[Downloaded from iors.ir on 2026-01-31]

Iranian Journal of Operations Research
Vol. 11, No. 1, 2020, pp. 76-92
DOI: 10.29252/iors.11.1.76

Utilizing the Unified Ant Colony Algorithm by Chaotic
Maps

Hamid Reza Yousefzadeh™”, Davood Darvishi?, Arezoo Sayadi Salar®

Ant colony optimization (ACOg) is a meta-heuristic algorithm for solving continuous optimization
problems (MOPs). In the last decades, some improved versions of ACOg have been proposed.
The UACOg is a unified version of ACOg that is designed for continuous domains. By adjusting
some specified components of the UACOg, some new versions of ACOg can be deduced. By doing
that, it becomes more practical for different types of MOPs. Based on the nature of meta-heuristic
algorithms, the performance of meta-heuristic algorithms are depends on the exploitation and
exploration, which are known as the two useful factors to generate solutions with different
qualities. Since all the meta-heuristic algorithms with random parameters use the probability
functions to generate the random numbers and as a result, there is no any control over the
amount of diversity; hence in this paper, by using the best parameters of UACOg and making
some other changes, we propose a new version of ACOg to increase the efficiency of UACOg.
These changes include using chaotic sequences to generate various random sequences and also
using a new local search to increase the quality of the solution. The proposed algorithm, the two
standard versions of UACOg and the genetic algorithm are tested on the CECO05 benchmark
functions, and then numerical results are reported. Furthermore, we apply these four algorithms
to solve the utilization of complex multi-reservoir systems, the three-reservoir system of Karkheh
dam, as a case study. The numerical results confirm the superiority of proposed algorithm over
the three other algorithms.

Keywords: Ant colony algorithm; Continuous optimization; Chaotic sequences; Multi-reservoir
systems; Genetic algorithm.

Manuscript was received on 01/10/2020, revised on 02/29/2020 and accepted for publication on 04/09/2020.

1. Introduction

The first version of the ACO algorithm, namely the Ant System (AS), was attributed to Marco
Dorigo in 1992, which is proposed in his Ph.D. thesis [21]. Ant-quantity, ant-cycle, and ant-density
are the three main algorithms of the AS. The main contributions of these algorithms are based on
when, how, and the density-value of pheromone that was deposited from the ants. For example, in
the ant-cycle type, a pheromone is deposited when all ants had generated the path, and quality of the
tour was considered as a function to update the pheromone’ levels (refer to [21] to study more about
how each of them works). Based on empirical results, the ant-cycle algorithm outperformed the
other two algorithms and hence it was used to describe the AS. We can find numerous
improvements and variants for the basic ACO since 1991 in the literature that are proposed, and
studied by researchers. For more study, we can refer to the earlier ACO’s developments briefly,
such as the Elitist AS (see, e.g. [21], [23], [24] in 1991, 1992, and 1996 respectively), the Ant-Q

) Corresponding Author.

! Department of Mathematics, Payame Noor University (PNU) usefzadeh.math@pnu.ac.ir

2 Department of Mathematics, Payame Noor University (PNU), d_darvishi@pnu.ac.ir.

¥ Department of Mathematics, Payame Noor University (PNU) sayadisalararezoo@yahoo.com

mailto:usefzadeh.math@pnu.ac.ir
http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 77

([18] in 1995), the Ant Colony System for TSP ([22] in 1996), the Max-Min Ant System ([42] and
[43] in 1996 and 1997 respectively), the Rank-based AS ([4] in 1997), the EANTS ([46] in 1999),
the Best-worst AS ([34] and [35] in 2000 and 2002 respectively), the Hyper Cube ACO ([8] in
2001), the Population based ACO ([25] in 2002), the Beam-ACO (see, e.g. [25] and [9] in 2002 and
2005 respectively).

The nature of the initial ACO algorithm was designed to combinatorial optimization problems,
and later on, it was updated for the continuous ones. Discretizing the real-valued variables is the
most straightforward approach to apply the ACO algorithm for continuous optimization problems
(COPs). Calling the ACO by utilizing this methodology has been implemented to the Protein-ligand
docking problem [3].

After presenting the ACO algorithm for discrete optimization problems, several ant-inspired
algorithms for COPs have been proposed (See, e.g. references [5], [10], [13], and [27]). The main
difference between these algorithms is based on their focus on the search mechanisms [13].

The first ACO algorithm considering the continuous domains is proposed by Socha and Dorigo
2008 in [6]. They suggested an extended version of the ACO algorithm called the ACOg (where the
index R indicates that the variables are real-valued) where they explicitly used the Gaussian kernel
function instead of the probability density function.

Although numerical results show that the ACOg may be successful in some problems but for the
problems with high feasible-dimensions (i.e., in real-world applications) has not been investigated
yet. More studies show that the ACOg has a poor performance for large scale problems because it
quickly loses its variety, and therefore negatively affects the quality of solutions.

Leguizamdn and Coello in 2010 proposed an extension of ACOg namely, DACOg (D stands for
diversity), to increase the quality of the solutions and reduce the required computational time
simultaneously. Based on their experimental results, the DACOg outperforms the ACOg for
unconstrained large scale COPs [15]. In this algorithm, despite more exploration of the response
space, but they do not have any local exploration mechanism to control more accurate the solution
space. Furthermore, automatic decision-making between local and global exploration based on the
observed diversity is not considered.

In 2011, Liao et al. proposed an incremental variant of ACOg entitled by IACOg-LS. It uses a
local search and a growing solution archive to diversify the search and expand the exploration [16].
To do that, they used different types of local search methods in their experiments, such as the
Powell's conjugate directions set [30], Powell's BOBYQA [31], and Lin-Yu Tseng's Mtslsl [44].
Their results showed that the IACOg-LS conjunction with Mtsls1 (named by the IACOg-Mtslsl) is
not only outperforms the ACOg, but also it is competitive with other state-of-the-art algorithms on
the COPs. In later years, Guo et al. 2012 in [29] and Kumar et al. 2015 in [45] presented improved
versions of the ACOg, algorithm. Yang et al. 2017 also introduced an extended variant of ACOg for
multi-modal optimization problems [33]. In 2018, Singsathid, and Wetweerapong presented a new
continuous ACO, called PACO to make high precision solutions. They constructed and updated the
pheromone matrix which is used to find a better solution to reduce and repartition the continuous
variable domains iteratively. They proposed some suitable parameters for PACO and then compare
it with those of other ACO in continues domains [37]. Duca, et al., 2019, studied the efficiency of
ACOg algorithm on the electromagnetic optimization problems. They used the ACOg for solving
two benchmark electromagnetic problems that are referred to the coils configuration’s optimization.
After choosing the appropriate population’s size, the ACOg algorithm performances are compared
with results obtained with the GA and the Particle Swarm Optimization (PSO). The ACOg
outperforms the GA and the PSO for one problem, whereas for another one the PSO is the best
algorithm [11]. Omran and Al-Sharhan, in 2019, proposed the IACOk (it uses a random-walk for
selection operator) and LIACOg, two versions of ACOg, to improve the performance of ACOg on
real-world COPs. On the other hand, LIACOg uses a local search method to enhance the quality of
solutions. In another word, they try to balance exploration and exploitation, simultaneously [19]. In

