
Iranian Journal of Operations Research

Vol. 11, No. 1, 2020, pp. 76-92

DOI: 10.29252/iors.11.1.76

Utilizing the Unified Ant Colony Algorithm by Chaotic

Maps

Hamid Reza Yousefzadeh
1,*

, Davood Darvishi
2
, Arezoo Sayadi Salar

3

Ant colony optimization (ACOR) is a meta-heuristic algorithm for solving continuous optimization

problems (MOPs). In the last decades, some improved versions of ACOR have been proposed.

The UACOR is a unified version of ACOR that is designed for continuous domains. By adjusting

some specified components of the UACOR, some new versions of ACOR can be deduced. By doing

that, it becomes more practical for different types of MOPs. Based on the nature of meta-heuristic

algorithms, the performance of meta-heuristic algorithms are depends on the exploitation and

exploration, which are known as the two useful factors to generate solutions with different

qualities. Since all the meta-heuristic algorithms with random parameters use the probability

functions to generate the random numbers and as a result, there is no any control over the

amount of diversity; hence in this paper, by using the best parameters of UACOR and making

some other changes, we propose a new version of ACOR to increase the efficiency of UACOR.

These changes include using chaotic sequences to generate various random sequences and also

using a new local search to increase the quality of the solution. The proposed algorithm, the two

standard versions of UACOR and the genetic algorithm are tested on the CEC05 benchmark

functions, and then numerical results are reported. Furthermore, we apply these four algorithms

to solve the utilization of complex multi-reservoir systems, the three-reservoir system of Karkheh

dam, as a case study. The numerical results confirm the superiority of proposed algorithm over

the three other algorithms.

Keywords: Ant colony algorithm; Continuous optimization; Chaotic sequences; Multi-reservoir

systems; Genetic algorithm.

Manuscript was received on 01/10/2020, revised on 02/29/2020 and accepted for publication on 04/09/2020.

1. Introduction

The first version of the ACO algorithm, namely the Ant System (AS), was attributed to Marco

Dorigo in 1992, which is proposed in his Ph.D. thesis [21]. Ant-quantity, ant-cycle, and ant-density

are the three main algorithms of the AS. The main contributions of these algorithms are based on

when, how, and the density-value of pheromone that was deposited from the ants. For example, in

the ant-cycle type, a pheromone is deposited when all ants had generated the path, and quality of the

tour was considered as a function to update the pheromone‟ levels (refer to [21] to study more about

how each of them works). Based on empirical results, the ant-cycle algorithm outperformed the

other two algorithms and hence it was used to describe the AS. We can find numerous

improvements and variants for the basic ACO since 1991 in the literature that are proposed, and

studied by researchers. For more study, we can refer to the earlier ACO‟s developments briefly,

such as the Elitist AS (see, e.g. [21], [23], [24] in 1991, 1992, and 1996 respectively), the Ant-Q

*
 Corresponding Author.

1
 Department of Mathematics, Payame Noor University (PNU) usefzadeh.math@pnu.ac.ir

2
 Department of Mathematics, Payame Noor University (PNU), d_darvishi@pnu.ac.ir.

3
 Department of Mathematics, Payame Noor University (PNU) sayadisalararezoo@yahoo.com

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 1 / 17

mailto:usefzadeh.math@pnu.ac.ir
http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 77

([18] in 1995), the Ant Colony System for TSP ([22] in 1996), the Max-Min Ant System ([42] and

[43] in 1996 and 1997 respectively), the Rank-based AS ([4] in 1997), the EANTS ([46] in 1999),

the Best-worst AS ([34] and [35] in 2000 and 2002 respectively), the Hyper Cube ACO ([8] in

2001), the Population based ACO ([25] in 2002), the Beam-ACO (see, e.g. [25] and [9] in 2002 and

2005 respectively).

 The nature of the initial ACO algorithm was designed to combinatorial optimization problems,

and later on, it was updated for the continuous ones. Discretizing the real-valued variables is the

most straightforward approach to apply the ACO algorithm for continuous optimization problems

(COPs). Calling the ACO by utilizing this methodology has been implemented to the Protein-ligand

docking problem [3].

 After presenting the ACO algorithm for discrete optimization problems, several ant-inspired

algorithms for COPs have been proposed (See, e.g. references [5], [10], [13], and [27]). The main

difference between these algorithms is based on their focus on the search mechanisms [13].

 The first ACO algorithm considering the continuous domains is proposed by Socha and Dorigo

2008 in [6]. They suggested an extended version of the ACO algorithm called the ACOR (where the

index R indicates that the variables are real-valued) where they explicitly used the Gaussian kernel

function instead of the probability density function.

 Although numerical results show that the ACOR may be successful in some problems but for the

problems with high feasible-dimensions (i.e., in real-world applications) has not been investigated

yet. More studies show that the ACOR has a poor performance for large scale problems because it

quickly loses its variety, and therefore negatively affects the quality of solutions.

 Leguizamón and Coello in 2010 proposed an extension of ACOR namely, DACOR (D stands for

diversity), to increase the quality of the solutions and reduce the required computational time

simultaneously. Based on their experimental results, the DACOR outperforms the ACOR for

unconstrained large scale COPs [15]. In this algorithm, despite more exploration of the response

space, but they do not have any local exploration mechanism to control more accurate the solution

space. Furthermore, automatic decision-making between local and global exploration based on the

observed diversity is not considered.

 In 2011, Liao et al. proposed an incremental variant of ACOR entitled by IACOR-LS. It uses a

local search and a growing solution archive to diversify the search and expand the exploration [16].

To do that, they used different types of local search methods in their experiments, such as the

Powell's conjugate directions set [30], Powell's BOBYQA [31], and Lin-Yu Tseng's Mtsls1 [44].

Their results showed that the IACOR-LS conjunction with Mtsls1 (named by the IACOR-Mtsls1) is

not only outperforms the ACOR, but also it is competitive with other state-of-the-art algorithms on

the COPs. In later years, Guo et al. 2012 in [29] and Kumar et al. 2015 in [45] presented improved

versions of the ACOR algorithm. Yang et al. 2017 also introduced an extended variant of ACOR for

multi-modal optimization problems [33]. In 2018, Singsathid, and Wetweerapong presented a new

continuous ACO, called PACO to make high precision solutions. They constructed and updated the

pheromone matrix which is used to find a better solution to reduce and repartition the continuous

variable domains iteratively. They proposed some suitable parameters for PACO and then compare

it with those of other ACO in continues domains [37]. Duca, et al., 2019, studied the efficiency of

ACOR algorithm on the electromagnetic optimization problems. They used the ACOR for solving

two benchmark electromagnetic problems that are referred to the coils configuration‟s optimization.

