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A Robust Optimization Model for the Hub Location and
Revenue Management Problem Considering Uncertainties
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The hub location and revenue management problem are two research topics in the field of
network design and transportation. The hub location model designs the structure of the
transportation network, while the revenue management model allocates network capacity to
different customer categories according to their price sensitivity. Revenue management
determines which products to sell to which customers and at what price. On the other hand, due
to the limited number of aircraft seats, the revenue management problem has been widely used in
the aviation industry. In this study, a robust optimization model is developed for the hub location
and revenue management problem. For this purpose, a real-world case study with a central hub
and six airports is presented and solved using CPLEX solver in GAMS software. Finally, a
sensitivity analysis was performed on the key parameters of the problem, and their effect on the
objective functions of the problem was investigated. Results show that the proposed model
achieved the feasible solution in reasonable time for real case problem by exact method.
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1. Introduction

Revenue management determines which products to sell to which customers and at what price
(Sierag al., [1]). On the other hand, due to the limited number of aircraft seats, the revenue
management problem has been widely used in the aviation industry. In the aerospace industry, most
seats are offered at different prices to different customer categories (Cetiner, [2]).

Airlines categorize their customers and allocate different capacities to each category according
to their prices to obtain maximum revenue. Capacity control in the aviation industry includes
various models, algorithms, and policies for allocating seats to maximize the expected profit (Tikani
etal., [3]).

The hub location problem is related to the placement of hub facilities and the allocation of
demand nodes to determine the traffic route between the source and destination pairs. Nowadays,
the hub location problem has been considered by many researchers because it has a significant
effect on reducing the number of network connections and system costs. In the p-star hub-star
network, the point p is selected as the hub. Each node is connected to precisely one hub, and all the
hubs are connected to a central hub. The central hub is initially defined, but other hubs are
determined by the model (Yaman, [4]).
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There are four types of hub location problems in the literature: the p-median hub location
problem, the p-center hub location problem, the hub covering location, and the hub fixed cost
location problem. In p center hub location problem, the goal is to locate the p hubs in such a way as
to minimize the total cost of transmitting current across the network. The number of hubs in this
problem is known. The p-center hub location problem searches for the optimal location of the p
hubs and the allocation of non-hub points to hub points in conditions that the maximum path in the
network is minimized. For the hub covering location problem, the number of hubs is not specified,
and the demand points are covered if they are within a certain distance from the hub. This problem
seeks to minimize the setup cost of the facility in conditions that all points are covered. In the hub
location problem with a fixed cost, the setup cost of hubs is considered, and the number of hubs is
unknown. Also, setting up a flow in the network is such that the flow transmission and the setup
costs of hubs are minimized (Mohammadi and Tavakoli Moghaddam, [5]).

Several real-world optimization problems and engineering problems, in particular, are multi-
objective optimization problems. The multi-objective nature of engineering problems has made
them more challenging to solve and select an appropriate algorithm. Achieving an optimal balance
between different goals is one of the main issues in the solution process. Most of these problems are
combined with several different non-weighted and often non-directional objective functions. This
means that the process of evaluating other functions cannot be essentially identical and in the same
direction. In many cases, increasing the value of one objective function is only possible by
decreasing the value of the other objective function. Therefore, there is a need for some kind of
compromise between different objectives for the final decision. How these compromise works are
crucial in making decisions.

Various approaches such as probabilistic, fuzzy and robust models have been proposed to deal
with the uncertainties in the problems. In this study, two approaches of fuzzy set theory and robust
optimization have been used for modeling and problem solving.

Fuzzy set theory is used more than other approaches due to the advantages expressed in various
studies. Since the fuzzy approach does not require accurate and sufficient information, it provides a
more efficient model than other methods, such as the probabilistic approach, which requires
sufficient knowledge of the distribution of uncertain parameters. This means that it is necessary to
determine the distribution of the problem parameters in probabilistic methods and then determine
their values, which is very difficult than the fuzzy approach (Balin, [6]). In conditions that the
parameters of the problem are uncertain, a fuzzy scheduling algorithm can create an actual flexible
system (Behnamian and Ghomi, [7]). Also, the computational complexity of fuzzy modeling is
much less than other approaches (Slovensky and Hubb, [8]).