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

78 Yousefzadeh et al.

2020, Peng Wang et al. embedded the genetic algorithm (GA) and the cloud model into the ACO
(named it CG-ACO) to avoid trapping in local optimums and increase the rate of ACO’s
convergence [32]. Their numerical results showed that the CG-ACO outperform the ACOg, simple
genetic algorithm (SGA), some other optimization algorithms which are embedded with cloud
models such as CQPSO [32], and CAFSA [48] and the global optimal solution was more likely to
achieve.

In 2014, Liao et al. proposed a unified structure of the ACO algorithm (which is known as
UACOg) for continuous optimization problems [17]. It provides a selection of particular
components’ algorithms to generate a various versions of ACOgr. The UACOg contains the
algorithmic components from three ACO algorithms for continuous optimization problems i.e. the
components of the ACOg, the DACOg and the IACOg-LS, that have been previously studied. Thus,
from the UACOg, one can be extracted from each of the three mentioned earlier algorithms;
furthermore, from the proposed UACOg, some new ACO algorithms for continuous space can be
generated, which have not been investigated previous in the literature. In other words, from the
UACOg, some new continuous ACO algorithms can be derived automatically by enabling the use of
the other algorithms configuration techniques. They generated two new ACOg algorithms, entitled
UACOg-s and UACOg-c, to investigate the flexibility of the UACOg. Their numerical results
showed the UACOg algorithms have high potentials for continuous optimization problems.
Moreover, based on the experimental results, the UACOg outperforms all the previous versions that
existed in the literature [20].

In this paper, by making some changes in the two main components of the UACOg algorithm,
i.e., how to create diversity and increase the quality of solutions, we improve the performance of
this algorithm in solving the COPs. These changes include the use of chaotic sequences to diversify
the solutions and control the amount of variation created, and the use of a new local search method
to increase the quality of the generated solutions.

The structure of the paper is organized as follows. Some related works due to the ACOg
algorithm are summarized in Section 2. We also describe the unified ACOg algorithm i.e. UACOg.
The proposed method contains the chaotic sequence, and a new local search method is described in
Section3. In Section 4, the benchmark test functions are presented. The parameters setting for two
types of UACOg, and the GA algorithms are determined in Section 5. Experimental settings and
detailed results related to the comparison of the proposed algorithm regarding the three well-known
algorithms are reported in Sections 6. The utilization of multi-reservoir systems of Karkheh Dam as
a case study was investigated in Section 7. Finally, a summary and conclusions are provided in
Section 8.

2. Unified Ant Colony Optimization Algorithm (UACOg)

As mentioned before, the UACOg, algorithm is a unified version of the ACO algorithm for the
COPs [16]. This algorithm combines the various components of the ACOg, the DACOg, and the
IACOR-LS to achieve a tuned version of the ACO, i.e. UACOg. It is called unified, because the
originally mentioned algorithms, i.e. the ACOR, the DACOR, and the IACOR-LS can be generated
by using parameter settings and particular combinations of the operational components. If we set
the parameters and combinations of some components in the UACOg, inappropriate manner, we can
find some different variants of ACO from the UACOg. It will be done by combining some related
components from all the existing combinations.

Before describing the outline of UACOg, which contains seven important groups of components,
we need to abstract the main parts of the ACOg, the DACOg, and the IACOg-LS.

2.1. Basic Ant Colony for COPs (ACOg)
The outline of basic ACO algorithm is explained in Algorithm 1.

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 79

Algorithm1. Four main stages of ACO Algorithm
1- Initialization: set the all needed parameters
2- While the stopping criteria is not met, DO
2.1 Constructing solutions: By considering pheromones values and the other related
information, a set of ant solutions are built.
2.2 Local search procedure: Improve the constructed ant solutions
2.3 Updating pheromone: Update the pheromone based on the search of ants’ experience

In this algorithm, artificial ants follow a random approach to generate candidate solutions,
using a pheromone model and existing heuristic information. The main parts of the ACO algorithm
include generating the solution and updating the pheromone information (see e.g. [17] and [23]).

After introducing the original ACO for combinatorial problems (See Dorigo et al., 1991
[23] and Dorigo, Maniezzo, and Colorni, 1996 [24]), the whole of proposed Ant related algorithms
for COPs use different kinds of search mechanisms regarding the original ACO [38] (See e.g. Bil-
chev and Parmee, 1995 [5]; Dréo and Siarry, 2004 [10]; Hu, Zhang, Chung, Li, and Liu, 2010 [14]).

The ACOg that are proposed by Socha, and Dorigo, 2008 [38] is the first algorithm as an
ACO algorithm that is designed for solving the COPs. The discrete probability distributions are
replaced by the continuous probability density functions (PDFs) for constructing the solution
archive in the ACOg. Each PDF can be obtained during the search process. It builds a solution
X=(X, X5 .. X)) € R" regarding the component x; (¥j = 1,...,n) successively by applying the
Gaussian kernel as follows:

(x5

Zw 0, (x Za’ o Ao

27r

where K, w;, Wjj and gj; is the size of solutlons archive T, the weight, mean and standard deviation
associated with the g;(x) (i.e. one-dimensional Gaussian functions) respectively.

In order to calculate the G' corresponding the component of X;, we need to calculate the

three vector parameters w= (w1, @, ..., wy), K= Haj, K} .-, Mkj), and aj=(o1j, Gy ..., 6%;). To do that,

set the mean vector y; as j = (Myj, M ..., uij): = Xy, - . ., Xig) and obtain the standard deviation
vector g; =(olj 02,- vy Okj) @S
= | | i=1..KkK
oy =3t k-1

e=1
where the role of coefficient & > 0 is the same as a parameter of evaporation rate in the ACO
algorithm. In another word, the lower the &’s value, the higher the convergence rate of the
algorithm. For updating the archive T, firstly, rank the newly generated solutions obtained during

the search process, then choose the best solutions which maintain the cardinality k.

