leguizamón and Coello in 2010 proposed an extension of ACOR namely, DACOR (D stands for 

diversity), to increase the quality of the solutions and reduce the required computational time 

simultaneously. Based on their experimental results, the DACOR outperforms the ACOR for 

unconstrained large scale COPs [15]. In this algorithm, despite more exploration of the response 

space, but they do not have any local exploration mechanism to control more accurate the solution 

space. Furthermore, automatic decision-making between local and global exploration based on the 

observed diversity is not considered. 

 In 2011, Liao et al. proposed an incremental variant of ACOR entitled by IACOR-LS. It uses a 

local search and a growing solution archive to diversify the search and expand the exploration [16]. 

To do that, they used different types of local search methods in their experiments, such as the 

Powell's conjugate directions set [30], Powell's BOBYQA [31], and Lin-Yu Tseng's Mtsls1 [44]. 

Their results showed that the IACOR-LS conjunction with Mtsls1 (named by the IACOR-Mtsls1) is 

not only outperforms the ACOR, but also it is competitive with other state-of-the-art algorithms on 

the COPs. In later years, Guo et al. 2012 in [29] and Kumar et al. 2015 in [45] presented improved 

versions of the ACOR algorithm. Yang et al. 2017 also introduced an extended variant of ACOR for 

multi-modal optimization problems [33]. In 2018, Singsathid, and Wetweerapong presented a new 

continuous ACO, called PACO to make high precision solutions. They constructed and updated the 

pheromone matrix which is used to find a better solution to reduce and repartition the continuous 

variable domains iteratively. They proposed some suitable parameters for PACO and then compare 

it with those of other ACO in continues domains [37]. Duca, et al., 2019, studied the efficiency of 

ACOR algorithm on the electromagnetic optimization problems. They used the ACOR for solving 

two benchmark electromagnetic problems that are referred to the coils configuration‟s optimization. 

After choosing the appropriate population‟s size, the ACOR algorithm performances are compared 

with results obtained with the GA and the Particle Swarm Optimization (PSO). The ACOR 

outperforms the GA and the PSO for one problem, whereas for another one the PSO is the best 

algorithm [11]. Omran and Al-Sharhan, in 2019, proposed the IACOR (it uses a random-walk for 

selection operator) and LIACOR, two versions of ACOR, to improve the performance of ACOR on 

real-world COPs. On the other hand, LIACOR uses a local search method to enhance the quality of 

solutions. In another word, they try to balance exploration and exploitation, simultaneously [19].  In 
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2020, Peng Wang et al. embedded the genetic algorithm (GA) and the cloud model into the ACO 

(named it CG-ACO) to avoid trapping in local optimums and increase the rate of ACO‟s 

convergence [32]. Their numerical results showed that the CG-ACO outperform the ACOR, simple 

genetic algorithm (SGA), some other optimization algorithms which are embedded with cloud 

models such as CQPSO [32], and CAFSA [48] and the global optimal solution was more likely to 

achieve.  

In 2014, Liao et al. proposed a unified structure of the ACO algorithm (which is known as 

UACOR) for continuous optimization problems [17]. It provides a selection of particular 

components‟ algorithms to generate a various versions of ACOR. The UACOR contains the 

algorithmic components from three ACO algorithms for continuous optimization problems i.e. the 

components of the ACOR, the DACOR and the IACOR-LS, that have been previously studied. Thus, 

from the UACOR, one can be extracted from each of the three mentioned earlier algorithms; 

furthermore, from the proposed UACOR, some new ACO algorithms for continuous space can be 

generated, which have not been investigated previous in the literature. In other words, from the 

UACOR, some new continuous ACO algorithms can be derived automatically by enabling the use of 

the other algorithms configuration techniques. They generated two new ACOR algorithms, entitled 

UACOR-s and UACOR-c, to investigate the flexibility of the UACOR. Their numerical results 

showed the UACOR algorithms have high potentials for continuous optimization problems. 

Moreover, based on the experimental results, the UACOR outperforms all the previous versions that 

existed in the literature [20]. 

 In this paper, by making some changes in the two main components of the UACOR algorithm, 

i.e., how to create diversity and increase the quality of solutions, we improve the performance of 

this algorithm in solving the COPs. These changes include the use of chaotic sequences to diversify 

the solutions and control the amount of variation created, and the use of a new local search method 

to increase the quality of the generated solutions. 

The structure of the paper is organized as follows. Some related works due to the ACOR 

algorithm are summarized in Section 2. We also describe the unified ACOR algorithm i.e. UACOR. 

The proposed method contains the chaotic sequence, and a new local search method is described in 

Section3. In Section 4, the benchmark test functions are presented. The parameters setting for two 

types of UACOR, and the GA algorithms are determined in Section 5. Experimental settings and 

detailed results related to the comparison of the proposed algorithm regarding the three well-known 

algorithms are reported in Sections 6. The utilization of multi-reservoir systems of Karkheh Dam as 

a case study was investigated in Section 7. Finally, a summary and conclusions are provided in 

Section 8. 