On the other hand, robust optimization planning offers a risk-averse approach to dealing with
uncertainties in optimization problems. According to Pishvaee et al. [9], a solution to a robust
optimization problem can be achieved only when it is feasibility and optimality robust at the same
time. Feasibility robust means that the proposed solution must remain feasible for (almost) all
possible values of the uncertain parameters and robust optimality means that the value of the
objective function for (almost) all possible values of the uncertain parameters is close to the optimal
value or at least has an insignificant deviation from the optimal value.

According to the description provided in this study, an integrated hub location and revenue
management model will be presented for the aviation industry by considering uncertainties. The
objective function of this study includes maximizing revenue from the transportation network and
minimizing the setup cost of the hub. In this regard, from n potential hubs, p hubs are selected to
connect the hubs by a central node. Communication capacity between hub and central hub nodes
and hub and non-hub nodes is limited. The novelty of the present study is as follows:

o Arrobust optimization model for the integrated hub location and revenue management in the
aviation industry
o Considering the integrated problem in aviation industry under uncertainty
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o Presenting a real case study to evaluate the proposed model

2. Literature review

Hub location problems are divided into different types. The most important categorization that
many authors have mentioned in their works divides hub location into three categories: center hub
location problem, median hub location problem, and hub covering location. The objective of the
center hub location problem is to minimize the maximum distance between the hub centers and the
demand points (minimum-maximum objective function). The middle hub objective is to minimize
the sum of the distances of the demand points to the hub centers (transportation system costs).
However, in the hub covering location problem, the issue of limitations on the connection of normal
nodes to hubs is raised according to the distances or transportation cost between them. In the hub
location problem, it is assumed that hub facilities are always available, and no failure occurs. But in
reality, some hubs may not be available due to failure. When a hub fails, the non-hub points
assigned to that point must be allocated to other hub points, which results in additional cost.
Therefore, some backup hub points to support the main hub are vital for the transportation of
hazardous materials (Parvaresh et al., [9]; Mohammadi and Tavakoli Moghaddam, [5]).

Yaman and Elloumi [10] considered the star-star network for the central star hub and the middle
star hub problems. They tried to minimize the distance of the longest path and the total routing costs
in both problems. Xiao et al. [11] studied the airport capacity selection problem by considering
demand uncertainty and the objective of maximizing profits and welfare in the aviation industry.
Azizi et al. [12] proposed a hub location model at the risk of a hub failure. They assumed that when
a failure occurs in a hub, all the demand supplied by this hub is transferred to a backup hub.
Horhammer [13] studied allocating multivariate and multi-period single hub location problems. In
this study, it is assumed that the hub can be closed or resized, and one non-hub node in each period
can become a hub. For this purpose, four models of mixed integer quadratic mathematical
programming based on flow and route were developed. The purpose of this study is to minimize the
cost of communication between non-hub and hub points, the cost of transportation from one hub to
other hubs, the cost of distribution from one hub to non-hub points, the cost of setting up and
closing hub, and the cost of resizing hub.