2.2. DACOg algorithm for COPs

The DACOg is an extended version of ACOg, which concentrates on solutions’ diversity and
maintains the number of ants equal to the size of solution archive (i.e. k) where at each stage, a new
solution is constructed by each ant. How the guide solution (Solg¢) is chosen can say the other
difference of the DACOg regarding the ACOg. In other words, the best solution (Solps) in the
solution archive is considered by the ant j as Soly,ige With probability pues and, with probability (1-
Prest), the solution S; is considered as Solgy,ige by the ant j. Generating the new solution (Spey) in the
DACOg is the same as described in the ACOg. Later on, S., must be compared to the S; (which of
Solpest Or Sj was considered the Solyige). If the Spey is better than the S;, it is replaced by Sy, and put
in the archive; otherwise, it is omitted. Note that in the ACOg, all the solutions in the solutions
archive are compared to all the newly generated solutions [15].

2.3. IACOg-LS algorithm for COPs

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

80 Yousefzadeh et al.

An incremental solutions’ archive T over iterations, and a local search method are the distinctive
characteristics of the IACORg-LS algorithm than the ACOg. These two features can be enhanced the
diversification and the search intensification, respectively. Furthermore, the IACOg-LS algorithm
chooses the Solgq in a different way than the ACOg. For doing so, at each iteration, the IACOg-LS

algorithm chooses the Sol,es; from T as the Solgige With a probability of ElQu €[0,1] and with the
probability of 1- ElQues, the Solgg is selected from T to generate a new solution. With this
selection rule, two cases at each iteration may be occurred: a new solution is generated by an
““elite’” Soly,ige OF Kk different ants construct k new solutions. Note that each process of constructing
a new solution similar to the way that the ACOg uses. In the end, Solg,c and the new solution are
compared. If the Solyq is worse than the new solution, the new solution replaces it in the T set;
otherwise, it is deleted from the further calculations. The size of archive T in the IACOg-LS is
initialized with pre-specified humber solutions. At each iteration, a new solution is added to the T
set until the cardinality of T is not greater than a maximum size. The IACOg-LS calls a local search
method at each iteration. If the local search method generates a better solution than the original one
in the T, the older solution will be replaced by the better solution [16].

2.4. UACOg algorithm for COPs

Now we describe the UACOg algorithm that is suggested for solving the COPs. As mentioned
before, the UACOg involves the main components from the ACOg, the DACOg, and the IACOg-LS
algorithms, been stated in previous sections. In addition to the three mentioned algorithms, some
new ACOg algorithms can be derived from the UACOg, which has not been studied before in the
literature.

The components of the UACOg algorithm can be stated as follow:

e Mode: There are two different modes for the UACOg called elite mode and default mode.
The default mode uses several ants in each reproduction of the algorithm to construct the
solutions. In the elite mode in each reproduction, an elite ant is used with the probability of
ElQpest€ [0,1]. The elite ant chooses Soly: in the solution archive as Soly,ige to make a new
solution.

e Number of the ants: There are two choices to determine the number of ants used in the
UACOeg algorithm. Na defines the number of ants as an independent parameter (Na < k)
where the k is the size of the solution archive; while NolsAS defines the number of ants
equal to k (NolsAS means that the number of ants is equal to the solution archive).

e Choosing the Guide Solution: This factor determines how to select Soly,qe for sampling
from new solutions. To this end, we have three cases to choose from:

1. Solgige =SOlpest With probability EIQpes€ [0,1]
2. Choosing Solg,ig from the solution archive based on their weights
3. Choosing the current solution Sol, as Solgige

e Updating the solution archive T: updating the solution archive deals with adding the new
solutions in the archive T. There are two following cases for doing that:

1. The local worst parameter determines that UACOg will generally remove Na worst
solutions from total k + Na solutions or decide on the acceptance of Sol, locally.

2. The Sole..Gso parameter specifies that the generated new solution by the ant L is
compared with Solgg or with Sol., and then remove the worst solution.

e Local search: In general, we can use the LS method in different ways. If the local parameter
type equals F (or False), no LS method is used. Otherwise, the local type selects one of
three local searches the Mtslsl and conjugate directions of Powell in IACOg-LS (See [16]
for more study) or the evolutionary CMA-ES of Molina et al. in [26].

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 81

e Incrementing in archive: Here, we can increase the size of the solution archive. If parameter
Inc=F (or equal to False), then the mechanism of the incremental archive is not applied.
Otherwise, the UACOg applies an incremental archive mechanism.

e Restarting technique: Three options are set for this technique. If parameter ResType = F, the
restarting technique is not used. Otherwise, ResType uses one of the two-restart techniques
introduced in IACOg-LS.

3. Proposed Algorithm

In this section, some changes to the UACOg algorithm are studied. These changes include two
main phases, which are described below.

Phase 1: Using Chaotic Sequences

The issue of optimization algorithms based on the chaotic sequence has been studied studied by
many researchers. The nature of chaotic dynamic algorithms is suitable for solving optimization
problems. Since the chaotic variables can search the whole solution space non-repeatedly, then
optimization algorithms based on the chaotic sequence can be capable of hill-climbing to avoid
trapping into local optima. Numerical results show that the chaotic search is more effective than the
random search [50]. The chaotic ACOg algorithm based on the chaotic sequence can be considered
as a chaotic optimization algorithm and successfully applied to the process of ACOg. Hence, we
apply the chaotic ACOg algorithm to overcome some drawbacks of the ACOg by increasing the
variety. The rate of diversity in solutions increases, if the algorithms use the chaos maps
(i.e. evolution function) through their process. Nearly in all random meta-heuristic algorithms (i.e.
algorithms with random components), the random numbers are generated by using probability
functions, mainly the Gaussian functions. Instead of using probability functions, chaotic maps can
be applied as alternative ones. To this end, we investigate the behavior of combinations of meta-
heuristic UACOg algorithms with the proper chaotic map.

In the first phase, the chaotic maps are used to generate sequences of humbers randomly. The
chaotic sequences are used to initialize the solution archive. This will allow the solutions to be
distributed over a fuller domain of search space, and thus, the chance of finding the global optimal
solution is increased. To this end, according to our numerical investigations (see section 5.2) the
following logical map is applied in our proposed algorithm as a chaotic map:

X, ., =exp(—4.90x ?) —0.58,)

The pseudo-code shown in Algorithm 1 illustrates the initialization of the solutions in the
solution archive using chaotic sequences. In this pseudo code, k is the size of the solution archive,
sl-o is the solution i in the solution archive, the LB, and the UB are the vectors with the same size of
the corresponding solution, and each their components is the lower and the upper threshold for each
component of the decision variable. CS is the vector with the same size as the solution created by
Generate-Chaotic-Sequence that contains a random sequence generated by one of the chaotic maps.
This is done by calling Ch_Map_Name, which represents the map type that is used. Note that D is
the solution's dimension.