After choosing the appropriate population‟s size, the ACOR algorithm performances are compared

with results obtained with the GA and the Particle Swarm Optimization (PSO). The ACOR

outperforms the GA and the PSO for one problem, whereas for another one the PSO is the best

algorithm [11]. Omran and Al-Sharhan, in 2019, proposed the IACOR (it uses a random-walk for

selection operator) and LIACOR, two versions of ACOR, to improve the performance of ACOR on

real-world COPs. On the other hand, LIACOR uses a local search method to enhance the quality of

solutions. In another word, they try to balance exploration and exploitation, simultaneously [19]. In

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 2 / 17

http://iors.ir/journal/article-1-670-en.html

78 Yousefzadeh et al.

2020, Peng Wang et al. embedded the genetic algorithm (GA) and the cloud model into the ACO

(named it CG-ACO) to avoid trapping in local optimums and increase the rate of ACO‟s

convergence [32]. Their numerical results showed that the CG-ACO outperform the ACOR, simple

genetic algorithm (SGA), some other optimization algorithms which are embedded with cloud

models such as CQPSO [32], and CAFSA [48] and the global optimal solution was more likely to

achieve.

In 2014, Liao et al. proposed a unified structure of the ACO algorithm (which is known as

UACOR) for continuous optimization problems [17]. It provides a selection of particular

components‟ algorithms to generate a various versions of ACOR. The UACOR contains the

algorithmic components from three ACO algorithms for continuous optimization problems i.e. the

components of the ACOR, the DACOR and the IACOR-LS, that have been previously studied. Thus,

from the UACOR, one can be extracted from each of the three mentioned earlier algorithms;

furthermore, from the proposed UACOR, some new ACO algorithms for continuous space can be

generated, which have not been investigated previous in the literature. In other words, from the

UACOR, some new continuous ACO algorithms can be derived automatically by enabling the use of

the other algorithms configuration techniques. They generated two new ACOR algorithms, entitled

UACOR-s and UACOR-c, to investigate the flexibility of the UACOR. Their numerical results

showed the UACOR algorithms have high potentials for continuous optimization problems.

Moreover, based on the experimental results, the UACOR outperforms all the previous versions that

existed in the literature [20].

 In this paper, by making some changes in the two main components of the UACOR algorithm,

i.e., how to create diversity and increase the quality of solutions, we improve the performance of

this algorithm in solving the COPs. These changes include the use of chaotic sequences to diversify

the solutions and control the amount of variation created, and the use of a new local search method

to increase the quality of the generated solutions.

The structure of the paper is organized as follows. Some related works due to the ACOR

algorithm are summarized in Section 2. We also describe the unified ACOR algorithm i.e. UACOR.

The proposed method contains the chaotic sequence, and a new local search method is described in

Section3. In Section 4, the benchmark test functions are presented. The parameters setting for two

types of UACOR, and the GA algorithms are determined in Section 5. Experimental settings and

detailed results related to the comparison of the proposed algorithm regarding the three well-known

algorithms are reported in Sections 6. The utilization of multi-reservoir systems of Karkheh Dam as

a case study was investigated in Section 7. Finally, a summary and conclusions are provided in

Section 8.

2. Unified Ant Colony Optimization Algorithm (UACOR)

As mentioned before, the UACOR algorithm is a unified version of the ACO algorithm for the

COPs [16]. This algorithm combines the various components of the ACOR, the DACOR, and the

IACOR-LS to achieve a tuned version of the ACO, i.e. UACOR. It is called unified, because the

originally mentioned algorithms, i.e. the ACOR, the DACOR, and the IACOR-LS can be generated

by using parameter settings and particular combinations of the operational components. If we set

the parameters and combinations of some components in the UACOR inappropriate manner, we can

find some different variants of ACO from the UACOR. It will be done by combining some related

components from all the existing combinations.

Before describing the outline of UACOR, which contains seven important groups of components,

we need to abstract the main parts of the ACOR, the DACOR, and the IACOR-LS.

2.1. Basic Ant Colony for COPs (ACOR)

The outline of basic ACO algorithm is explained in Algorithm 1.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 3 / 17

http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 79

Algorithm1. Four main stages of ACO Algorithm

1- Initialization: set the all needed parameters

2- While the stopping criteria is not met, DO

2.1 Constructing solutions: By considering pheromones values and the other related

information, a set of ant solutions are built.

2.2 Local search procedure: Improve the constructed ant solutions

 2.3 Updating pheromone: Update the pheromone based on the search of ants‟ experience

 In this algorithm, artificial ants follow a random approach to generate candidate solutions,

using a pheromone model and existing heuristic information. The main parts of the ACO algorithm

include generating the solution and updating the pheromone information (see e.g. [17] and [23]).

 After introducing the original ACO for combinatorial problems (See Dorigo et al., 1991

[23] and Dorigo, Maniezzo, and Colorni, 1996 [24]), the whole of proposed Ant related algorithms

for COPs use different kinds of search mechanisms regarding the original ACO [38] (See e.g. Bil-

chev and Parmee, 1995 [5]; Dréo and Siarry, 2004 [10]; Hu, Zhang, Chung, Li, and Liu, 2010 [14]).

 The ACOR that are proposed by Socha, and Dorigo, 2008 [38] is the first algorithm as an

ACO algorithm that is designed for solving the COPs. The discrete probability distributions are

replaced by the continuous probability density functions (PDFs) for constructing the solution

archive in the ACOR. Each PDF can be obtained during the search process. It builds a solution

x=(x1, x2, …, xn) ∈ R
n
 regarding the component xj (∀j = 1,…,n) successively by applying the

Gaussian kernel as follows:

   

 

 
2

2

1 1

1

2

ij

ij

x

k k
j

i ij i

i i ij

G x g x e




 

 




 

  

where k, ωi, µij and σij is the size of solutions archive T, the weight, mean and standard deviation

associated with the gij(x) (i.e. one-dimensional Gaussian functions) respectively.

 In order to calculate the G
j
 corresponding the component of xj, we need to calculate the

three vector parameters ω= (ω1, ω2,…, ωk), µj=(µ1j, µ2j,…, µkj), and σj=(σ1j, σ2j,…, σkj). To do that,

set the mean vector µj as µj = (µ1j, µ2j,…, µkj): = (x1j, . . . , xkj) and obtain the standard deviation

vector σj =(σ1j, σ2j,…, σkj) as

1

1,...,
1

k
ej ij

ij

e

x x
i k

k
 




 




,

where the role of coefficient ξ > 0 is the same as a parameter of evaporation rate in the ACO

algorithm. In another word, the lower the ξ‟s value, the higher the convergence rate of the

algorithm. For updating the archive T, firstly, rank the newly generated solutions obtained during

the search process, then choose the best solutions which maintain the cardinality k.