Adibi and Razmi [14] presented a two-stage stochastic model for allocating multiple hubs
problems without capacity constraints, considering the uncertainty of the demand and cost of
transportation. In order to evaluate the proposed model, a case study including ten nodes of the best
cities in Iran’s air transport network has been considered. Damgacioglu et al. [15] proposed a
genetic algorithm to solve the hub location problem without capacity. Grauberger and Kimms [16]
studied the airline revenue management problem by considering the behavior of competitors in
terms of capacity and competitive price. He [17] investigated the effect of revenue management
problem on the hub-to-hub network. Alumur et al. [18] studied multi-period hub location problem
for single and multiple allocations. In each period, new hub size and capacity development of
existing hubs are allowed. For this purpose, a mixed-integer linear programming model has been
developed to minimize transportation costs, communication between hubs, capacity building, and
hub setup. Tikani et al. [3] proposed an integrated model for the hub location and revenue
management problem, taking into account several customer levels in the aviation industry. The
purpose of this study was to maximize revenues and minimize costs. For this purpose, a two-step
stochastic model for determining hub locations has been developed, and an efficient modified
genetic algorithm has been implemented to solve the large-scale problem. The computational results
showed the efficiency of the proposed algorithm. Alumur et al. [19] analyzed the hub location
problem with single and multiple allocation capacities. In this study, a direct relationship between
two non-hub points is considered. To solve the proposed problem, a mixed-integer linear
programming model has been developed to minimize transportation and operation costs of hubs
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with different capacities. He et al. [17] presented an integrated model of p hub location and revenue
management with multiple capacity levels and in the discontinuity conditions. For this purpose, a
two-stage stochastic planning model has been developed to maximize network profit, in which the
cost of setting up the hub at different levels, transportation costs, and revenues from ticket sales are
considered. In order to achieve adequate solutions, a combined model of robust optimization and
two-stage stochastic programming with an emphasis on maximizing total weighted profit has been
developed. A genetic algorithm is also proposed to solve the hybrid model. Hou et al. [20]
examined an integrated problem of hub location and revenue management and analyzed combined
average and worst-case modes. In this regard, among the available nodes, the p hub is allocated.
The used data in this paper was uncertain, and a limited set of scenarios was considered. For this
purpose, a two-stage stochastic planning model was developed to maximize profits. The objective
function was included the cost of setting up the hubs, the weighted sum of the transportation costs
of the two average and worst-case modes, and the revenues from ticket sales in all scenarios. Salehi
and Tikani [21] studied a capacitated reliable hub network design considering revenue management
under traffic uncertainty. They developed a hybrid algorithm based on genetic operators to find near
optimal solutions. Cvokic and Stanimirovic [22] studied a single allocation hub location and pricing
problem to maximize the totoal profit. They developed a mixed-integer linear programming model
for the deterministic situation. Then, a robust optimization model is proposed for the uncertain
counterpart case. Rahmati and Neghabi [23] developed a balanced hub location problem uncer
transportation cost uncertainty. They proposed a two-stage robust optimization model including
mixed-integer linear and non-linear structures. The Benders decomposition algorithm is used to
obtain Pareto solutions. Tiwari et al. [24] studied a hub location problems faced by an airline
entering a competitive market. They developed a non-linear integer programming model and used
Lagrangian relaxation method to obtain solutions. Willey and Salmon [25] developed a novel
approach for urban air mobility network design using hub location. To do this end, five heuristic
algorithms are developed to find potential solutions. Table 1 summarizes the most recent studies in
the field of hub location and revenue management problem.

Table 1. A summary of reviewed papers

Objective
Scope furj1ction Model type
Authors’ name Publication @ % c o § -§ - 2 %
year 25| ¢ 25| g8 g g =
| 8§ |E5|CE | e |8 | %
E B = g 2 3
Yuan et al 2014 v v v
Hourhammer 2014 v v v
Yuan et al 2015 v v v
Adibi and Razmi 2015 v v v
Grauberger and Kims 2016 v v v
Hee 2016 v v v
Almore et al 2016 v v v
Tikani et al 2018 v v v v v
Almore et al 2018 v v v
Hu et al 2019 v v v v v
Hu et al 2019 v v v v v
Salehi and Tikani 2020 v v v v
This paper v v v v v
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3. Proposed mathematical model

In this study, the integrated problem of hub location and revenue management in the aviation
industry will be presented by considering uncertainty conditions. The structure of studied network is
shown in Figure 1. There is a central hub and several nodes where some of them are selected as hub
nodes. The objective of the problem is to maximize revenues from the transportation network and
minimize total costs. In this section, the proposed model, including problem definition,
assumptions, notation, and mathematical model, will be presented. In this study, there is a central
hub that connects to several other hub points. There are many candidate points for hub nodes, from
which the p points must be selected as the hub. Each of the non-hub points should then be
connected to one of the hub points. The purpose of this problem is to minimize the total cost of
transportation and operation of hubs so as to maximize revenue from ticket sales. Based on the
airplane capacity, the route is determined from the hub point to the non-hub point so that the
demand of each demand point is provided. The assumptions of the problem are as follows.

3 2

Figure 1. The proposed network design

3.1. Assumptions

The assumptions considered in this issue are as follows.
o All origin and destination points are candidates for selection as hub points.
The number of hubs is determined from the beginning.
The location of the central hub is known from the beginning.
Each node is assigned to only one hub.
Both nodes should be connected directly to each other but should be done by a hub.
Transport between hubs is done by the central hub. In other words, there is no direct
connection between the two hubs.
The number of flights between two nodes is limited.
Aircraft have different capacities.
Additional luggage is allowed for passengers.
It is possible to carry goods in addition to the passenger.