Algorithm 1. Pseudo code of Initialization phase with chaotic map
Fori=1:k
CS= Generate_Chaotic_Sequence (D, Ch_Map_Name);

0
Si =| B+CS (UB-LB);
End.

https://en.wikipedia.org/wiki/Discrete-time_dynamical_system
http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

82 Yousefzadeh et al.

Phase 2: Local Search (LS) Method

In the LS phase, the neighborhood of each solution is searched for obtaining a better
solution regarding the current solution. For this phase, the proposed algorithm uses the pseudo-code
that is given in Algorithm 2. In this pseudo code, Sy is a new solution generated by the LS method
that starts from the current solution S;. Index m is due to the solution that is chosen randomly from
the solution archive, and j is the component number that is randomly selected among the solution
components. The j" component of the i"" solution can be changed in step 5 of Algorithm 2. In this
pseudo-code, the rand-select function generates a random integer number in the given domain D.

Algorithm 2. Pseudo code of the LS phase
Fori=1:k
m= rand_Select(1: k) and m#i;
Snew= Si;
j=rand_Select(1: D)
Snewj= Sij+rand (0, 1). (Smj—Sij);
fithew= Evaluate(Spew);
If (fitew < fit;)
fiti=fityew;
Si:SneW;
End if
End.

Evaluation of the fitness function and replacement of the generated new solution by the LS
phase is performed simultaneously. This can help to increase the rate of convergence of the
algorithm to the optimal solution. The purpose of the LS that is described in Algorithm 2 is to make
a small change in the current solutions. These small changes can yield some improvement in the
quality of a solution. In the UACOgk algorithm, the generation of a solution is done by many steps.

It is worth noting that the initialization step's chaotic map led to increasing the randomness and
hence, variety in generated solutions. On the other hand, the existence of proper LS shrinks the
length of steps towards the global optimal solution and then increases the solutions' accuracy. In
other words, this phase can create a balance between centralization and diversification issues.

4. Benchmark Problems

Suganthan, et al., in 2005 designed and proposed some real-world problems as benchmark
problems (which are known to the “CEC05”), including properties and mathematical formulas,
evaluation criteria, and codes which are executables. The CECO05 set contains 25 benchmark
functions that are carried on some optimization algorithms. The corresponding codes can be found
in Matlab, Java, and C (for more details, see [12]).

Summary of the twenty-five CECO5 functions can be categorized as follows:

a) Unimodal Functions

There are five unimodal functions which are named by (F; —Fs): F; (Shifted Sphere), F,
(Shifted Schwefel’s), F; (Shifted Rotated High Conditioned Elliptic Function), F, (Shifted
Schwefel’s with Noise in Fitness), Fs (Schwefel’s with Global Optimum on Bounds)

b) Multi-modal Functions
The number of multi-modal functions is twenty and classified as:

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 83

b1) seven basic functions (Fg -F12): Fe: Shifted Rosenbrock’s Function, F;: Shifted Rotated
Griewank’s Function without Bounds, Fg: Shifted Rotated Ackley’s Function with Global
Optimum on Bounds, Fe: Shifted Rastrigin’s Function, Fio: Shifted Rotated Rastrigin’s Function,
Fi.: Shifted Rotated Weierstrass Function, Fi»: Schwefel’s Problem

b2) two expanded functions (Fi3 -Fi4): Fi3: Rosenbrock’s Function (F8F2) plus Expanded
Extended Griewank’s, Fy4: Shifted Rotated Expanded Scaffer’s F6,

b3) eleven hybrid composition functions (Fis —F;s): Fis: Hybrid Composition Function, Fig:
Rotated Hybrid Composition Function, F;7: Rotated Hybrid Composition Function with Noise in
Fitness, Fig: Rotated Hybrid Composition Function, Fi: Rotated Hybrid Composition Function
with a Narrow Basin for the Global Optimum, F»: Rotated Hybrid Composition Function with the
Global Optimum on the Bounds, F,: Rotated Hybrid Composition Function, F,,: Rotated Hybrid
Composition Function with High Condition Number Matrix, F,s: Non-Continuous Rotated Hybrid
Composition Function, F,;: Rotated Hybrid Composition Function, F,s: Rotated Hybrid
Composition Function without Bounds.

In this study, to evaluate the proposed algorithm, the standard benchmark functions, i.e.,
CECO5 have been used as test functions. The reported results are made of applying the proposed
algorithm, the UACOR-c, the UACOR-s, and the GA for 25 evaluation functions with 30-
dimensions and are compared to each other.

5. Parameters’ setting

5.1. Settings for the UACOg and GA
In this study, the parameters are set in two ways and called by the UACOR-s (psetl) and
the UACOR-c (pset2) and with the same way which is done by Liao, et al., 2014 [17]. For example,
in the first kind of parameter setting or UACOR-c the setting parameters are as follows (refer to
[17] for more details):

1- Default-Mode is set to True, i.e. the default mode is followed. If Default-Mode=False, the
elitism mode is selected.
2- The parameter NolsAS is equal to True; that is, the number of ants is equal to the size of

archive T. If the NolsAS =False, the case of Na < K is activated (See the UACOR-s).

3- The parameter of Weight-Gs, is set to True, i.e. the Solge is selected from the archive T
regarding the weights are defined in the ACOg. When the Weight-G,, = False, the current
solution Sol; is considered as the Solgige.

4- The parameter of Local-Worst is considered equal to False. The Local-Worst in the
UACOR-s algorithm is set to Ture. In this case, the parameter Sol,.,-Gs, can be considered
as True or False. In the case Sol...,~Gs,=True, each newly generated solution is compared
with the corresponding Solg,ge and the worst one is deleted. Otherwise, the new solution
compares with the Sol, and the worse solution is removed.

5- The Mtslsl is used as a local search method i.e. Local-Type= Mtsls1 (Note that the CMA-
ES is called in UACOR-s as a local search).

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

84 Yousefzadeh et al.

Both of the UACOR-c, UACOR-s algorithms use the incremental solution archive mechanism
(Inc=True)

The corresponding parameters settings of the UACOR-c, UACOR-s algorithms, and the GA are
summarized in Table 1.