2.2. DACOR algorithm for COPs

The DACOR is an extended version of ACOR, which concentrates on solutions‟ diversity and

maintains the number of ants equal to the size of solution archive (i.e. k) where at each stage, a new

solution is constructed by each ant. How the guide solution (Solguide) is chosen can say the other

difference of the DACOR regarding the ACOR. In other words, the best solution (Solbest) in the

solution archive is considered by the ant j as Solguide with probability pbest and, with probability (1-

pbest), the solution Sj is considered as Solguide by the ant j. Generating the new solution (Snew) in the

DACOR is the same as described in the ACOR. Later on, Snew must be compared to the Sj (which of

Solbest or Sj was considered the Solguide). If the Snew is better than the Sj, it is replaced by Snew and put

in the archive; otherwise, it is omitted. Note that in the ACOR, all the solutions in the solutions

archive are compared to all the newly generated solutions [15].

2.3. IACOR-LS algorithm for COPs

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 4 / 17

http://iors.ir/journal/article-1-670-en.html

80 Yousefzadeh et al.

An incremental solutions‟ archive T over iterations, and a local search method are the distinctive

characteristics of the IACOR-LS algorithm than the ACOR. These two features can be enhanced the

diversification and the search intensification, respectively. Furthermore, the IACOR-LS algorithm

chooses the Solguide in a different way than the ACOR. For doing so, at each iteration, the IACOR-LS

algorithm chooses the Solbest from T as the Solguide with a probability of
[0,1]bestElQ 

 and with the

probability of 1- ElQbest, the Solguide is selected from T to generate a new solution. With this

selection rule, two cases at each iteration may be occurred: a new solution is generated by an

„„elite‟‟ Solguide or k different ants construct k new solutions. Note that each process of constructing

a new solution similar to the way that the ACOR uses. In the end, Solguide and the new solution are

compared. If the Solguide is worse than the new solution, the new solution replaces it in the T set;

otherwise, it is deleted from the further calculations. The size of archive T in the IACOR-LS is

initialized with pre-specified number solutions. At each iteration, a new solution is added to the T

set until the cardinality of T is not greater than a maximum size. The IACOR-LS calls a local search

method at each iteration. If the local search method generates a better solution than the original one

in the T, the older solution will be replaced by the better solution [16].

2.4. UACOR algorithm for COPs

Now we describe the UACOR algorithm that is suggested for solving the COPs. As mentioned

before, the UACOR involves the main components from the ACOR, the DACOR, and the IACOR-LS

algorithms, been stated in previous sections. In addition to the three mentioned algorithms, some

new ACOR algorithms can be derived from the UACOR, which has not been studied before in the

literature.

The components of the UACOR algorithm can be stated as follow:

 Mode: There are two different modes for the UACOR called elite mode and default mode.

The default mode uses several ants in each reproduction of the algorithm to construct the

solutions. In the elite mode in each reproduction, an elite ant is used with the probability of

ElQbest∈ [0,1]. The elite ant chooses Solbest in the solution archive as Solguide to make a new

solution.

 Number of the ants: There are two choices to determine the number of ants used in the

UACOR algorithm. Na defines the number of ants as an independent parameter (Na ≤ k)

where the k is the size of the solution archive; while NoIsAS defines the number of ants

equal to k (NoIsAS means that the number of ants is equal to the solution archive).

 Choosing the Guide Solution: This factor determines how to select Solguide for sampling

from new solutions. To this end, we have three cases to choose from:

1. Solguide =Solbest with probability ElQbest∈ [0,1]

2. Choosing Solguide from the solution archive based on their weights

3. Choosing the current solution SolL as Solguide

 Updating the solution archive T: updating the solution archive deals with adding the new

solutions in the archive T. There are two following cases for doing that:

1. The local worst parameter determines that UACOR will generally remove Na worst

solutions from total k + Na solutions or decide on the acceptance of SolL locally.

2. The Solnew-Gsol parameter specifies that the generated new solution by the ant L is

compared with Solguide or with SolL, and then remove the worst solution.

 Local search: In general, we can use the LS method in different ways. If the local parameter

type equals F (or False), no LS method is used. Otherwise, the local type selects one of

three local searches the Mtsls1 and conjugate directions of Powell in IACOR-LS (See [16]

for more study) or the evolutionary CMA-ES of Molina et al. in [26].

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 5 / 17

http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 81

 Incrementing in archive: Here, we can increase the size of the solution archive. If parameter

Inc=F (or equal to False), then the mechanism of the incremental archive is not applied.

Otherwise, the UACOR applies an incremental archive mechanism.

 Restarting technique: Three options are set for this technique. If parameter ResType = F, the

restarting technique is not used. Otherwise, ResType uses one of the two-restart techniques

introduced in IACOR-LS.

3. Proposed Algorithm

In this section, some changes to the UACOR algorithm are studied. These changes include two

main phases, which are described below.

Phase 1: Using Chaotic Sequences

The issue of optimization algorithms based on the chaotic sequence has been studied studied by

many researchers. The nature of chaotic dynamic algorithms is suitable for solving optimization

problems. Since the chaotic variables can search the whole solution space non-repeatedly, then

optimization algorithms based on the chaotic sequence can be capable of hill-climbing to avoid

trapping into local optima. Numerical results show that the chaotic search is more effective than the

random search [50]. The chaotic ACOR algorithm based on the chaotic sequence can be considered

as a chaotic optimization algorithm and successfully applied to the process of ACOR. Hence, we

apply the chaotic ACOR algorithm to overcome some drawbacks of the ACOR by increasing the

variety. The rate of diversity in solutions increases, if the algorithms use the chaos maps

(i.e. evolution function) through their process. Nearly in all random meta-heuristic algorithms (i.e.

algorithms with random components), the random numbers are generated by using probability

functions, mainly the Gaussian functions. Instead of using probability functions, chaotic maps can

be applied as alternative ones. To this end, we investigate the behavior of combinations of meta-

heuristic UACOR algorithms with the proper chaotic map.

In the first phase, the chaotic maps are used to generate sequences of numbers randomly. The

chaotic sequences are used to initialize the solution archive. This will allow the solutions to be

distributed over a fuller domain of search space, and thus, the chance of finding the global optimal

solution is increased. To this end, according to our numerical investigations (see section 5.2) the

following logical map is applied in our proposed algorithm as a chaotic map:
2

1 exp(4.90) 0.58,n nx x
 (1)

The pseudo-code shown in Algorithm 1 illustrates the initialization of the solutions in the

solution archive using chaotic sequences. In this pseudo code, k is the size of the solution archive,

 is the solution i in the solution archive, the LB, and the UB are the vectors with the same size of

the corresponding solution, and each their components is the lower and the upper threshold for each

component of the decision variable. CS is the vector with the same size as the solution created by

Generate-Chaotic-Sequence that contains a random sequence generated by one of the chaotic maps.