O O O O O

O O O O
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3.2. Sets and indices

N Number of nodes

P Number of hubs P <N

K Number of flight classes

r,m Index of node 1'M=12,...,N

J Index of hup J =12+ P

k k=12,..K

Index of flight class

3.3. Parameters

dis;, Distance between the central hub and hub j
dis; Distance between hub j and non-hub node i
Cox Unit cost of travel between the central hub and hub j
Ciik Unit cost of travel between hub j and non-hub node i
cap;, Number of available flights from the central hub to hub j
cap; Number of available flights from hub j to non-hub node i
P Ticket price from node i to node m with flight class k
ph,. Unit price of the additional load from node i to node m with flight class k
P, Unit price of goods from node i to node m
d,. Demand from node i to node m with flight class k
vh The amount of additional load from node i to node m with flight class k
Vg, Goods transported from node i to node m with flight class k
cl, Path capacity between central hub and other hubs
cl, Path capacity between hubs and non-hub points
fc, Fixed cost of setting up a central hub
fc; Fixed cost of setting up a hub j
A A large integer
i The level of confidence of the decision-maker for the path between nodes i
and m
a;j An independent stochastic variable
a;; A deviation from the nominal coefficient a;;
d; The deviation from the nominal coefficient
I; the protection level for the i-th block.
d_i » he estimated value of the customer demand parameter
aimk The fluctuation rate of the demand parameter
3.4. Variables
X ik Number of tickets sold between nodes i and m with flight class k
Y ik Level of protection between nodes i and m with flight class k
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3.5.

zZy If the node non-hub i is assigned to hub j 1 and otherwise 0
Z If node i is selected as a hub 1 and otherwise 0
o, If there is a flight between nodes i and m, otherwise 0
Mathematical model
The proposed mathematical model is formulated as follows.
N K
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N y N Ky P (11)
ZZ('—W}FZZ{ﬂjs cap; xz; +Axz;  Vi=12..,N

mka\ cly i\ ¢l =1

Zij’oim E{O,l} Vi,m:].,z,...,N, VJ:]"Z”P (12)
X Y 20 Vi,m=12,.,N,  Vk=12,..K (13

Equation (1) maximizes the total revenues obtained from sold tickets in different classes,
carrying an extra cargo of passengers and carrying goods. Equation (2) minimizes the total cost of
the network, including the cost of transportation between nodes and the cost of setting up hubs. The
profits from the network are obtained from the difference between the above two expressions.

Equation (3) ensures that each non-hub node is assigned to only one hub. Equation (4) states that
there are exactly p hubs in the network. Equation (5) indicates that a non-hub node is assigned to a
node when that node is selected as the hub. Equations (6) and (7) represent that the maximum
allowable amount of sold tickets is equal to the amount of demand and protection level,
respectively. Equations (8) and (9) indicate that a flight between two nodes occurs when a ticket has
been sold for that route. Equation (10) states that the protection level should not exceed the physical
capacity between the central hub and other hubs. It means that the number of passenger carried by
plane in both route from central hub to other hubs or from hubs to other nodes have not exceeded
than the number of passengers considered as protection level. Equation (11) represents that the level
of protection should not exceed the physical capacity between hubs and non-hub points. Finally,
Equations (12) and (13) express the nature of the problem’s decision variables.

4. Robust optimization

In this study, a robust optimization approach is used to solve the proposed problem. Robust
optimization planning provides a risk-averse approach to deal with uncertainties in optimization
problems. According to Pishvaee et al. [26], a solution to a robust optimization problem can be
achieved only when it is feasibility and optimality robust at the same time. Feasibility robust
means that the proposed solution must remain feasible for (almost) all possible values of the
uncertain parameters, and robust optimality means that the value of the objective function for
(almost) all possible values of the uncertain parameters is close to the optimal value or at least has
an insignificant deviation from the optimal value. In this study, the proposed approach of
Bertsimas et al. [27] is used because of developing a linear mathematical model and considering a
controllable level of conservatism close to real-world conditions.