2. Unified Ant Colony Optimization Algorithm (UACOR) 
 

As mentioned before, the UACOR algorithm is a unified version of the ACO algorithm for the 

COPs [16]. This algorithm combines the various components of the ACOR, the DACOR, and the 

IACOR-LS to achieve a tuned version of the ACO, i.e. UACOR. It is called unified, because the 

originally mentioned algorithms, i.e. the ACOR, the DACOR, and the IACOR-LS can be generated 

by using parameter settings and particular combinations of the operational components. If we set 

the parameters and combinations of some components in the UACOR inappropriate manner, we can 

find some different variants of ACO from the UACOR. It will be done by combining some related 

components from all the existing combinations.  

Before describing the outline of UACOR, which contains seven important groups of components, 

we need to abstract the main parts of the ACOR, the DACOR, and the IACOR-LS. 

2.1.  Basic Ant Colony for COPs (ACOR)  

The outline of basic ACO algorithm is explained in Algorithm 1.   

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
8-

25
 ]

 

                             3 / 17

http://iors.ir/journal/article-1-670-en.html


Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 79 

 

Algorithm1. Four main stages of ACO Algorithm 

1- Initialization: set the all needed parameters  

2- While the stopping criteria is not met, DO 

2.1 Constructing solutions: By considering pheromones values and the other related 

information, a set of ant solutions are built. 

2.2 Local search procedure: Improve the constructed ant solutions 

 2.3 Updating pheromone: Update the pheromone based on the search of ants‟ experience  

        In this algorithm, artificial ants follow a random approach to generate candidate solutions, 

using a pheromone model and existing heuristic information. The main parts of the ACO algorithm 

include generating the solution and updating the pheromone information (see e.g. [17] and [23]). 

        After introducing the original ACO for combinatorial problems (See Dorigo et al., 1991 

[23] and Dorigo, Maniezzo, and Colorni, 1996 [24]), the whole of proposed Ant related algorithms 

for COPs use different kinds of search mechanisms regarding the original ACO [38] (See e.g. Bil-

chev and Parmee, 1995 [5]; Dréo and Siarry, 2004 [10]; Hu, Zhang, Chung, Li, and Liu, 2010 [14]).  

        The ACOR that are proposed by Socha, and Dorigo, 2008 [38] is the first algorithm as an 

ACO algorithm that is designed for solving the COPs. The discrete probability distributions are 

replaced by the continuous probability density functions (PDFs) for constructing the solution 

archive in the ACOR. Each PDF can be obtained during the search process. It builds a solution 

x=(x1, x2, …, xn) ∈ R
n
  regarding the component xj (∀j = 1,…,n) successively by applying the 

Gaussian kernel as follows: 
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where k, ωi, µij and σij is the size of solutions archive T, the weight, mean and standard deviation 

associated with the gij(x) (i.e. one-dimensional Gaussian functions) respectively.  

        In order to calculate the G
j
 corresponding the component of xj, we need to calculate the 

three vector parameters ω= (ω1, ω2,…, ωk), µj=( µ1j, µ2j,…, µkj), and σj=( σ1j, σ2j,…, σkj). To do that, 

set the mean vector µj as µj = (µ1j, µ2j,…, µkj): = (x1j, . . . , xkj) and obtain the standard deviation 

vector σj =( σ1j, σ2j,…, σkj) as 
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where the role of coefficient ξ > 0 is the same as a parameter of evaporation rate in the ACO 

algorithm. In another word, the lower the ξ‟s value, the higher the convergence rate of the 

algorithm. For updating the archive T, firstly, rank the newly generated solutions obtained during 

the search process, then choose the best solutions which maintain the cardinality k. 

 

2.2. DACOR algorithm for COPs  

The DACOR is an extended version of ACOR, which concentrates on solutions‟ diversity and 

maintains the number of ants equal to the size of solution archive (i.e. k) where at each stage, a new 

solution is constructed by each ant. How the guide solution (Solguide) is chosen can say the other 

difference of the DACOR regarding the ACOR. In other words, the best solution (Solbest) in the 

solution archive is considered by the ant j as Solguide with probability pbest and, with probability (1-

pbest), the solution Sj is considered as Solguide by the ant j. Generating the new solution (Snew) in the 

DACOR is the same as described in the ACOR. Later on, Snew must be compared to the Sj (which of 

Solbest or Sj was considered the Solguide). If the Snew is better than the Sj, it is replaced by Snew and put 

in the archive; otherwise, it is omitted. Note that in the ACOR, all the solutions in the solutions 

archive are compared to all the newly generated solutions [15]. 