This is done by calling Ch_Map_Name, which represents the map type that is used. Note that D is

the solution's dimension.

Algorithm 1. Pseudo code of Initialization phase with chaotic map

For i =1: k

CS= Generate_Chaotic_Sequence (D, Ch_Map_Name);
0

is
=LB+CS (UB-LB);

End.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 6 / 17

https://en.wikipedia.org/wiki/Discrete-time_dynamical_system
http://iors.ir/journal/article-1-670-en.html

82 Yousefzadeh et al.

Phase 2: Local Search (LS) Method

 In the LS phase, the neighborhood of each solution is searched for obtaining a better

solution regarding the current solution. For this phase, the proposed algorithm uses the pseudo-code

that is given in Algorithm 2. In this pseudo code, Snew is a new solution generated by the LS method

that starts from the current solution Si. Index m is due to the solution that is chosen randomly from

the solution archive, and j is the component number that is randomly selected among the solution

components. The j
th
 component of the i

th
solution can be changed in step 5 of Algorithm 2. In this

pseudo-code, the rand-select function generates a random integer number in the given domain D.

Algorithm 2. Pseudo code of the LS phase

For i= 1: k

m= rand_Select(1: k) and m≠i;

Snew= Si;

j= rand_Select(1: D)

Snew j= Si j+rand (0, 1). (Sm j –Si j);

fitnew= Evaluate(Snew);

If (fitnew < fiti)

fiti=fitnew;

Si=Snew;

End if

End.

Evaluation of the fitness function and replacement of the generated new solution by the LS

phase is performed simultaneously. This can help to increase the rate of convergence of the

algorithm to the optimal solution. The purpose of the LS that is described in Algorithm 2 is to make

a small change in the current solutions. These small changes can yield some improvement in the

quality of a solution. In the UACOR algorithm, the generation of a solution is done by many steps.

It is worth noting that the initialization step's chaotic map led to increasing the randomness and

hence, variety in generated solutions. On the other hand, the existence of proper LS shrinks the

length of steps towards the global optimal solution and then increases the solutions' accuracy. In

other words, this phase can create a balance between centralization and diversification issues.

4. Benchmark Problems

 Suganthan, et al., in 2005 designed and proposed some real-world problems as benchmark

problems (which are known to the “CEC05”), including properties and mathematical formulas,

evaluation criteria, and codes which are executables. The CEC05 set contains 25 benchmark

functions that are carried on some optimization algorithms. The corresponding codes can be found

in Matlab, Java, and C (for more details, see [12]).

Summary of the twenty-five CEC05 functions can be categorized as follows:

a) Unimodal Functions

There are five unimodal functions which are named by (F1 –F5): F1 (Shifted Sphere), F2

(Shifted Schwefel‟s), F3 (Shifted Rotated High Conditioned Elliptic Function), F4 (Shifted

Schwefel‟s with Noise in Fitness), F5 (Schwefel‟s with Global Optimum on Bounds)

b) Multi-modal Functions

The number of multi-modal functions is twenty and classified as:

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 7 / 17

http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 83

b1) seven basic functions (F6 -F12): F6: Shifted Rosenbrock‟s Function, F7: Shifted Rotated

Griewank‟s Function without Bounds, F8: Shifted Rotated Ackley‟s Function with Global

Optimum on Bounds, F9: Shifted Rastrigin‟s Function, F10: Shifted Rotated Rastrigin‟s Function,

F11: Shifted Rotated Weierstrass Function, F12: Schwefel‟s Problem

b2) two expanded functions (F13 -F14): F13: Rosenbrock‟s Function (F8F2) plus Expanded

Extended Griewank‟s, F14: Shifted Rotated Expanded Scaffer‟s F6,

b3) eleven hybrid composition functions (F15 –F25): F15: Hybrid Composition Function, F16:

Rotated Hybrid Composition Function, F17: Rotated Hybrid Composition Function with Noise in

Fitness, F18: Rotated Hybrid Composition Function, F19: Rotated Hybrid Composition Function

with a Narrow Basin for the Global Optimum, F20: Rotated Hybrid Composition Function with the

Global Optimum on the Bounds, F21: Rotated Hybrid Composition Function, F22: Rotated Hybrid

Composition Function with High Condition Number Matrix, F23: Non-Continuous Rotated Hybrid

Composition Function, F24: Rotated Hybrid Composition Function, F25: Rotated Hybrid

Composition Function without Bounds.

 In this study, to evaluate the proposed algorithm, the standard benchmark functions, i.e.,

CEC05 have been used as test functions. The reported results are made of applying the proposed

algorithm, the UACOR-c, the UACOR-s, and the GA for 25 evaluation functions with 30-

dimensions and are compared to each other.

5. Parameters’ setting

5.1. Settings for the UACOR and GA

 In this study, the parameters are set in two ways and called by the UACOR-s (pset1) and

the UACOR-c (pset2) and with the same way which is done by Liao, et al., 2014 [17]. For example,

in the first kind of parameter setting or UACOR-c the setting parameters are as follows (refer to

[17] for more details):

1- Default-Mode is set to True, i.e. the default mode is followed. If Default-Mode=False, the

elitism mode is selected.

2- The parameter NoIsAS is equal to True; that is, the number of ants is equal to the size of

archive T. If the NoIsAS =False, the case of Na k is activated (See the UACOR-s).

3- The parameter of Weight-Gsol is set to True, i.e. the Solguide is selected from the archive T

regarding the weights are defined in the ACOR. When the Weight-Gsol = False, the current

solution is considered as the Solguide.

4- The parameter of Local-Worst is considered equal to False. The Local-Worst in the

UACOR-s algorithm is set to Ture. In this case, the parameter Solnew-Gsol can be considered

as True or False. In the case Solnew-Gsol=True, each newly generated solution is compared

with the corresponding Solguide and the worst one is deleted. Otherwise, the new solution

compares with the SolL and the worse solution is removed.

5- The Mtsls1 is used as a local search method i.e. Local-Type= Mtsls1 (Note that the CMA-

ES is called in UACOR-s as a local search).

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 8 / 17

http://iors.ir/journal/article-1-670-en.html

84 Yousefzadeh et al.

Both of the UACOR-c, UACOR-s algorithms use the incremental solution archive mechanism

(Inc=True)

The corresponding parameters settings of the UACOR-c, UACOR-s algorithms, and the GA are

summarized in Table 1.