Table 1. Parameters settings of the UACOg-c, the UACOg-s and the GA
Algorithms Parameters

Default-Mode=True
NolAs=False
Weight-Gsol=False
UACOR-s Local-Worst=False
(psetl) SOInew'GsolzTrue
Local-Type=CMA-ES
Inc=True
Default-Mode=True
NolsAS=True
UACOR-c Weight-Gg,=True
(pset2) Local-Worst=False
Local Type=Mtslsl
Inc=True
Population size=20
Mutation rate=0.3
GA Crossover= one point
Crossover

Selection= Elitism

The results obtained by applying the UACOg-s, UACOg-c algorithms regarding each parameter
set (See Table 1) namely psetl and pset2, respectively, on test functions F;-Fs, are shown in Figure

7o - .
| l
o -
—o —

Figure 1. The average relative errors for the psétl and pset2 on the test functions

The first parameters set (i.e. psetl) have less average relative error than the second type (i.e.
pset2). Therefore, generally speaking, the quality of the obtained solutions for psetl is higher than
the second type.

5.2. Choosing the Chaotic Map
In this section, we study the behavior of some well-known chaotic map such as Tent
map (a real-valued function), The logistic map (a polynomial map of degree 2), the Gauss map (a
nonlinear iterated map which is known as mouse map or Gaussian map), circle map and Sinai map
(See e.g. [49], [50] and [39]).

https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Map_\(mathematics\)
https://en.wikipedia.org/wiki/Quadratic_function
http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 85

To choose the proper chaotic maps, we examine the effect of the mentioned chaotic maps
on the ACOg algorithm. The results of the ACOg algorithm with the various chaotic maps on test
functions are shown in Figure 2 as the bar chart.

Emr

o

Figure 2. The average relative errors for applying chaotic maps on test functions

We observe that irrespective of what chaotic maps are used, the performance of ACOg without
using any chaotic map leads to high computational error than the ACOg, which is utilized by a
chaotic map (See Figure 2). Furthermore, according to the numerical results, the logical map has
less average relative error compared to the other maps, and hence, we can generate better solutions
in quality. Hence, we applied the logical maps in our proposed algorithm.

5.3 Influence of Local Search

In this section, the corresponding results regarding the utilization of the proposed algorithm
with the three local searches such as the Mstls1, the CMA-EA, and the newly LS are examined. We
tested the proposed algorithm on the benchmark CECO05, which is utilized by the three mentioned
local searches. The numerical results show that the new LS has a better performance than the Mstls1
and the CMA-EA (see Figure 3). The average relative errors in the new LS are less than the Mstls1
and the CMA-EA.

Figure 3. The effect of local searches on the test functions CEC05
The results indicate that the performance of the proposed LS is better than the two other
methods, and therefore, it is implemented for further investigation in our algorithm. It is worth
noting that, at the end of the total runs of each algorithm, the solution with the best fitness is
considered as the approximation of the global optimal solution for each test function, and the
number of iterations for each algorithm is limited by 30,000 iterations. Moreover, we use the

average relative errors and Friedman’s test to compare the obtained results.
6. Experimental Results

Whenever each algorithm satisfies the stopping criteria, then the relative deviation of the best
solution from the optimal solution is considered as the relative error (or “error” for convenience)
regarding the function that is used. For the given conditions, each algorithm runs 50 times on each
function, and then the average error is reported. The average errors corresponding to the UACOR-s,
the UACOR-c, the GA, and the proposed algorithm are shown in Table 2.

http://iors.ir/journal/article-1-670-en.html

86

Yousefzadeh et al.

Table 2. Average errors of the proposed algorithm, UACOR-s, UACOR-c, and GA

. Proposed

Test Functions | GA UACOR-c UACOR-s UACOx

F. 2.5329E+03 | 1.9245E-24 3.3265E-24 2.5435E-27
F, 2.3422E+04 | 4.3548E-32 2.3448E-30 5.5430E-29
Fs 1.2543E+08 | 1.2536E+05 1.2846E+05 1.4521E+05
F. 1.7358E+04 | 3.2234E-05 2.2478E-05 3.6456E-04
Fs 1.4921E+04 | 2.4836E+02 2.5428E+02 2.8955E-03
Fe 2.6687E+08 | 1.7326E+00 1.4916E+00 1.4159E+00
F; 4.7158E+03 | 8.4551E-03 7.5651E-03 2.8503E-02
Fg 3.2648E+01 | 1.9948E+00 2.1048E+00 6.5938E-02
Fo 1.4436E+02 | 2.5987E-08 2.5847E-08 2.2198E-09
Fio 1.4358E+02 | 5.8524E+01 5.3497E+01 5.6314E+01
Fiy 2.4335E+01 | 6.2559E-01 9.2479E-03 8.8183E-01
Fi, 1.7519E+05 | 2.3491E+02 2.9472E+02 3.2598E+00
Fis 2.2531E+01 | 2.7812E+00 2.5361E+00 3.4139E-01
Fi4 4.4546E+01 | 5.6247E+00 5.7048E+00 5.5311E+00
Fis 8.9478E+02 | 1.8754E+01 1.3416E+01 6.9146E+00
Fis 4.3419E+02 | 1.8556E+02 1.3695E+02 2.3793E+01
Fi7 1.2536E+03 | 1.2379E+02 3.9238E+01 3.9147E+01
Fis 1.3478E+03 | 4.8635E+02 7.8412E+02 4.6462E+02
Fig 1.2452E+03 | 4.6462E+02 7.3475E+02 5.5943E+01
Fao 1.2463E+03 | 8.6723E+02 8.3165E+02 8.4462E+01
F,, 1.2541E+03 | 7.3290E+02 7.2860E+02 5.6549E+01
F., 1.5403E+03 | 8.4463E+02 8.4423E+02 1.0017E+01
Fos 1.2491E+03 | 1.8469E+02 5.1986E+02 1.8635E+02
Fos 2.1300E+03 | 2.1500E+02 2.0000E+02 3.1988E+01
Fys 5.6422E+02 | 2.1023E+02 2.0000E+02 3.3372E+01

[Downloaded from iors.ir on 2026-01-31]

The bold values are less than all the values in that row, which indicates that, the
corresponding algorithm outperforms the three other algorithms for the related test function CECO5.
The values shown in grey indicate that based on the Friedman’s test, the results obtained from the
corresponding algorithm have a significant difference regarding the three other algorithms for the
related CECO5’s function. We observed that the proposed algorithm outperforms the UACOR-s, the
UACOR-c, and the GA algorithms. Note that, although the UACOR-s or the UACOR-c performs
better than the other mentioned algorithms in some test functions (see e.g. Fs and Fyp), according to
Friedman’s test, there is no significant difference between the performance of the four algorithms.