We will further explain the Bertsimas et al. [27] model for the linear optimization problem. In
this model, the objective function is minimized, and the uncertainty coefficients have existed in
both the objective function and the constraints in order to be more consistent with the original
research model. We considered the following optimization problem in general:

Min cTx (14)

Subject to  Ax<b

I<x<u

Uncertainty intervals are defined as follows:

Each of the constraint coefficients a;j,j EN = {1,2,...,n} is modeled as an independent
stochastic variable with a symmetric but unknown distribution @;;,j € N in the interval [a;; —
a;j,a;; + a;;] is a value that @;; indicates a deviation from the nominal coefficient a;;. Each of the
coefficients of the objective function is set as cj,j € N in the range [c; —d;, ¢; + d;], where d;
represents the deviation from the nominal coefficient ¢;. It should be noted that since the type of
the objective function is minimization, and the goal of robust models is to obtain the maximum
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regret, only one side of the interval is used, i.e., it is assumed that ¢; takes value in the interval
[cj, ¢; + dj]. To formulate a robust counterpart of the problem, T} is defined as follows.

Consider the i-th constraint of the problem as alx < b;, J; is defined as a set of uncertain
coefficients in line i. For each line i, we define the parameter I; which is not necessarily an integer,
such that T; € [0,]/;|]. In fact, the role of I} in constraints is to regulate the robustness of the
proposed method. In fact, the proposed method is the conservatism level of the solution. However,
it is unlikely that all coefficients could be uncertain together (Bertsimas et al. [27]). Therefore, we
assume that the maximum value changes to [I;-| I;|]a;. In other words, we assume that only a
subset of the coefficients will be allowed to affect the obtained solution adversely. Considering this
assumption, it is guaranteed that under the occurrence of such coincidence, in reality, the robust
optimal solution will be definitely feasible. Also, due to the symmetric distribution of the
variables, even if the number of varying coefficients exceeds |I;|, the optimal answer will be
feasible with high probability. Therefore, we call T; the protection level for the i-th block.

The parameter I, controls the level of stability in the objective function. Therefore, we want to
find the optimal solution in the cases where I, changes from the objective function coefficients
and has the greatest effect on the solution.

Accordingly, the robust counterpart of the nominal linear optimization is obtained as follows
(Bertsimas et al. [27]):

min cTx + max Z d;|xj]| (15)
{solsoSJo,ls0l=sTo} | £
JESo

S.t.

a;ix; + max Zd--x-+ = |G Da;. |x:.| ¥ < b;
Z YT (siUtedsicplsilsITil tiEgi\si) | 4 Ul ]| (T =1Ly lt" t‘| ¢
J JES;

[<x<u

If we want to transform the above model into a linear optimization model, the following
theorem is needed.

Theorem: for the vector x*, the protection function of the i-th limit obtained from the following
equation:

A1) {SiU{ti}|5ig]£r|15?|)élri1»tieji\5i} Z |l + (% lr‘lDaltllx t1| (16)
J

Si

It is equal to the optimal value of the objective function of the following linear problem.

* ~ * 17
Bi(x",T;) = max Z aij |x"j|zi; ¢
JEJi
St
Z Zij < Fi
JE€Ji
OSZufl Vi,jE]i

The proof of the above theorem is given in the paper by Bertsimas et al. [27]. By replacing the
dual of (4) in the main robust counterpart, it can be formulated as follows:
min  cTx + 2yl + Z Poj (18)

J€Jo
S.t.
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Zaux1+zlﬂ+2pu Sbl Vi

j JeJi
Zy + poj = d;y; Vi € J,
zi tpyj 2 Qi;Y; Vi#0,j€];
Dij >0 Vi,j E]i
zZ; = 0 Vi
=Y < Xj XY vj
l]' SXj < U;j Vj

Since the amount of demand for each route (d. ) is naturally uncertain in the proposed

]) based on the

Bertsimas and Sim approach. According to the interval uncertainty space, each of the uncertain

d.., isinasymmetric, finite space and with the center d_imk in the form of &imk = pxd, . . Where

mathematical model, an uncertainty interval is defined as ([cTimk —dimk,& +d,

imk imk

imk
d_imk the estimated value of the customer demand parameter is, dimk is the fluctuation rate of the

demand parameter and p> 0 is the level of uncertainty.

