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The hub location and revenue management problem are two research topics in the field of 

network design and transportation. The hub location model designs the structure of the 

transportation network, while the revenue management model allocates network capacity to 

different customer categories according to their price sensitivity. Revenue management 

determines which products to sell to which customers and at what price. On the other hand, due 

to the limited number of aircraft seats, the revenue management problem has been widely used in 

the aviation industry. In this study, a robust optimization model is developed for the hub location 

and revenue management problem. For this purpose, a real-world case study with a central hub 

and six airports is presented and solved using CPLEX solver in GAMS software. Finally, a 

sensitivity analysis was performed on the key parameters of the problem, and their effect on the 

objective functions of the problem was investigated. Results show that the proposed model 

achieved the feasible solution in reasonable time for real case problem by exact method. 
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1. Introduction 

 

Revenue management determines which products to sell to which customers and at what price 

(Sierag al., [1]). On the other hand, due to the limited number of aircraft seats, the revenue 

management problem has been widely used in the aviation industry. In the aerospace industry, most 

seats are offered at different prices to different customer categories (Çetiner, [2]). 

Airlines categorize their customers and allocate different capacities to each category according 

to their prices to obtain maximum revenue. Capacity control in the aviation industry includes 

various models, algorithms, and policies for allocating seats to maximize the expected profit (Tikani 

et al., [3]). 

The hub location problem is related to the placement of hub facilities and the allocation of 

demand nodes to determine the traffic route between the source and destination pairs. Nowadays, 

the hub location problem has been considered by many researchers because it has a significant 

effect on reducing the number of network connections and system costs. In the p-star hub-star 

network, the point p is selected as the hub. Each node is connected to precisely one hub, and all the 

hubs are connected to a central hub. The central hub is initially defined, but other hubs are 

determined by the model (Yaman, [4]). 
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There are four types of hub location problems in the literature: the p-median hub location 

problem, the p-center hub location problem, the hub covering location, and the hub fixed cost 

location problem. In p center hub location problem, the goal is to locate the p hubs in such a way as 

to minimize the total cost of transmitting current across the network. The number of hubs in this 

problem is known. The p-center hub location problem searches for the optimal location of the p 

hubs and the allocation of non-hub points to hub points in conditions that the maximum path in the 

network is minimized. For the hub covering location problem, the number of hubs is not specified, 

and the demand points are covered if they are within a certain distance from the hub. This problem 

seeks to minimize the setup cost of the facility in conditions that all points are covered. In the hub 

location problem with a fixed cost, the setup cost of hubs is considered, and the number of hubs is 

unknown. Also, setting up a flow in the network is such that the flow transmission and the setup 

costs of hubs are minimized (Mohammadi and Tavakoli Moghaddam, [5]). 

Several real-world optimization problems and engineering problems, in particular, are multi-

objective optimization problems. The multi-objective nature of engineering problems has made 

them more challenging to solve and select an appropriate algorithm. Achieving an optimal balance 

between different goals is one of the main issues in the solution process. Most of these problems are 

combined with several different non-weighted and often non-directional objective functions. This 

means that the process of evaluating other functions cannot be essentially identical and in the same 

direction. In many cases, increasing the value of one objective function is only possible by 

decreasing the value of the other objective function. Therefore, there is a need for some kind of 

compromise between different objectives for the final decision. How these compromise works are 

crucial in making decisions. 

Various approaches such as probabilistic, fuzzy and robust models have been proposed to deal 

with the uncertainties in the problems. In this study, two approaches of fuzzy set theory and robust 

optimization have been used for modeling and problem solving. 

Fuzzy set theory is used more than other approaches due to the advantages expressed in various 

studies. Since the fuzzy approach does not require accurate and sufficient information, it provides a 

more efficient model than other methods, such as the probabilistic approach, which requires 

sufficient knowledge of the distribution of uncertain parameters. This means that it is necessary to 

determine the distribution of the problem parameters in probabilistic methods and then determine 

their values, which is very difficult than the fuzzy approach (Balin, [6]). In conditions that the 

parameters of the problem are uncertain, a fuzzy scheduling algorithm can create an actual flexible 

system (Behnamian and Ghomi, [7]). Also, the computational complexity of fuzzy modeling is 

much less than other approaches (Slovensky and Hubb, [8]).  

On the other hand, robust optimization planning offers a risk-averse approach to dealing with 

uncertainties in optimization problems. According to Pishvaee et al. [9], a solution to a robust 

optimization problem can be achieved only when it is feasibility and optimality robust at the same 

time. Feasibility robust means that the proposed solution must remain feasible for (almost) all 

possible values of the uncertain parameters and robust optimality means that the value of the 

objective function for (almost) all possible values of the uncertain parameters is close to the optimal 

value or at least has an insignificant deviation from the optimal value. 

According to the description provided in this study, an integrated hub location and revenue 

management model will be presented for the aviation industry by considering uncertainties. The 

objective function of this study includes maximizing revenue from the transportation network and 

minimizing the setup cost of the hub. In this regard, from n potential hubs, p hubs are selected to 

connect the hubs by a central node. Communication capacity between hub and central hub nodes 

and hub and non-hub nodes is limited. The novelty of the present study is as follows: 

o A robust optimization model for the integrated hub location and revenue management in the 

aviation industry 

o Considering the integrated problem in aviation industry under uncertainty 
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o Presenting a real case study to evaluate the proposed model 

2. Literature review  
 

Hub location problems are divided into different types. The most important categorization that 

many authors have mentioned in their works divides hub location into three categories: center hub 

location problem, median hub location problem, and hub covering location. The objective of the 

center hub location problem is to minimize the maximum distance between the hub centers and the 

demand points (minimum-maximum objective function). The middle hub objective is to minimize 

the sum of the distances of the demand points to the hub centers (transportation system costs). 