7. Utilization of Multi-Reservoir Systems (Case study: Karkheh Dam)

In this section, the proposed algorithm is used to optimize the utilization of a group of water
resources, which include a three-reservoir system (Karkheh, Sazbon, and Mashoureh) and also four
agricultural regions (including three regions 1, 2 and 3, and regions (4, 5, and 6) as a unit region) to
evaluate the performance of the models (See Figure 4 that is adapted from [7]).

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 87

Figure 4. The three-reservoir system of Karkheh and four agricultural areas [7]

OIn Figure 4, the notations are described as below:

Agricultural demand for Sazbon

Agricultural demand for Kashkan

Agricultural demand for Baalam

Agricultural demand for Dasht-e-Abbas

Agricultural demand for Dosalg & Arayez and Bagheh
Agricultural demand for Karkhe

S~ E

Inlet to Sazbon dam

Inlet to Mashoureh dam

Inlet to downstream of Sazbon dam
Inlet to downstream of Kashkan dam
Inlet to upstream of Karkheh dam

agrwbdE

The Karkheh damis a large multi-purpose earthen embankment dam built in Iran on
the Karkheh River in 2001 by the Islamic Revolutionary Guards Corps. This dam is located 21 km
away from the Northwest of Andimeshk and was constructed on the Karkheh River in Khuzestan
province of Iran. The dam is about 127 meters high and 3030 meters long. The type of dam is a clay
core with a total volume of 7300 million cubic meters, and its dewatering started in February 1999.
One of the main applications of this reservoir is to control, and regulate the surface water flow of
the Karkheh river (in order to provide the land with water in the nearby plains including Evan,
Dosalg, Arayez, and Bagheh as well as the Hamidieh, Qods, Azadegan plain, Dasht-e-Abbas, Fakeh
and Ainkhosh). The other applications of this dam include hydropower production, controlling
season floods and avoiding damages to the downstream area. Sazbon reservoir is located 30 km east
of the llam province, and was constructed on the Seymareh River. The Mashoureh reservoir is
located 90 km away from Khorramabad, and was constructed on the Kashkan River in
Chaharmahal-e Bakhtiari province, Iran.

As mentioned above, in this system, optimal utilization of the reservoirs of Sazbon, Mashoureh
and Karkheh are needed to meet the needs of the four mentioned agricultural regions (i.e. regions 1,
2 and 3 and regions (4, 5 and 6)). Also, at the downstream of each reservoir and split into
agricultural region 3, the provision of the minimum environmental flow requirements in the river is
mandatory. The priority is to meet the environmental flow needs in the river and agricultural
regions, respectively. Table 3 shows the average monthly inflows to the system in a year.

https://en.wikipedia.org/wiki/Embankment_dam
https://en.wikipedia.org/wiki/Iran
https://en.wikipedia.org/wiki/Karkheh_River
https://en.wikipedia.org/wiki/Islamic_Revolutionary_Guards_Corps
http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

88 Yousefzadeh et al.

Table 3. Monthly average inflows for the three-reservoir system of Karkheh

Reservoir Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug.
Sazbon 57 139 221 233 322 529 768 507 162 69 49 42
Mashoureh 14 21 68 8 72 67 93 66 23 13 13 13
izl 25 25 34 4 31 25 24 31 39 23 19 20
Branch 1

Entering 3 52 84 57 141 216 329 233 85 55 40 31
Branch 2

Bl 18 39 8 8 80 112 89 130 151 62 37 29
Branch 3

The agricultural needs for the four mentioned regions and the monthly distribution of net
evaporation from the reservoir's surfaces are presented in Tables 3 and 4, respectively.

Table 4. Monthly absolute evaporation from the surface of the three-reservoir system of
Karkheh

Reservoirs Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug.

Sazbon 0.167 0.074 0.0 0.0 0.0 00 005 011 021 024 024 022

6 4 3 9 3 0

Mashouren 0.149 0.068 0.01 000 018 0.01 0.06 012 018 021 022 0.19
5 8 1 7 7 1 1 6 0 1

Karkhen 0.208 0.136 0.08 006 007 009 014 021 026 028 027 024
1 1 0 9 8 1 6 0 4 4

Table 5. Monthly agricultural needs of four agricultural regions

Regions Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June. July. Aug.

1 485 485 606 60.6 60.6 60.6 60.6 0.0 0.0 0.0 0.0 0.0

2 20.4 1.2 0.0 0.0 0.0 0.0 0.8 558 69.1 70 518 317
3 372 372 465 465 465 465 465 0.0 0.0 0.0 0.0 0.0

(4,5,6) 326.7 2199 148.7 1579 156.2 276.0 4138 4116 2319 406.5 403.7 4458

The environmental requirements for the minimum flow in four intervals of the river,
including the downstream of Sazbon and Mashoureh reservoirs and the upstream and downstream
of the Karkheh reservoir, were fixed at 75, 1.43, 75 and 75 million cubic meters per month,
respectively.

The nonlinear programming problem (2)-(6) is considered regarding the three-reservoir
system of Karkheh. This model is formulated for 47 years (564 months) from the solar year 1954
until 2001. The optimal solution (or optimal utilization path) of this model contains the optimal
harvesting of each reservoir and the optimal supply for each of the agricultural needs during the
months. Regardless of the constraints due to the minimum environmental requirement in the
monthly intervals, the numbers of decision variables are 3948 variables, which will face a severe
challenge by any well-known algorithm to solve it. The objective function (Z) for this problem is
minimized by the quadratic cost function for the cases of deficiency (one-way cost function) and is
presented concerning the other corresponding constraints that are given in constraints (3) - (6).

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 89

564

ZZ(DJ Rgt Rgtj SDtj

Minimize Z ===

ow.
0

)

Subject to:

SN =SM+Q —RM —E™, NR =123
®)

R™ >RM NR =123
(4)

SN <SM <SM NR =1,2,3
(%)

S/ <SM <SM, NR=123
(6)

In this regard, the notations S;, Q, R;, E;, and D, are respectively, the storage volume at the
beginning of period t, the amount of input in period t, the released rate for period t, the evaporation
volume from the reservoirs surfaces in period t and the monthly demands for agricultural regions in
period t. The notation NR is the reservoir number. Rg' is the amount of water allocated to the j"
agricultural region. Storage at the beginning of the first period and the end of the last period for all
the reservoirs was unknown but assumed equal. This condition is specified in Eq. (6).