According to the proposed mathematical model, the constraint (6) due to the uncertain
parameter’s existence leads to uncertainty of the model; hence, it should be made robust based on
Bertsimas et al. [27] proposed model. Due to the implemented changes, the demand-related
constraints are rewritten as follows.

doy —di <X <d., +d, vi,m=12,..,N, vk=12..,K (19)

imk — “Nimk imk imk
It should be noted that the levels of conservatism (uncertainty) associated with constraint (18)
are equal to Iy € [0, 1], which have similar definitions to the proposed Bertsimas et al. [27]
model. The final model of the robust problem is formulated by substituting equation (19) instead of
equation (6), as follows.

(1-5)
aimk - d
(7-13)

< X.

imk — “Nimk

<d,, +d,  Vim=12..N, Vvk=12,..K (19)

5. Experimental results

All variables should be italic throughout the text.

In this section, the proposed robust optimization model is investigated. For this purpose, a real-
world case study has been designed and implemented in GAMS software. In this optimization
problem, Qeshm Airport is considered the central hub. Six airports of Tehran, Mashhad, Isfahan,
Shiraz, Bandar Abbas, and Kish are considered as demand and candidate points for the hub. Among
these points, two points should be selected as the hub. Table 2 shows the distance between points in
kilometers and minutes. Also, the cost of traveling between different places, the cost of overloading,
and ticket prices are reported in Table 3.
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Table 2. Distance between points (airports)

Path (From/To) Distance between| Distance betv_veen hubs
hubs and nodes (km) | and nodes (minutes)

Qeshm/ Tehran 1,072 100
Qeshm/ Mashhad 1,082 115
Qeshm/ Isfahan 775 90
Qeshm/ Shiraz 479 65
Qeshm/ Bandar Abbas |22 15
Qeshm/ Kish 215 45
Tehran/Mashhad 741 90
Tehran/ Isfahan 338 60
Tehran/ Shiraz 682 80
Tehran/ Bandar Abbas 1,050 85
Tehran/ Kish 1,043 108
Mashhad/ Isfahan 833 75
Mashhad/ Shiraz 991 90
Mashhad/ Bandar Abbas |1,060 95
Mashhad/ Kish 1,203 110
Isfahan/ Shiraz 348 56
Isfahan/ Bandar Abbas  [750 65
Isfahan/ Kish 714 85
Shiraz/ Bandar Abbas 454 50
Shiraz /Kish 370 55
Bandar Abbas/Kish 234 50

Table 3. Cost of traveling, overloading, and ticket prices

Path (From/To) A Unit cost of tra\{eling between|  Ticket _price betv?::gloaﬂgge;o“
ubs and nodes (Rials/person) |between nodes (Rials) (Rials)
Qeshm/ Tehran 5,200,000 6,500,000 130,000
Qeshm/ Mashhad 5,720,000 7,150,000 143,000
Qeshm/ Isfahan 3,480,000 4,350,000 87,000
Qeshm/ Shiraz 2,680,000 3,350,000 67,000
Qeshm/ Bandar Abbas 1,200,000 1,500,000 30,000
Qeshm/ Kish 2,320,000 2,900,000 58,000
'Tehran/Mashhad 3,960,000 4,950,000 99,000
Tehran/ Isfahan 3,400,000 4,250,000 85,000
Tehran/ Shiraz 3,432,000 4,290,000 85,800
'Tehran/ Bandar Abbas 5,200,000 6,500,000 130,000
Tehran/ Kish 5,600,000 7,000,000 140,000
Mashhad/ Isfahan 4,320,000 5,400,000 108,000
Mashhad/ Shiraz 4,416,000 5,520,000 110,400
Mashhad/ Bandar Abbas [5,520,000 6,900,000 138,000
Mashhad/ Kish 5,440,000 6,800,000 136,000
Isfahan/ Shiraz 2,976,000 3,720,000 74,400
Isfahan/ Bandar Abbas 3,040,000 3,800,000 76,000
Isfahan/ Kish 4,720,000 5,900,000 118,000
Shiraz/ Bandar Abbas 2,576,000 3,220,000 64,400
Shiraz /Kish 3,360,000 4,200,000 84,000
Bandar Abbas/Kish 2,120,000 2,650,000 53,000
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Finally, Table 4 shows the other input parameters of the case study, including the number of
flights, the amount of demand, and the route’s capacity.