 

2.3. IACOR-LS algorithm for COPs 
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An incremental solutions‟ archive T over iterations, and a local search method are the distinctive 

characteristics of the IACOR-LS algorithm than the ACOR. These two features can be enhanced the 

diversification and the search intensification, respectively. Furthermore, the IACOR-LS algorithm 

chooses the Solguide in a different way than the ACOR. For doing so, at each iteration, the IACOR-LS 

algorithm chooses the Solbest from T as the Solguide with a probability of 
[0,1]bestElQ 

 and with the 

probability of 1- ElQbest, the Solguide is selected from T to generate a new solution. With this 

selection rule, two cases at each iteration may be occurred: a new solution is generated by an 

„„elite‟‟ Solguide or k different ants construct k new solutions. Note that each process of constructing 

a new solution similar to the way that the ACOR uses. In the end, Solguide and the new solution are 

compared. If the Solguide is worse than the new solution, the new solution replaces it in the T set; 

otherwise, it is deleted from the further calculations. The size of archive T in the IACOR-LS is 

initialized with pre-specified number solutions. At each iteration, a new solution is added to the T 

set until the cardinality of T is not greater than a maximum size. The IACOR-LS calls a local search 

method at each iteration. If the local search method generates a better solution than the original one 

in the T, the older solution will be replaced by the better solution [16].  

 

2.4.  UACOR algorithm for COPs 

Now we describe the UACOR algorithm that is suggested for solving the COPs. As mentioned 

before, the UACOR involves the main components from the ACOR, the DACOR, and the IACOR-LS 

algorithms, been stated in previous sections. In addition to the three mentioned algorithms, some 

new ACOR algorithms can be derived from the UACOR, which has not been studied before in the 

literature. 

The components of the UACOR algorithm can be stated as follow: 

 Mode: There are two different modes for the UACOR called elite mode and default mode. 

The default mode uses several ants in each reproduction of the algorithm to construct the 

solutions. In the elite mode in each reproduction, an elite ant is used with the probability of 

ElQbest∈ [0,1]. The elite ant chooses Solbest in the solution archive as Solguide to make a new 

solution. 

 Number of the ants: There are two choices to determine the number of ants used in the 

UACOR algorithm. Na defines the number of ants as an independent parameter (Na ≤ k) 

where the k is the size of the solution archive; while NoIsAS defines the number of ants 

equal to k (NoIsAS means that the number of ants is equal to the solution archive). 

 Choosing the Guide Solution: This factor determines how to select Solguide for sampling 

from new solutions. To this end, we have three cases to choose from: 

1. Solguide =Solbest with probability ElQbest∈ [0,1] 

2. Choosing Solguide from the solution archive based on their weights 

3. Choosing the current solution SolL as Solguide 

 Updating the solution archive T: updating the solution archive deals with adding the new 

solutions in the archive T. There are two following cases for doing that: 

1. The local worst parameter determines that UACOR will generally remove Na worst 

solutions from total k + Na solutions or decide on the acceptance of SolL locally. 

2. The Solnew-Gsol parameter specifies that the generated new solution by the ant L is 

compared with Solguide or with SolL, and then remove the worst solution. 

 Local search: In general, we can use the LS method in different ways. If the local parameter 

type equals F (or False), no LS method is used. Otherwise, the local type selects one of 

three local searches the Mtsls1 and conjugate directions of Powell in IACOR-LS (See [16] 

for more study) or the evolutionary CMA-ES of Molina et al. in [26]. 
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 Incrementing in archive: Here, we can increase the size of the solution archive. If parameter  

Inc=F (or equal to False), then the mechanism of the incremental archive is not applied. 

Otherwise, the UACOR applies an incremental archive mechanism. 

 Restarting technique: Three options are set for this technique. If parameter ResType = F, the 

restarting technique is not used. Otherwise, ResType uses one of the two-restart techniques 

introduced in IACOR-LS. 

3. Proposed Algorithm 
 

In this section, some changes to the UACOR algorithm are studied. These changes include two 

main phases, which are described below. 

 

Phase 1: Using Chaotic Sequences 

The issue of optimization algorithms based on the chaotic sequence has been studied studied by 

many researchers. The nature of chaotic dynamic algorithms is suitable for solving optimization 

problems. Since the chaotic variables can search the whole solution space non-repeatedly, then 

optimization algorithms based on the chaotic sequence can be capable of hill-climbing to avoid 

trapping into local optima. Numerical results show that the chaotic search is more effective than the 

random search [50]. The chaotic ACOR algorithm based on the chaotic sequence can be considered 

as a chaotic optimization algorithm and successfully applied to the process of ACOR. Hence, we 

apply the chaotic ACOR algorithm to overcome some drawbacks of the ACOR by increasing the 

variety. The rate of diversity in solutions increases, if the algorithms use the chaos maps 

(i.e. evolution function) through their process. Nearly in all random meta-heuristic algorithms (i.e. 

algorithms with random components), the random numbers are generated by using probability 

functions, mainly the Gaussian functions. Instead of using probability functions, chaotic maps can 

be applied as alternative ones. To this end, we investigate the behavior of combinations of meta-

heuristic UACOR algorithms with the proper chaotic map. 