Table 1. Parameters settings of the UACOR-c, the UACOR-s and the GA

 Parameters Algorithms

Default-Mode=True

 UACOR-s

(pset1)

NoIAs=False

Weight-Gsol=False

Local-Worst=False

Solnew-Gsol=True

Local-Type=CMA-ES

Inc=True

Default-Mode=True

UACOR-c

(pset2)

NoIsAS=True

Weight-Gsol=True

Local-Worst=False

Local Type=Mtsls1

Inc=True

Population size=20

GA

Mutation rate=0.3

Crossover= one point

crossover

Selection= Elitism

The results obtained by applying the UACOR-s, UACOR-c algorithms regarding each parameter

set (See Table 1) namely pset1 and pset2, respectively, on test functions F1-F25, are shown in Figure

1.

Figure 1. The average relative errors for the pset1 and pset2 on the test functions

 The first parameters set (i.e. pset1) have less average relative error than the second type (i.e.

pset2). Therefore, generally speaking, the quality of the obtained solutions for pset1 is higher than

the second type.

5.2. Choosing the Chaotic Map

 In this section, we study the behavior of some well-known chaotic map such as Tent

map (a real-valued function), The logistic map (a polynomial map of degree 2), the Gauss map (a

nonlinear iterated map which is known as mouse map or Gaussian map), circle map and Sinai map

(See e.g. [49], [50] and [39]).

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 9 / 17

https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Map_\(mathematics\)
https://en.wikipedia.org/wiki/Quadratic_function
http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 85

 To choose the proper chaotic maps, we examine the effect of the mentioned chaotic maps

on the ACOR algorithm. The results of the ACOR algorithm with the various chaotic maps on test

functions are shown in Figure 2 as the bar chart.

Figure 2. The average relative errors for applying chaotic maps on test functions

We observe that irrespective of what chaotic maps are used, the performance of ACOR without

using any chaotic map leads to high computational error than the ACOR, which is utilized by a

chaotic map (See Figure 2). Furthermore, according to the numerical results, the logical map has

less average relative error compared to the other maps, and hence, we can generate better solutions

in quality. Hence, we applied the logical maps in our proposed algorithm.

5.3 Influence of Local Search

 In this section, the corresponding results regarding the utilization of the proposed algorithm

with the three local searches such as the Mstls1, the CMA-EA, and the newly LS are examined. We

tested the proposed algorithm on the benchmark CEC05, which is utilized by the three mentioned

local searches. The numerical results show that the new LS has a better performance than the Mstls1

and the CMA-EA (see Figure 3). The average relative errors in the new LS are less than the Mstls1

and the CMA-EA.

Figure 3. The effect of local searches on the test functions CEC05

 The results indicate that the performance of the proposed LS is better than the two other

methods, and therefore, it is implemented for further investigation in our algorithm. It is worth

noting that, at the end of the total runs of each algorithm, the solution with the best fitness is

considered as the approximation of the global optimal solution for each test function, and the

number of iterations for each algorithm is limited by 30,000 iterations. Moreover, we use the

average relative errors and Friedman‟s test to compare the obtained results.

6. Experimental Results

Whenever each algorithm satisfies the stopping criteria, then the relative deviation of the best

solution from the optimal solution is considered as the relative error (or “error” for convenience)

regarding the function that is used. For the given conditions, each algorithm runs 50 times on each

function, and then the average error is reported. The average errors corresponding to the UACOR-s,

the UACOR-c, the GA, and the proposed algorithm are shown in Table 2.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 10 / 17

http://iors.ir/journal/article-1-670-en.html

86 Yousefzadeh et al.

Table 2. Average errors of the proposed algorithm, UACOR-s, UACOR-c, and GA

Test Functions GA UACOR-c UACOR-s
Proposed

UACOR

F1 2.5329E+03 1.9245E-24 3.3265E-24 2.5435E-27

F2 2.3422E+04 4.3548E-32 2.3448E-30 5.5430E-29

F3 1.2543E+08 1.2536E+05 1.2846E+05 1.4521E+05

F4 1.7358E+04 3.2234E-05 2.2478E-05 3.6456E-04

F5 1.4921E+04 2.4836E+02 2.5428E+02 2.8955E-03

F6 2.6687E+08 1.7326E+00 1.4916E+00 1.4159E+00

F7 4.7158E+03 8.4551E-03 7.5651E-03 2.8503E-02

F8 3.2648E+01 1.9948E+00 2.1048E+00 6.5938E-02

F9 1.4436E+02 2.5987E-08 2.5847E-08 2.2198E-09

F10 1.4358E+02 5.8524E+01 5.3497E+01 5.6314E+01

F11 2.4335E+01 6.2559E-01 9.2479E-03 8.8183E-01

F12 1.7519E+05 2.3491E+02 2.9472E+02 3.2598E+00

F13 2.2531E+01 2.7812E+00 2.5361E+00 3.4139E-01

F14 4.4546E+01 5.6247E+00 5.7048E+00 5.5311E+00

F15 8.9478E+02 1.8754E+01 1.3416E+01 6.9146E+00

F16 4.3419E+02 1.8556E+02 1.3695E+02 2.3793E+01

F17 1.2536E+03 1.2379E+02 3.9238E+01 3.9147E+01

F18 1.3478E+03 4.8635E+02 7.8412E+02 4.6462E+02

F19 1.2452E+03 4.6462E+02 7.3475E+02 5.5943E+01

F20 1.2463E+03 8.6723E+02 8.3165E+02 8.4462E+01

F21 1.2541E+03 7.3290E+02 7.2860E+02 5.6549E+01

F22 1.5403E+03 8.4463E+02 8.4423E+02 1.0017E+01

F23 1.2491E+03 1.8469E+02 5.1986E+02 1.8635E+02

F24 2.1300E+03 2.1500E+02 2.0000E+02 3.1988E+01

F25 5.6422E+02 2.1023E+02 2.0000E+02 3.3372E+01

 The bold values are less than all the values in that row, which indicates that, the

corresponding algorithm outperforms the three other algorithms for the related test function CEC05.

The values shown in grey indicate that based on the Friedman‟s test, the results obtained from the

corresponding algorithm have a significant difference regarding the three other algorithms for the

related CEC05‟s function. We observed that the proposed algorithm outperforms the UACOR-s, the

UACOR-c, and the GA algorithms. Note that, although the UACOR-s or the UACOR-c performs

better than the other mentioned algorithms in some test functions (see e.g. F3 and F10), according to

Friedman‟s test, there is no significant difference between the performance of the four algorithms.