Table 4. Other input parameters of the problem

Number of flights |[Flight Class Ededr?t?gr?aﬁrlight IAmount of E::Cvg:r??ﬁgy
Path (From/To) between hubs and {Demand workshop goods
nodes (daily) (daily) class !oad (ko) central hub and
(kg/flight) other hubs
Qeshm/ Tehran 11 20 700 1,000 30
Qeshm/ Mashhad 1 2 1,000 800 5
Qeshm/ Isfahan 0.5 1 500 500 2
Qeshm/ Shiraz 1 2 400 400 4
Qeshm/ Bandar Abbas 0.5 1 100 100 2
Qeshm/ Kish 1 2 150 150 4
Tehran/Mashhad 22 30 400 800 50
Tehran/ Isfahan 4 6 300 800 10
Tehran/ Shiraz 16 20 300 800 30
[Tehran/ Bandar Abbas 17 25 300 800 40
Tehran/ Kish 30 45 300 800 60
Mashhad/ Isfahan 2 4 400 500 6
Mashhad/ Shiraz 3 5 400 500 8
Mashhad/ Bandar Abbas 2 5 300 700 8
Mashhad/ Kish 9 15 300 650 20
Isfahan/ Shiraz 1 2 200 300 5
Isfahan/ Bandar Abbas 2 5 300 500 8
Isfahan/ Kish 4 6 300 500 9
Shiraz/ Bandar Abbas 3 5 300 300 8
Shiraz /Kish 3 6 200 300 8
Bandar Abbas/Kish 2 4 200 150 7

The proposed robust optimization mathematical planning model based on the above case study
was implemented in GAMS software on a 5-core system with a 3 GHz CPU and 2GB RAM and
solved using CPLEX solver. The obtained results for the case study are reported in detail in Table 5.

Table 5. Optimization results for the case study

Case Study

The value of the first
objective function (Z,)

The value of the second
objective function (Z,)

Solution time (Sec)

Value

323786435000

202253786000

493.2

The effect of important parameters of the problem has also been investigated. First, the effect of
demand on the objective function of the problem was evaluated. As shown in Figure 2, the growth
in demand directly links to the increase in the value of objective functions. In fact, the revenue and

cost of the whole network increased as the number of passengers increased.
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Figure 2. Comparison of solution time
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Also, the effect of route capacity on the objective function was analyzed. For this purpose, the
capacity has changed between -10 to +10 percent. According to Figure 3, the capacity of the route
has only affected the total cost, so that as the capacity of the route increases, the total cost

decreases.

490000
470000
450000

430000

Total Cost

410000
390000
370000

350000

471500

449000

425000

-10

-5 0 5 10
Link Capacity variation (%)

6. Conclusion

Figure 3. Effect of route capacity on the total cost

In this study, a mathematical planning model under uncertainty of the hub location and revenue
management problem is developed using a robust optimization approach. First, to validate the
proposed mathematical model, a real-world case study with a central hub and six airports is
presented and solved using the CPLEX solver in GAMS software. The results of the problems and
the values of the objective functions are then reported. Finally, a sensitivity analysis was performed


http://iors.ir/journal/article-1-677-en.html

[ Downloaded from iors.ir on 2025-11-26 ]

120 Rouzpeykar et al.

on the key parameters of the problem, and their effects on the objective functions of the problem
were investigated. The proposed model help manager to design the network among nodes
considering several hub nodes that makes minimum cost while maximum service level achieved.
Specially in aviation industry where the setup and operating costs of airplane are very high.

As mentioned previously, the revenue objectives of this study included ticket sales, overload,
and workshop load, while other objectives such as revenue from ticket refunds by passengers,
revenue from price differences due to changes in flight dates could be considered. In this study,
Bertsimas et al. [27] approach has been used for robust model optimization. However, other
approaches such as the worst-case scenario can be used. Moreover, other approaches such as Fuzzy
theory or stochastic programming can be applied to consider uncertainty. Furthermore, to solve the
problem in large dimensions, meta-heuristic algorithms such as genetic algorithm (GA), particle
swarm optimization (PSO) algorithm, ant colony optimization (ACO) algorithm, and gray wolf
optimization (GWO) algorithm can be used.
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