In the first phase, the chaotic maps are used to generate sequences of numbers randomly. The 

chaotic sequences are used to initialize the solution archive. This will allow the solutions to be 

distributed over a fuller domain of search space, and thus, the chance of finding the global optimal 

solution is increased. To this end, according to our numerical investigations (see section 5.2) the 

following logical map is applied in our proposed algorithm as a chaotic map: 
2

1 exp( 4.90 ) 0.58,n nx x
                                                   (1) 

The pseudo-code shown in Algorithm 1 illustrates the initialization of the solutions in the 

solution archive using chaotic sequences. In this pseudo code, k is the size of the solution archive, 

  
    is the solution i in the solution archive, the LB, and the UB are the vectors with the same size of 

the corresponding solution, and each their components is the lower and the upper threshold for each 

component of the decision variable. CS is the vector with the same size as the solution created by 

Generate-Chaotic-Sequence that contains a random sequence generated by one of the chaotic maps. 

This is done by calling Ch_Map_Name, which represents the map type that is used. Note that D is 

the solution's dimension.  

 

 

Algorithm 1. Pseudo code of Initialization phase with chaotic map 

For i =1: k 

CS= Generate_Chaotic_Sequence (D, Ch_Map_Name); 
0

is
=LB+CS (UB-LB); 

End. 
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Phase 2: Local Search (LS) Method 

 

        In the LS phase, the neighborhood of each solution is searched for obtaining a better 

solution regarding the current solution. For this phase, the proposed algorithm uses the pseudo-code 

that is given in Algorithm 2. In this pseudo code, Snew is a new solution generated by the LS method 

that starts from the current solution Si. Index m is due to the solution that is chosen randomly from 

the solution archive, and j is the component number that is randomly selected among the solution 

components. The j
th
 component of the i

th 
solution can be changed in step 5 of Algorithm 2. In this 

pseudo-code, the rand-select function generates a random integer number in the given domain D.  

 

Algorithm 2. Pseudo code of the LS phase 

For i= 1: k 

m= rand_Select(1: k) and m≠i; 

Snew= Si; 

j= rand_Select(1: D) 

Snew j= Si j+rand (0, 1). (Sm j –Si j); 

fitnew= Evaluate(Snew); 

If (fitnew < fiti) 

fiti=fitnew; 

Si=Snew; 

End if 

End.  

 

Evaluation of the fitness function and replacement of the generated new solution by the LS 

phase is performed simultaneously. This can help to increase the rate of convergence of the 

algorithm to the optimal solution. The purpose of the LS that is described in Algorithm 2 is to make 

a small change in the current solutions. These small changes can yield some improvement in the 

quality of a solution. In the UACOR algorithm, the generation of a solution is done by many steps. 

It is worth noting that the initialization step's chaotic map led to increasing the randomness and 

hence, variety in generated solutions. On the other hand, the existence of proper LS shrinks the 

length of steps towards the global optimal solution and then increases the solutions' accuracy. In 

other words, this phase can create a balance between centralization and diversification issues. 

4. Benchmark Problems 

 Suganthan, et al., in 2005 designed and proposed some real-world problems as benchmark 

problems (which are known to the “CEC05”), including properties and mathematical formulas, 

evaluation criteria, and codes which are executables. The CEC05 set contains 25 benchmark 

functions that are carried on some optimization algorithms. The corresponding codes can be found 

in Matlab, Java, and C (for more details, see [12]).  

Summary of the twenty-five CEC05 functions can be categorized as follows: 

a) Unimodal Functions 

There are five unimodal functions which are named by (F1 –F5):  F1 (Shifted Sphere), F2 

(Shifted Schwefel‟s), F3 (Shifted Rotated High Conditioned Elliptic Function), F4 (Shifted 

Schwefel‟s with Noise in Fitness), F5 (Schwefel‟s with Global Optimum on Bounds) 

b) Multi-modal Functions  

The number of multi-modal functions is twenty and classified as: 
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b1) seven basic functions (F6 -F12):  F6: Shifted Rosenbrock‟s Function, F7: Shifted Rotated 

Griewank‟s Function without Bounds, F8: Shifted Rotated Ackley‟s Function with Global 

Optimum on Bounds, F9: Shifted Rastrigin‟s Function, F10: Shifted Rotated Rastrigin‟s Function, 

F11: Shifted Rotated Weierstrass Function, F12: Schwefel‟s Problem  

 

b2) two expanded functions (F13 -F14): F13: Rosenbrock‟s Function (F8F2) plus Expanded 

Extended Griewank‟s, F14: Shifted Rotated Expanded Scaffer‟s F6,  

 

b3) eleven hybrid composition functions (F15 –F25):  F15: Hybrid Composition Function, F16: 

Rotated Hybrid Composition Function, F17: Rotated Hybrid Composition Function with Noise in 

Fitness, F18: Rotated Hybrid Composition Function,  F19: Rotated Hybrid Composition Function 

with a Narrow Basin for the Global Optimum, F20: Rotated Hybrid Composition Function with the 

Global Optimum on the Bounds, F21: Rotated Hybrid Composition Function, F22: Rotated Hybrid 

Composition Function with High Condition Number Matrix, F23: Non-Continuous Rotated Hybrid 

Composition Function, F24: Rotated Hybrid Composition Function, F25: Rotated Hybrid 

Composition Function without Bounds. 