For solving this problem, the amount of storage volume for the first period for all the
reservoirs is initialized randomly in the feasible space. It is worth noting that almost all methods use
penalty expression for repairing the infeasible solutions and getting the feasible ones. The decision
variables include the amount of storage in each reservoir (S™) and the assignment to each region
(Rg’), and, as indicated, the numbers of variables are 3948. Increasing the number of decision
variables makes the problem difficult to solve optimally. Therefore, we consider utilizing multi-
reservoir systems as an optimization problem, as illustrated by (2) - (6).

Here, we will solve the optimization problem multi-reservoir systems with the four
algorithms mentioned in Section 6 and evaluate the obtained results to we examine the performance
of the proposed algorithm on a real instance.

Note that the number of reservoirs in this dam is 3 and the number of agricultural regions is
4. We apply each of three algorithms with 50 independent runs by considering the optimization
problem (2)-(6) related to the multi-reservoir optimization systems, and the average relative errors
from the best solution of the proposed algorithm, the UACOR-s, the UACOR-c, and the GA are
shown in Table 6.

Table 6. The average errors of the proposed algorithm, UACOR-s, UACOR-c, and GA
regarding the multi-reservoir system of Karkheh

GA UACOR-s UACOR-c Proposed UACOg

5.7381E+02 5.9311E-05 9.5311E-05 3.5311E-06

According to Table 6, the better performance of the proposed UACOg algorithm than the
three other algorithms shows that the proposed components used in this algorithm, such as a chaotic
map and the local search approach, can be affected on quality of solutions. Making more solutions,
variety and more accurate exploring the search space may be the main reason for the proposed
algorithm's better performance compared to its original version.

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

90 Yousefzadeh et al.

8. Summary and Conclusion

Ant colony optimization algorithm for continuous domains (ACOg) is the well-known meta-
heuristic algorithms for solving continuous optimization problems (COPs) that have been
considered by many researchers in recent decades. The unified ant colony algorithm (UACOg) is a
kind of ACOg that provides a unified framework for making some new versions of the ACO
algorithm. In the present study, some changes have been made to the UACOg. These changes
include the use of chaotic maps in the initialization phase, which increases the diversity in the initial
population. Furthermore, a local search method based on differential evolution has also been
applied. The proposed LS improved the algorithm’s performance, because it may lead to an increase
in the solutions’ variety by defining a different way to search the solutions’ neighborhoods. The
proposed UACOg and two well-known versions of UACOg (namely UACOg-s and UACOg-c) and
the GA are tested on the benchmark optimization functions “CECO05” that contains 25 unimodal and
multi-unimodal functions. Moreover, the proposed algorithm has been applied to optimize the
utilization of multi-reservoir systems in the Karkheh dam as a case study. The corresponding results
confirm that the proposed algorithm outperforms the three other algorithms i.e. UACOg-s and
UACOg-c and GA algorithms. The numerical results indicate that making some changes (e.g., using
chaotic sequences to generate initial solutions) on the exploitation and exploration can improve the
performance of heuristic algorithms without any expensive cost.

References

[1] Agarwal, R., Tiwari, M.K., and Mukherjee, S.K. (2007). Artificial immune system based approach for
solving resource constraint project scheduling problem, International Journal of Advanced Manufacturing
Technology, 34, 584-593.

[2] Akbari, R., Zeighami, V., and Ziarati, K. (2011). Artificial Bee colony for resource constrained project
scheduling problem, International Journal of Industrial Engineering Computations, 2, 45-60.

[3] Aleem, A. (2019). Evolution of Ant colony optimization algorithm: a brief literature, Computing Research
Repository, abs/1908.08007, 1-11.

[4] Bernd, B., Richard, F., and Christine, S. (1997). A new rank based version of the ant system. A
Computational Study.

[5] Bilchev, G., and Parmee, I. (1995). The ant colony metaphor for searching continuous design spaces. In T.
Fogarty (Ed.), AISB workshop on evolutionary computing, 25-39. Springer-Verlag.

[6] Blum, C., and Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual
comparison, ACM Computing Surveys (CSUR), 35(3), 268-308.

[7] Borhani darian, A., and Moradi, A. (2011). Application of ant colony based algorithms to multi reservoir
water resources problems, Journal of Water and Wastewater, 21(4), 81-91 (Persian).

[8] Christian, B., Andrea, R., and Marco, D. (2001). Hc—-ACO: The hyper-cube framework for ant colony
optimization. In Proceedings of MIC, 2, 399-403.

[9] Christian, B. (2005). Beam-ACO hybridizing ant colony optimization with beam search: an application to
open shop scheduling. Computers and Operations Research, 32(6), 1565-1591.

[10] Dréo, J., and Siarry, P. (2004). Continuous interacting ant colony algorithm based on dense
heterarchy. Future Generation Computer Systems, 20(5), 841-856.

[11] Duca, A., Ciuprina, G., Lup, S., and Hameed, I., (2019). ACOg algorithm’s efficiency for
electromagnetic optimization benchmark problems, 11" International Symposium on Advanced Topics in
Electrical Engineering (ATEE), Bucharest, Romania, 1-5.

[12] http://www.ntu.edu.sg/home/EPNSugan

[13] Hu, X. M., Zhang, J., and Li, Y. (2008). Orthogonal methods based ant colony search for solving
continuous optimization problems. Journal of Computer Science and Technology, 23, 2-18.

http://refhub.elsevier.com/S0377-2217\(13\)00847-3/h0075
http://refhub.elsevier.com/S0377-2217\(13\)00847-3/h0075
http://refhub.elsevier.com/S0377-2217\(13\)00847-3/h0075
http://www.ntu.edu.sg/home/EPNSugan
http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

Utilizing the Unified Ant Colony Algorithm by Chaotic Maps 91

[14] Hu, X. M., Zhang, J., Chung, H.S., Li, Y., and Liu, O. (2010). Sam ACO: variable sampling ant colony
optimization algorithm for continuous optimization. IEEE Transactions on Systems, Man, and Cybernetics-
Part B: Cybernetics, 40, 1555-1566

[15] Leguizamén, G., and Coello, C.A., (2010). An alternative ACOR algorithm for continuous optimization
problems, In ANTS Conference, 48-59.

[16] Liao, T., Montes, M.A, Aydin, D., Stutzle, T., and Dorigo, M., (2011). An incremental ant colony
algorithm with local search for continuous optimization, In Proceedings of the 13th annual conference on
genetic and evolutionary computation, 125-132.