7. Utilization of Multi-Reservoir Systems (Case study: Karkheh Dam)

In this section, the proposed algorithm is used to optimize the utilization of a group of water

resources, which include a three-reservoir system (Karkheh, Sazbon, and Mashoureh) and also four

agricultural regions (including three regions 1, 2 and 3, and regions (4, 5, and 6) as a unit region) to

evaluate the performance of the models (See Figure 4 that is adapted from [7]).

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 11 / 17

http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 87

Figure 4. The three-reservoir system of Karkheh and four agricultural areas [7]

In Figure 4, the notations are described as below:

 :

1. Agricultural demand for Sazbon

2. Agricultural demand for Kashkan

3. Agricultural demand for Baalam

4. Agricultural demand for Dasht-e-Abbas

5. Agricultural demand for Dosalq & Arayez and Bagheh

6. Agricultural demand for Karkhe

 :

1. Inlet to Sazbon dam

2. Inlet to Mashoureh dam

3. Inlet to downstream of Sazbon dam

4. Inlet to downstream of Kashkan dam

5. Inlet to upstream of Karkheh dam

 The Karkheh dam is a large multi-purpose earthen embankment dam built in Iran on

the Karkheh River in 2001 by the Islamic Revolutionary Guards Corps. This dam is located 21 km

away from the Northwest of Andimeshk and was constructed on the Karkheh River in Khuzestan

province of Iran. The dam is about 127 meters high and 3030 meters long. The type of dam is a clay

core with a total volume of 7300 million cubic meters, and its dewatering started in February 1999.

One of the main applications of this reservoir is to control, and regulate the surface water flow of

the Karkheh river (in order to provide the land with water in the nearby plains including Evan,

Dosalq, Arayez, and Bagheh as well as the Hamidieh, Qods, Azadegan plain, Dasht-e-Abbas, Fakeh

and Ainkhosh). The other applications of this dam include hydropower production, controlling

season floods and avoiding damages to the downstream area. Sazbon reservoir is located 30 km east

of the Ilam province, and was constructed on the Seymareh River. The Mashoureh reservoir is

located 90 km away from Khorramabad, and was constructed on the Kashkan River in

Chaharmahal-e Bakhtiari province, Iran.

As mentioned above, in this system, optimal utilization of the reservoirs of Sazbon, Mashoureh

and Karkheh are needed to meet the needs of the four mentioned agricultural regions (i.e. regions 1,

2 and 3 and regions (4, 5 and 6)). Also, at the downstream of each reservoir and split into

agricultural region 3, the provision of the minimum environmental flow requirements in the river is

mandatory. The priority is to meet the environmental flow needs in the river and agricultural

regions, respectively. Table 3 shows the average monthly inflows to the system in a year.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 12 / 17

https://en.wikipedia.org/wiki/Embankment_dam
https://en.wikipedia.org/wiki/Iran
https://en.wikipedia.org/wiki/Karkheh_River
https://en.wikipedia.org/wiki/Islamic_Revolutionary_Guards_Corps
http://iors.ir/journal/article-1-670-en.html

88 Yousefzadeh et al.

Table 3. Monthly average inflows for the three-reservoir system of Karkheh

 The agricultural needs for the four mentioned regions and the monthly distribution of net

evaporation from the reservoir's surfaces are presented in Tables 3 and 4, respectively.

Table 4. Monthly absolute evaporation from the surface of the three-reservoir system of

Karkheh

Table 5. Monthly agricultural needs of four agricultural regions

 The environmental requirements for the minimum flow in four intervals of the river,

including the downstream of Sazbon and Mashoureh reservoirs and the upstream and downstream

of the Karkheh reservoir, were fixed at 75, 1.43, 75 and 75 million cubic meters per month,

respectively.

 The nonlinear programming problem (2)-(6) is considered regarding the three-reservoir

system of Karkheh. This model is formulated for 47 years (564 months) from the solar year 1954

until 2001. The optimal solution (or optimal utilization path) of this model contains the optimal

harvesting of each reservoir and the optimal supply for each of the agricultural needs during the

months. Regardless of the constraints due to the minimum environmental requirement in the

monthly intervals, the numbers of decision variables are 3948 variables, which will face a severe

challenge by any well-known algorithm to solve it. The objective function (Z) for this problem is

minimized by the quadratic cost function for the cases of deficiency (one-way cost function) and is

presented concerning the other corresponding constraints that are given in constraints (3) - (6).

Reservoir Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug.

Sazbon 57 139 221 233 322 529 768 507 162 69 49 42

Mashoureh 14 21 68 88 72 67 93 66 23 13 13 13

Entering

Branch 1
25 25 34 44 31 25 24 31 39 23 19 20

Entering

Branch 2
34 52 84 57 141 216 329 233 85 55 40 31

Entering

Branch 3
18 39 84 84 80 112 89 130 151 62 37 29

Reservoirs Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug.

Sazbon 0.167 0.074 0.0 0.0 0.0 0.0 0.05

6

0.11

4

0.21

3

0.24

9

0.24

3

0.22

0

Mashoureh 0.149 0.068 0.01

5

0.00

8

0.18

1

0.01

7

0.06

7

0.12

1

0.18

1

0.21

6

0.22

0

0.19

1

Karkheh 0.208 0.136 0.08

1

0.06

1

0.07

0

0.09

9

0.14

8

0.21

1

0.26

6

0.28

0

0.27

4

0.24

4

Regions Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug.

1 48.5 48.5 60.6 60.6 60.6 60.6 60.6 0.0 0.0 0.0 0.0 0.0

2 20.4 1.2 0.0 0.0 0.0 0.0 0.8 55.8 69.1 70 51.8 31.7

3 37.2 37.2 46.5 46.5 46.5 46.5 46.5 0.0 0.0 0.0 0.0 0.0

(4, 5, 6) 326.7 219.9 148.7 157.9 156.2 276.0 413.8 411.6 231.9 406.5 403.7 445.8

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 13 / 17

http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 89

564 4
2

1 1

()

. .
0

j j j j
t t t t

t j

D Rg Rg D
Minimize Z

o w

(2)

Subject to:

1 , 1,2,3NR NR NR NR NR

t t t t tS S Q R E NR

(3)

min , 1,2,3NR NR

tR R NR

(4)

min max , 1,2,3NR NR NR

tS S S NR

(5)

1 1 max , 1,2,3NR NR NR

tS S S NR

(6)

 In this regard, the notations St, Qt, Rt, Et, and Dt are respectively, the storage volume at the

beginning of period t, the amount of input in period t, the released rate for period t, the evaporation

volume from the reservoirs surfaces in period t and the monthly demands for agricultural regions in

period t. The notation NR is the reservoir number. Rg
j
 is the amount of water allocated to the j

th

agricultural region. Storage at the beginning of the first period and the end of the last period for all

the reservoirs was unknown but assumed equal. This condition is specified in Eq. (6).