 

        In this study, to evaluate the proposed algorithm, the standard benchmark functions, i.e., 

CEC05 have been used as test functions. The reported results are made of applying the proposed 

algorithm, the UACOR-c, the UACOR-s, and the GA for 25 evaluation functions with 30-

dimensions and are compared to each other. 

 

5. Parameters’ setting 

 

5.1. Settings for the UACOR and GA 

        In this study, the parameters are set in two ways and called by the UACOR-s (pset1) and 

the UACOR-c (pset2) and with the same way which is done by Liao, et al., 2014 [17]. For example, 

in the first kind of parameter setting or UACOR-c the setting parameters are as follows (refer to 

[17] for more details): 

 

1- Default-Mode is set to True, i.e. the default mode is followed. If Default-Mode=False, the 

elitism mode is selected.   

2- The parameter NoIsAS is equal to True; that is, the number of ants is equal to the size of 

archive T. If the NoIsAS =False, the case of Na k is activated (See the UACOR-s).  

 

3- The parameter of Weight-Gsol is set to True, i.e. the Solguide is selected from the archive T 

regarding the weights are defined in the ACOR. When the Weight-Gsol = False, the current 

solution      is considered as the Solguide.  

 

4- The parameter of Local-Worst is considered equal to False. The Local-Worst in the 

UACOR-s algorithm is set to Ture. In this case, the parameter Solnew-Gsol can be considered 

as True or False. In the case Solnew-Gsol=True, each newly generated solution is compared 

with the corresponding Solguide and the worst one is deleted. Otherwise, the new solution 

compares with the SolL and the worse solution is removed.  

 

5- The Mtsls1 is used as a local search method i.e. Local-Type= Mtsls1 (Note that the CMA-

ES is called in UACOR-s as a local search).  
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Both of the UACOR-c, UACOR-s algorithms use the incremental solution archive mechanism 

(Inc=True) 

The corresponding parameters settings of the UACOR-c, UACOR-s algorithms, and the GA are 

summarized in Table 1.  

  

Table 1. Parameters settings of the UACOR-c, the UACOR-s and the GA 

 Parameters  Algorithms 

Default-Mode=True 

 

  UACOR-s  

(pset1) 

NoIAs=False 

Weight-Gsol=False 

Local-Worst=False 

Solnew-Gsol=True 

Local-Type=CMA-ES 

Inc=True 

Default-Mode=True 

UACOR-c 

(pset2) 

NoIsAS=True 

Weight-Gsol=True 

Local-Worst=False 

Local Type=Mtsls1 

Inc=True 

Population size=20 

 

GA 

Mutation rate=0.3 

Crossover= one point 

crossover 

Selection= Elitism 

 

The results obtained by applying the UACOR-s, UACOR-c algorithms regarding each parameter 

set (See Table 1) namely pset1 and pset2, respectively, on test functions F1-F25, are shown in Figure 

1.  

 

 
Figure 1. The average relative errors for the pset1 and pset2 on the test functions 

 

        The first parameters set (i.e. pset1) have less average relative error than the second type (i.e. 

pset2). Therefore, generally speaking, the quality of the obtained solutions for pset1 is higher than 

the second type. 

 

5.2. Choosing the Chaotic Map 

         In this section, we study the behavior of some well-known chaotic map such as Tent 

map (a real-valued function), The logistic map (a polynomial map of degree 2), the Gauss map (a 

nonlinear iterated map which is known as mouse map or Gaussian map), circle map and Sinai map 

(See e.g. [49], [50] and [39]).  
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         To choose the proper chaotic maps, we examine the effect of the mentioned chaotic maps 

on the ACOR algorithm. The results of the ACOR algorithm with the various chaotic maps on test 

functions are shown in Figure 2 as the bar chart. 

 

 
Figure 2. The average relative errors for applying chaotic maps on test functions 

         

We observe that irrespective of what chaotic maps are used, the performance of ACOR without 

using any chaotic map leads to high computational error than the ACOR, which is utilized by a 

chaotic map (See Figure 2). Furthermore, according to the numerical results, the logical map has 

less average relative error compared to the other maps, and hence, we can generate better solutions 

in quality. Hence, we applied the logical maps in our proposed algorithm. 