[17] Liao, T., Stitzle, T., and Dorigo, M., (2014). A unified ant colony optimization algorithm for continuous
optimization, European Journal of Operational Research, 234(3), 597-609.

[18] Luca, M.G. and Marco, D. (1995). Ant-Q: a reinforcement learning approach to the traveling salesman
problem. In Machine Learning Proceedings, 252—260.

[19] Mahamed G.H. and Omran, S. (2019). Improved continuous Ant colony optimization algorithms for real -
world engineering optimization problems. Engineering Applications of Artificial Intelligence, 85, 818-829.
[20] Manuel, L., Jeremie, D.L., Leslie, P.C., Mauro, B., and Thomas, S. (2016). The irace package: Iterated
racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58.

[21] Marco, D. (1992). Optimization, learning and natural algorithms. PhD Thesis, Politecnico diMilano.

[22] Marco, D. and Luca, M.G. (1997). Ant colonies for the traveling salesman problem. Biosystems.

[23] Marco, D., Vittorio, M., and Alberto, C. (1991). The ant system: an autocatalytic optimizing process.

[24] Marco, D., Vittorio, M., and Alberto, C. (1996). Ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 2941, 1996.

[25] Michael, G. and Martin, M. (2002). A population based approach for ACO. In Workshops on
Applications of Evolutionary Computation, 72—81.

[26] Molina, D., Lozano, M., Snchez, A., and Herrera, F. (2011). Meme tic algorithms based on local search
chains for large scale continuous optimization problems: MASSW-Chains, Soft Computing-A Fusion of
Foundations, Methodologies and Applications, 15, 2201-2220.

[27] Monmarché, N., Venturini, G., and Slimane, M. (2000). On how Pachycondyla apicalis ants suggest a
new search algorithm. Future Generation Computer Systems, 16(9), 937-946.

[28] Peng, W., Jiyun, B., and Jun, M. (2020). A hybrid genetic ant colony optimization algorithm with an
embedded cloud model for continuous optimization. Journal of Information Processing Systems, 16(5), 1169—
1182. doi.org/10.3745/J1PS.01.0059.

[29] Ping, G. and Lin, Z. (2012). Ant colony optimization for continuous domains. In Natural computation
(ICNC), eighth international conference, 758-762. IEEE.

[30] Powell, M. (1964). An efficient method for finding the minimum of a function of several variables
without calculating derivatives, The Computer Journal,7(2), 155.

[31] Powell, M. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives,
Cambridge NA Report NA2009/06, University of Cambridge, UK.

[32] Qi, M. and Yang, A. (2012). Quantum particle swarm optimization based on cloud model cloud droplet
strategy. Computer Engineering and Applications, 48(24), 49-52.

[33] Yang, Q., Chen, W.N., Yu, Z., Gu, T. Li, Y., Zhang, H. and Zhang, H. (2017). Adaptive multimodal
continuous ant colony optimization. IEEE Transactions on Evolutionary Computation, 21(2), 191-205.

[34] Oscar, C., Inaki, F.V., Francisco, H., and Llanos, M. (2000). A new ACO model integrating evolutionary
computation concepts: The best-worst ant system.

[35] Oscar, C., Inaki, F.V., and Francisco, H. (2002). Analysis of the best-worst ant system and its variants on
the tsp. Mathware and soft computing, 9 (2).

[36] Rueymaw, C. (2011). Particle swarm optimization with justification and designed mechanisms for
resource-constrained project scheduling problem, Expert Systems with Applications, 38, 7102-7111.

[37] Singsathid, P., and Wetweerapong, J. (2018). Solving continuous optimization problems by ant colony
optimization with domain partitioning technique, ASEAN Foreign Ministers' Meeting (AMM), Bangkok,
Thailand.

[38] Socha, K., and Dorigo, M. (2008). Ant colony optimization for continuous domains, European Journal of
Operational Research, 185(3), 1155-1173.

[39] Sole, R.V., and Miramontes, O., and Goodwin, B.C. (1993). Oscillations and chaos in ant societies,
Journal of Theoretical Biology, 161, 343-357.

http://iors.ir/journal/article-1-670-en.html

[Downloaded from iors.ir on 2026-01-31]

92 Yousefzadeh et al.

[40] Stitzle, T., and Dorigo, M. (1999). ACO algorithms for the quadratic assignment problem, New Ideas in
Optimization, 33.

[41] Tianjun, L., Thomas, S., Marco, A.M., and Marco, D. (2014). A unified ant colony optimization
algorithm for continuous optimization. European Journal of Operational Research, 234(3), 597-609.

[42] Thomas, S. and Holger, H. (1996). Improving the ant system: a detailed report on the max-min ant
system. FG Intellektik, FB Informatik, TU Darmstadt, Germany, Tech. Rep. AIDA-96-12.

[43] Thomas. S. and Holger, H. (1997). Max-min ant system and local search for the traveling salesman
problem. In Evolutionary Computation, IEEE International Conference on, 309-314.

[44] Tseng, L.Y. and Chen, C. (2008). Multiple trajectory search for large scale global optimization. IEEE
Congress on Evolutionary Computation, 3052-3059. 10.1109/CEC.2008.4631210.

[45] Udit, K., Sumit, S., et al. (2015). Enhancing IACOg local search by mtsls1-bfgs for continuous global
optimization. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 33—
40.

[46] Vittorio, M. (1999). Exact and approximate non-deterministic tree-search procedures for the quadratic
assignment problem. INFORMS journal on computing, 11(4), 358-369.

[47] Vanhoucke, M., and Peteghem, V.V. (2010). A genetic algorithm for the preemptive and non-preemptive
multi-mode resource-constrained project scheduling problem, European Journal of Operational Research, 201,
409-418.

[48] Wei, X. Zeng, H. Zhou, Y. (2010). Cloud theory-based artificial fish swarm algorithm. Computer
Engineering and Applications, 46(22), 26-29.

[49] Xianhan, Z., and Yang, C., (2014). A novel chaotic map and an improved chaos-based image encryption
scheme, The Scientific World Journal, https://doi.org/10.1155/2014/713541.

[50] Zhang, C., Guomin, C., and Fuyu, P. (2016). A novel hybrid chaotic ant swarm algorithm for heat
exchanger networks synthesis, Applied Thermal Engineering, 104, 707-719.

https://doi.org/10.1155/2014/713541
http://iors.ir/journal/article-1-670-en.html
http://www.tcpdf.org