 For solving this problem, the amount of storage volume for the first period for all the

reservoirs is initialized randomly in the feasible space. It is worth noting that almost all methods use

penalty expression for repairing the infeasible solutions and getting the feasible ones. The decision

variables include the amount of storage in each reservoir (S
NR

) and the assignment to each region

(Rg
j
), and, as indicated, the numbers of variables are 3948. Increasing the number of decision

variables makes the problem difficult to solve optimally. Therefore, we consider utilizing multi-

reservoir systems as an optimization problem, as illustrated by (2) - (6).

 Here, we will solve the optimization problem multi-reservoir systems with the four

algorithms mentioned in Section 6 and evaluate the obtained results to we examine the performance

of the proposed algorithm on a real instance.

 Note that the number of reservoirs in this dam is 3 and the number of agricultural regions is

4. We apply each of three algorithms with 50 independent runs by considering the optimization

problem (2)-(6) related to the multi-reservoir optimization systems, and the average relative errors

from the best solution of the proposed algorithm, the UACOR-s, the UACOR-c, and the GA are

shown in Table 6.

Table 6. The average errors of the proposed algorithm, UACOR-s, UACOR–c, and GA

regarding the multi-reservoir system of Karkheh

GA UACOR-s UACOR-c Proposed UACOR

5.7381E+02 5.9311E-05 9.5311E-05 3.5311E-06

 According to Table 6, the better performance of the proposed UACOR algorithm than the

three other algorithms shows that the proposed components used in this algorithm, such as a chaotic

map and the local search approach, can be affected on quality of solutions. Making more solutions,

variety and more accurate exploring the search space may be the main reason for the proposed

algorithm's better performance compared to its original version.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 14 / 17

http://iors.ir/journal/article-1-670-en.html

90 Yousefzadeh et al.

8. Summary and Conclusion

Ant colony optimization algorithm for continuous domains (ACOR) is the well-known meta-

heuristic algorithms for solving continuous optimization problems (COPs) that have been

considered by many researchers in recent decades. The unified ant colony algorithm (UACOR) is a

kind of ACOR that provides a unified framework for making some new versions of the ACO

algorithm. In the present study, some changes have been made to the UACOR. These changes

include the use of chaotic maps in the initialization phase, which increases the diversity in the initial

population. Furthermore, a local search method based on differential evolution has also been

applied. The proposed LS improved the algorithm‟s performance, because it may lead to an increase

in the solutions‟ variety by defining a different way to search the solutions‟ neighborhoods. The

proposed UACOR and two well-known versions of UACOR (namely UACOR-s and UACOR-c) and

the GA are tested on the benchmark optimization functions “CEC05” that contains 25 unimodal and

multi-unimodal functions. Moreover, the proposed algorithm has been applied to optimize the

utilization of multi-reservoir systems in the Karkheh dam as a case study. The corresponding results

confirm that the proposed algorithm outperforms the three other algorithms i.e. UACOR-s and

UACOR-c and GA algorithms. The numerical results indicate that making some changes (e.g., using

chaotic sequences to generate initial solutions) on the exploitation and exploration can improve the

performance of heuristic algorithms without any expensive cost.

References

[1] Agarwal, R., Tiwari, M.K., and Mukherjee, S.K. (2007). Artificial immune system based approach for

solving resource constraint project scheduling problem, International Journal of Advanced Manufacturing

Technology, 34, 584-593.

[2] Akbari, R., Zeighami, V., and Ziarati, K. (2011). Artificial Bee colony for resource constrained project

scheduling problem, International Journal of Industrial Engineering Computations, 2, 45-60.

[3] Aleem, A. (2019). Evolution of Ant colony optimization algorithm: a brief literature, Computing Research

Repository, abs/1908.08007, 1-11.

[4] Bernd, B., Richard, F., and Christine, S. (1997). A new rank based version of the ant system. A

Computational Study.

[5] Bilchev, G., and Parmee, I. (1995). The ant colony metaphor for searching continuous design spaces. In T.

Fogarty (Ed.), AISB workshop on evolutionary computing, 25-39. Springer-Verlag.

[6] Blum, C., and Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual

comparison, ACM Computing Surveys (CSUR), 35(3), 268-308.

[7] Borhani darian, A., and Moradi, A. (2011). Application of ant colony based algorithms to multi reservoir

water resources problems, Journal of Water and Wastewater, 21(4), 81-91 (Persian).

[8] Christian, B., Andrea, R., and Marco, D. (2001). Hc–ACO: The hyper-cube framework for ant colony

optimization. In Proceedings of MIC, 2, 399-403.

[9] Christian, B. (2005). Beam-ACO hybridizing ant colony optimization with beam search: an application to

open shop scheduling. Computers and Operations Research, 32(6), 1565–1591.

[10] Dréo, J., and Siarry, P. (2004). Continuous interacting ant colony algorithm based on dense

heterarchy. Future Generation Computer Systems, 20(5), 841–856.

[11] Duca, A., Ciuprina, G., Lup, S., and Hameed, I., (2019). ACOR algorithm‟s efficiency for

electromagnetic optimization benchmark problems, 11
th

 International Symposium on Advanced Topics in

Electrical Engineering (ATEE), Bucharest, Romania, 1-5.

[12] http://www.ntu.edu.sg/home/EPNSugan

[13] Hu , X. M. , Zhang , J. , and Li , Y . (2008) . Orthogonal methods based ant colony search for solving

continuous optimization problems . Journal of Computer Science and Technology , 23 , 2–18 .

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 15 / 17

http://refhub.elsevier.com/S0377-2217\(13\)00847-3/h0075
http://refhub.elsevier.com/S0377-2217\(13\)00847-3/h0075
http://refhub.elsevier.com/S0377-2217\(13\)00847-3/h0075
http://www.ntu.edu.sg/home/EPNSugan
http://iors.ir/journal/article-1-670-en.html

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 91

[14] Hu, X. M., Zhang, J., Chung, H.S., Li, Y., and Liu, O. (2010). Sam ACO: variable sampling ant colony

optimization algorithm for continuous optimization. IEEE Transactions on Systems, Man, and Cybernetics-

Part B: Cybernetics, 40, 1555–1566

[15] Leguizamón, G., and Coello, C.A., (2010). An alternative ACOR algorithm for continuous optimization

problems, In ANTS Conference, 48-59.

[16] Liao, T., Montes, M.A, Aydin, D., Stützle, T., and Dorigo, M., (2011). An incremental ant colony

algorithm with local search for continuous optimization, In Proceedings of the 13th annual conference on

genetic and evolutionary computation, 125-132.