5.3 Influence of Local Search 

        In this section, the corresponding results regarding the utilization of the proposed algorithm 

with the three local searches such as the Mstls1, the CMA-EA, and the newly LS are examined. We 

tested the proposed algorithm on the benchmark CEC05, which is utilized by the three mentioned 

local searches. The numerical results show that the new LS has a better performance than the Mstls1 

and the CMA-EA (see Figure 3). The average relative errors in the new LS are less than the Mstls1 

and the CMA-EA.  

 

 
Figure 3. The effect of local searches on the test functions CEC05 

        The results indicate that the performance of the proposed LS is better than the two other 

methods, and therefore, it is implemented for further investigation in our algorithm. It is worth 

noting that, at the end of the total runs of each algorithm, the solution with the best fitness is 

considered as the approximation of the global optimal solution for each test function, and the 

number of iterations for each algorithm is limited by 30,000 iterations. Moreover, we use the 

average relative errors and Friedman‟s test to compare the obtained results. 

6. Experimental Results 

 

Whenever each algorithm satisfies the stopping criteria, then the relative deviation of the best 

solution from the optimal solution is considered as the relative error (or “error” for convenience) 

regarding the function that is used. For the given conditions, each algorithm runs 50 times on each 

function, and then the average error is reported. The average errors corresponding to the UACOR-s, 

the UACOR-c, the GA, and the proposed algorithm are shown in Table 2.  
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Table 2. Average errors of the proposed algorithm, UACOR-s, UACOR-c, and GA 

Test Functions GA UACOR-c UACOR-s 
Proposed 

UACOR 

F1 2.5329E+03 1.9245E-24 3.3265E-24 2.5435E-27 

F2 2.3422E+04 4.3548E-32 2.3448E-30 5.5430E-29 

F3 1.2543E+08 1.2536E+05 1.2846E+05 1.4521E+05 

F4 1.7358E+04 3.2234E-05 2.2478E-05 3.6456E-04 

F5 1.4921E+04 2.4836E+02 2.5428E+02 2.8955E-03 

F6 2.6687E+08 1.7326E+00 1.4916E+00 1.4159E+00 

F7 4.7158E+03 8.4551E-03 7.5651E-03 2.8503E-02 

F8 3.2648E+01 1.9948E+00 2.1048E+00 6.5938E-02 

F9 1.4436E+02 2.5987E-08 2.5847E-08 2.2198E-09 

F10 1.4358E+02 5.8524E+01 5.3497E+01 5.6314E+01 

F11 2.4335E+01 6.2559E-01 9.2479E-03 8.8183E-01 

F12 1.7519E+05 2.3491E+02 2.9472E+02 3.2598E+00 

F13 2.2531E+01 2.7812E+00 2.5361E+00 3.4139E-01 

F14 4.4546E+01 5.6247E+00 5.7048E+00 5.5311E+00 

F15 8.9478E+02 1.8754E+01 1.3416E+01 6.9146E+00 

F16 4.3419E+02 1.8556E+02 1.3695E+02 2.3793E+01 

F17 1.2536E+03 1.2379E+02 3.9238E+01 3.9147E+01 

F18 1.3478E+03 4.8635E+02 7.8412E+02 4.6462E+02 

F19 1.2452E+03 4.6462E+02 7.3475E+02 5.5943E+01 

F20 1.2463E+03 8.6723E+02 8.3165E+02 8.4462E+01 

F21 1.2541E+03 7.3290E+02 7.2860E+02 5.6549E+01 

F22 1.5403E+03 8.4463E+02 8.4423E+02 1.0017E+01 

F23 1.2491E+03 1.8469E+02 5.1986E+02 1.8635E+02 

F24 2.1300E+03 2.1500E+02 2.0000E+02 3.1988E+01 

F25 5.6422E+02 2.1023E+02 2.0000E+02 3.3372E+01 

 

        The bold values are less than all the values in that row, which indicates that, the 

corresponding algorithm outperforms the three other algorithms for the related test function CEC05. 

The values shown in grey indicate that based on the Friedman‟s test, the results obtained from the 

corresponding algorithm have a significant difference regarding the three other algorithms for the 

related CEC05‟s function. We observed that the proposed algorithm outperforms the UACOR-s, the 

UACOR-c, and the GA algorithms. Note that, although the UACOR-s or the UACOR-c performs 

better than the other mentioned algorithms in some test functions (see e.g. F3 and F10), according to 

Friedman‟s test, there is no significant difference between the performance of the four algorithms. 

7. Utilization of Multi-Reservoir Systems (Case study: Karkheh Dam) 

 

In this section, the proposed algorithm is used to optimize the utilization of a group of water 

resources, which include a three-reservoir system (Karkheh, Sazbon, and Mashoureh) and also four 

agricultural regions (including three regions 1, 2 and 3, and regions (4, 5, and 6) as a unit region) to 

evaluate the performance of the models (See Figure 4 that is adapted from [7]).  
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Figure 4. The three-reservoir system of Karkheh and four agricultural areas [7] 

 

In Figure 4, the notations are described as below: 

  :  

1. Agricultural demand for Sazbon 

2. Agricultural demand for Kashkan 

3. Agricultural demand for Baalam 

4. Agricultural demand for Dasht-e-Abbas 

5. Agricultural demand for Dosalq & Arayez and Bagheh 

6. Agricultural demand for Karkhe  

             : 

1. Inlet to Sazbon dam  

2. Inlet to Mashoureh dam 

3. Inlet to downstream of  Sazbon dam 

4. Inlet to downstream of  Kashkan dam 

5. Inlet to upstream of  Karkheh dam 

 

        The Karkheh dam is a large multi-purpose earthen embankment dam built in Iran on 

the Karkheh River in 2001 by the Islamic Revolutionary Guards Corps. This dam is located 21 km 

away from the Northwest of Andimeshk and was constructed on the Karkheh River in Khuzestan 

province of Iran. The dam is about 127 meters high and 3030 meters long. The type of dam is a clay 

core with a total volume of 7300 million cubic meters, and its dewatering started in February 1999. 

One of the main applications of this reservoir is to control, and regulate the surface water flow of 

the Karkheh river (in order to provide the land with water in the nearby plains including Evan, 

Dosalq, Arayez, and Bagheh as well as the Hamidieh, Qods, Azadegan plain, Dasht-e-Abbas, Fakeh 

and Ainkhosh). The other applications of this dam include hydropower production, controlling 

season floods and avoiding damages to the downstream area. Sazbon reservoir is located 30 km east 

of the Ilam province, and was constructed on the Seymareh River. The Mashoureh reservoir is 

located 90 km away from Khorramabad, and was constructed on the Kashkan River in 

Chaharmahal-e Bakhtiari province, Iran. 

As mentioned above, in this system, optimal utilization of the reservoirs of Sazbon, Mashoureh 

and Karkheh are needed to meet the needs of the four mentioned agricultural regions (i.e. regions 1, 

2 and 3 and regions (4, 5 and 6)). Also, at the downstream of each reservoir and split into 

agricultural region 3, the provision of the minimum environmental flow requirements in the river is 

mandatory. The priority is to meet the environmental flow needs in the river and agricultural 

regions, respectively. Table 3 shows the average monthly inflows to the system in a year.  
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Table 3. Monthly average inflows for the three-reservoir system of Karkheh 

 

        The agricultural needs for the four mentioned regions and the monthly distribution of net 

evaporation from the reservoir's surfaces are presented in Tables 3 and 4, respectively.  

 

Table 4. Monthly absolute evaporation from the surface of the three-reservoir system of 

Karkheh 

 

Table 5. Monthly agricultural needs of four agricultural regions 

 

       The environmental requirements for the minimum flow in four intervals of the river, 

including the downstream of Sazbon and Mashoureh reservoirs and the upstream and downstream 

of the Karkheh reservoir, were fixed at 75, 1.43, 75 and 75 million cubic meters per month, 

respectively. 

        The nonlinear programming problem (2)-(6) is considered regarding the three-reservoir 

system of Karkheh. This model is formulated for 47 years (564 months) from the solar year 1954 

until 2001. The optimal solution (or optimal utilization path) of this model contains the optimal 

harvesting of each reservoir and the optimal supply for each of the agricultural needs during the 

months. Regardless of the constraints due to the minimum environmental requirement in the 

monthly intervals, the numbers of decision variables are 3948 variables, which will face a severe 

challenge by any well-known algorithm to solve it. The objective function (Z) for this problem is 

minimized by the quadratic cost function for the cases of deficiency (one-way cost function) and is 

presented concerning the other corresponding constraints that are given in constraints (3) - (6). 

Reservoir Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug. 

Sazbon 57 139 221 233 322 529 768 507 162 69 49 42 

Mashoureh 14 21 68 88 72 67 93 66 23 13 13 13 

Entering 

Branch 1 
25 25 34 44 31 25 24 31 39 23 19 20 

Entering  

Branch 2 
34 52 84 57 141 216 329 233 85 55 40 31 

Entering  

Branch 3 
18 39 84 84 80 112 89 130 151 62 37 29 

Reservoirs Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug. 

Sazbon 0.167 0.074 0.0 0.0 0.0 0.0 0.05

6 

0.11

4 

0.21

3 

0.24

9 

0.24

3 

0.22

0 

Mashoureh 0.149 0.068 0.01

5 

0.00

8 

0.18

1 

0.01

7 

0.06

7 

0.12

1 

0.18

1 

0.21

6 

0.22

0 

0.19

1 

Karkheh 0.208 0.136 0.08

1 

0.06

1 

0.07

0 

0.09

9 

0.14

8 

0.21

1 

0.26

6 

0.28

0 

0.27

4 

0.24

4 

Regions Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug. 