[17] Liao, T., Stützle, T., and Dorigo, M., (2014). A unified ant colony optimization algorithm for continuous

optimization, European Journal of Operational Research, 234(3), 597-609.

[18] Luca, M.G. and Marco, D. (1995). Ant-Q: a reinforcement learning approach to the traveling salesman

problem. In Machine Learning Proceedings, 252–260.

[19] Mahamed G.H. and Omran, S. (2019). Improved continuous Ant colony optimization algorithms for real-

world engineering optimization problems. Engineering Applications of Artificial Intelligence, 85, 818-829.

[20] Manuel, L., Jeremie, D.L., Leslie, P.C., Mauro, B., and Thomas, S. (2016). The irace package: Iterated

racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.

[21] Marco, D. (1992). Optimization, learning and natural algorithms. PhD Thesis, Politecnico diMilano.

[22] Marco, D. and Luca, M.G. (1997). Ant colonies for the traveling salesman problem. Biosystems.

[23] Marco, D., Vittorio, M., and Alberto, C. (1991). The ant system: an autocatalytic optimizing process.

[24] Marco, D., Vittorio, M., and Alberto, C. (1996). Ant system: optimization by a colony of cooperating

agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29–41, 1996.

[25] Michael, G. and Martin, M. (2002). A population based approach for ACO. In Workshops on

Applications of Evolutionary Computation, 72–81.

[26] Molina, D., Lozano, M., Snchez, A., and Herrera, F. (2011). Meme tic algorithms based on local search

chains for large scale continuous optimization problems: MASSW-Chains, Soft Computing-A Fusion of

Foundations, Methodologies and Applications, 15, 2201–2220.

 [27] Monmarché , N. , Venturini , G. , and Slimane , M . (2000) . On how Pachycondyla apicalis ants suggest a

new search algorithm . Future Generation Computer Systems , 16(9) , 937–946 .

[28] Peng, W., Jiyun, B., and Jun, M. (2020). A hybrid genetic ant colony optimization algorithm with an

embedded cloud model for continuous optimization. Journal of Information Processing Systems, 16(5), 1169–

1182. doi.org/10.3745/JIPS.01.0059.

[29] Ping, G. and Lin, Z. (2012). Ant colony optimization for continuous domains. In Natural computation

(ICNC), eighth international conference, 758-762. IEEE.

[30] Powell, M. (1964). An efficient method for finding the minimum of a function of several variables

without calculating derivatives, The Computer Journal,7(2), 155.

[31] Powell, M. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives,

Cambridge NA Report NA2009/06, University of Cambridge, UK.

[32] Qi, M. and Yang, A. (2012). Quantum particle swarm optimization based on cloud model cloud droplet

strategy. Computer Engineering and Applications, 48(24), 49-52.

[33] Yang, Q., Chen, W.N., Yu, Z., Gu, T. Li, Y., Zhang, H. and Zhang, H. (2017). Adaptive multimodal

continuous ant colony optimization. IEEE Transactions on Evolutionary Computation, 21(2), 191–205.

[34] Oscar, C., Inaki, F.V., Francisco, H., and Llanos, M. (2000). A new ACO model integrating evolutionary

computation concepts: The best-worst ant system.

[35] Oscar, C., Inaki, F.V., and Francisco, H. (2002). Analysis of the best-worst ant system and its variants on

the tsp. Mathware and soft computing, 9 (2).

[36] Rueymaw, C. (2011). Particle swarm optimization with justification and designed mechanisms for

resource-constrained project scheduling problem, Expert Systems with Applications, 38, 7102-7111.

[37] Singsathid, P., and Wetweerapong, J. (2018). Solving continuous optimization problems by ant colony

optimization with domain partitioning technique, ASEAN Foreign Ministers' Meeting (AMM), Bangkok,

Thailand.

[38] Socha, K., and Dorigo, M. (2008). Ant colony optimization for continuous domains, European Journal of

Operational Research, 185(3), 1155-1173.

[39] Sole, R.V., and Miramontes, O., and Goodwin, B.C. (1993). Oscillations and chaos in ant societies,

Journal of Theoretical Biology, 161, 343-357.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

 16 / 17

http://iors.ir/journal/article-1-670-en.html

92 Yousefzadeh et al.

[40] Stützle, T., and Dorigo, M. (1999). ACO algorithms for the quadratic assignment problem, New Ideas in

Optimization, 33.

[41] Tianjun, L., Thomas, S., Marco, A.M., and Marco, D. (2014). A unified ant colony optimization

algorithm for continuous optimization. European Journal of Operational Research, 234(3), 597–609.

[42] Thomas, S. and Holger, H. (1996). Improving the ant system: a detailed report on the max-min ant

system. FG Intellektik, FB Informatik, TU Darmstadt, Germany, Tech. Rep. AIDA-96-12.

[43] Thomas. S. and Holger, H. (1997). Max-min ant system and local search for the traveling salesman

problem. In Evolutionary Computation, IEEE International Conference on, 309-314.

[44] Tseng, L.Y. and Chen, C. (2008). Multiple trajectory search for large scale global optimization. IEEE

Congress on Evolutionary Computation, 3052-3059. 10.1109/CEC.2008.4631210.

[45] Udit, K., Sumit, S., et al. (2015). Enhancing IACOR local search by mtsls1-bfgs for continuous global

optimization. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 33–

40.

[46] Vittorio, M. (1999). Exact and approximate non-deterministic tree-search procedures for the quadratic

assignment problem. INFORMS journal on computing, 11(4), 358–369.

[47] Vanhoucke, M., and Peteghem, V.V. (2010). A genetic algorithm for the preemptive and non-preemptive

multi-mode resource-constrained project scheduling problem, European Journal of Operational Research, 201,

409-418.

[48] Wei, X. Zeng, H. Zhou, Y. (2010). Cloud theory-based artificial fish swarm algorithm. Computer

Engineering and Applications, 46(22), 26-29.

[49] Xianhan, Z., and Yang, C., (2014). A novel chaotic map and an improved chaos-based image encryption

scheme, The Scientific World Journal, https://doi.org/10.1155/2014/713541.

[50] Zhang, C., Guomin, C., and Fuyu, P. (2016). A novel hybrid chaotic ant swarm algorithm for heat

exchanger networks synthesis, Applied Thermal Engineering, 104, 707-719.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
8-

25
]

Powered by TCPDF (www.tcpdf.org)

 17 / 17

https://doi.org/10.1155/2014/713541
http://iors.ir/journal/article-1-670-en.html
http://www.tcpdf.org