1 48.5 48.5 60.6 60.6 60.6 60.6 60.6 0.0 0.0 0.0 0.0 0.0 

2 20.4 1.2 0.0 0.0 0.0 0.0 0.8 55.8 69.1 70 51.8 31.7 

3 37.2 37.2 46.5 46.5 46.5 46.5 46.5 0.0 0.0 0.0 0.0 0.0 

(4, 5, 6) 326.7 219.9 148.7 157.9 156.2 276.0 413.8 411.6 231.9 406.5 403.7 445.8 
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564 4
2

1 1

( )

. .
0

j j j j
t t t t

t j

D Rg Rg D
Minimize Z

o w

                                                                 
(2) 

Subject to: 

1 , 1,2,3NR NR NR NR NR

t t t t tS S Q R E NR
                                                                          

(3) 

min , 1,2,3NR NR

tR R NR
                                                                                                                                         

(4) 

min max , 1,2,3NR NR NR

tS S S NR
                                                                                                                             

(5) 

1 1 max , 1,2,3NR NR NR

tS S S NR
                                                                                                                             

(6) 

      

   In this regard, the notations St, Qt, Rt, Et, and Dt are respectively, the storage volume at the 

beginning of period t, the amount of input in period t, the released rate for period t, the evaporation 

volume from the reservoirs surfaces in period t and the monthly demands for agricultural regions in 

period t. The notation NR is the reservoir number. Rg
j
 is the amount of water allocated to the j

th
 

agricultural region. Storage at the beginning of the first period and the end of the last period for all 

the reservoirs was unknown but assumed equal. This condition is specified in Eq. (6).  

        For solving this problem, the amount of storage volume for the first period for all the 

reservoirs is initialized randomly in the feasible space. It is worth noting that almost all methods use 

penalty expression for repairing the infeasible solutions and getting the feasible ones. The decision 

variables include the amount of storage in each reservoir (  S
NR

 ) and the assignment to each region 

(Rg
j
), and, as indicated, the numbers of variables are 3948. Increasing the number of decision 

variables makes the problem difficult to solve optimally. Therefore, we consider utilizing multi-

reservoir systems as an optimization problem, as illustrated by (2) - (6).  

        Here, we will solve the optimization problem multi-reservoir systems with the four 

algorithms mentioned in Section 6 and evaluate the obtained results to we examine the performance 

of the proposed algorithm on a real instance. 

        Note that the number of reservoirs in this dam is 3 and the number of agricultural regions is 

4. We apply each of three algorithms with 50 independent runs by considering the optimization 

problem (2)-(6) related to the multi-reservoir optimization systems, and the average relative errors 

from the best solution of the proposed algorithm, the UACOR-s, the UACOR-c, and the GA are 

shown in Table 6.  

 

Table 6. The average errors of the proposed algorithm, UACOR-s, UACOR–c, and GA 

regarding the multi-reservoir system of Karkheh 

GA UACOR-s UACOR-c Proposed  UACOR 

5.7381E+02 5.9311E-05 9.5311E-05 3.5311E-06 

 

        According to Table 6, the better performance of the proposed UACOR algorithm than the 

three other algorithms shows that the proposed components used in this algorithm, such as a chaotic 

map and the local search approach, can be affected on quality of solutions. Making more solutions, 

variety and more accurate exploring the search space may be the main reason for the proposed 

algorithm's better performance compared to its original version.  
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8. Summary and Conclusion 

 

Ant colony optimization algorithm for continuous domains (ACOR) is the well-known meta-

heuristic algorithms for solving continuous optimization problems (COPs) that have been 

considered by many researchers in recent decades. The unified ant colony algorithm (UACOR) is a 

kind of ACOR that provides a unified framework for making some new versions of the ACO 

algorithm. In the present study, some changes have been made to the UACOR. These changes 

include the use of chaotic maps in the initialization phase, which increases the diversity in the initial 

population. Furthermore, a local search method based on differential evolution has also been 

applied. The proposed LS improved the algorithm‟s performance, because it may lead to an increase 

in the solutions‟ variety by defining a different way to search the solutions‟ neighborhoods. The 

proposed UACOR and two well-known versions of UACOR (namely UACOR-s and UACOR-c) and 

the GA are tested on the benchmark optimization functions “CEC05” that contains 25 unimodal and 

multi-unimodal functions. Moreover, the proposed algorithm has been applied to optimize the 

utilization of multi-reservoir systems in the Karkheh dam as a case study. The corresponding results 

confirm that the proposed algorithm outperforms the three other algorithms i.e. UACOR-s and 

UACOR-c and GA algorithms. The numerical results indicate that making some changes (e.g., using 

chaotic sequences to generate initial solutions) on the exploitation and exploration can improve the 

performance of heuristic algorithms without any expensive cost. 
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