However, in the hub covering location problem, the issue of limitations on the connection of normal 

nodes to hubs is raised according to the distances or transportation cost between them. In the hub 

location problem, it is assumed that hub facilities are always available, and no failure occurs. But in 

reality, some hubs may not be available due to failure. When a hub fails, the non-hub points 

assigned to that point must be allocated to other hub points, which results in additional cost. 

Therefore, some backup hub points to support the main hub are vital for the transportation of 

hazardous materials (Parvaresh et al., [9]; Mohammadi and Tavakoli Moghaddam, [5]). 

Yaman and Elloumi [10] considered the star-star network for the central star hub and the middle 

star hub problems. They tried to minimize the distance of the longest path and the total routing costs 

in both problems. Xiao et al. [11] studied the airport capacity selection problem by considering 

demand uncertainty and the objective of maximizing profits and welfare in the aviation industry. 

Azizi et al. [12] proposed a hub location model at the risk of a hub failure. They assumed that when 

a failure occurs in a hub, all the demand supplied by this hub is transferred to a backup hub. 

Hörhammer [13] studied allocating multivariate and multi-period single hub location problems. In 

this study, it is assumed that the hub can be closed or resized, and one non-hub node in each period 

can become a hub. For this purpose, four models of mixed integer quadratic mathematical 

programming based on flow and route were developed. The purpose of this study is to minimize the 

cost of communication between non-hub and hub points, the cost of transportation from one hub to 

other hubs, the cost of distribution from one hub to non-hub points, the cost of setting up and 

closing hub, and the cost of resizing hub.  

Adibi and Razmi [14] presented a two-stage stochastic model for allocating multiple hubs 

problems without capacity constraints, considering the uncertainty of the demand and cost of 

transportation. In order to evaluate the proposed model, a case study including ten nodes of the best 

cities in Iran’s air transport network has been considered. Damgacioglu et al. [15] proposed a 

genetic algorithm to solve the hub location problem without capacity. Grauberger and Kimms [16] 

studied the airline revenue management problem by considering the behavior of competitors in 

terms of capacity and competitive price. He [17] investigated the effect of revenue management 

problem on the hub-to-hub network. Alumur et al. [18] studied multi-period hub location problem 

for single and multiple allocations. In each period, new hub size and capacity development of 

existing hubs are allowed. For this purpose, a mixed-integer linear programming model has been 

developed to minimize transportation costs, communication between hubs, capacity building, and 

hub setup. Tikani et al. [3] proposed an integrated model for the hub location and revenue 

management problem, taking into account several customer levels in the aviation industry. The 

purpose of this study was to maximize revenues and minimize costs. For this purpose, a two-step 

stochastic model for determining hub locations has been developed, and an efficient modified 

genetic algorithm has been implemented to solve the large-scale problem. The computational results 

showed the efficiency of the proposed algorithm. Alumur et al. [19] analyzed the hub location 

problem with single and multiple allocation capacities. In this study, a direct relationship between 

two non-hub points is considered. To solve the proposed problem, a mixed-integer linear 

programming model has been developed to minimize transportation and operation costs of hubs 
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with different capacities. He et al. [17] presented an integrated model of p hub location and revenue 

management with multiple capacity levels and in the discontinuity conditions. For this purpose, a 

two-stage stochastic planning model has been developed to maximize network profit, in which the 

cost of setting up the hub at different levels, transportation costs, and revenues from ticket sales are 

considered. In order to achieve adequate solutions, a combined model of robust optimization and 

two-stage stochastic programming with an emphasis on maximizing total weighted profit has been 

developed. A genetic algorithm is also proposed to solve the hybrid model. Hou et al. [20] 

examined an integrated problem of hub location and revenue management and analyzed combined 

average and worst-case modes. In this regard, among the available nodes, the p hub is allocated. 

The used data in this paper was uncertain, and a limited set of scenarios was considered. For this 

purpose, a two-stage stochastic planning model was developed to maximize profits. The objective 

function was included the cost of setting up the hubs, the weighted sum of the transportation costs 

of the two average and worst-case modes, and the revenues from ticket sales in all scenarios. Salehi 

and Tikani [21] studied a capacitated reliable hub network design considering revenue management 

under traffic uncertainty. They developed a hybrid algorithm based on genetic operators to find near 

optimal solutions. Cvokic and Stanimirovic [22] studied a single allocation hub location and pricing 

problem to maximize the totoal profit. They developed a mixed-integer linear programming model 

for the deterministic situation. Then, a robust optimization model is proposed for the uncertain 

counterpart case. Rahmati and Neghabi [23] developed a balanced hub location problem uncer 

transportation cost uncertainty. They proposed a two-stage robust optimization model including 

mixed-integer linear and non-linear structures. The Benders decomposition algorithm is used to 

obtain Pareto solutions. Tiwari et al. [24] studied a hub location problems faced by an airline 

entering a competitive market. They developed a non-linear integer programming model and used 

Lagrangian relaxation method to obtain solutions. Willey and Salmon [25] developed a novel 

approach for urban air mobility network design using hub location. To do this end, five heuristic 

algorithms are developed to find potential solutions. Table 1 summarizes the most recent studies in 

the field of hub location and revenue management problem. 
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       2014 Yuan et al 

       2014 Hourhammer 

       2015 Yuan et al 

       2015 Adibi and Razmi 

       2016 Grauberger and Kims 

       2016 Hee  

       2016 Almore et al 

       2018 Tikani et al 

       2018 Almore et al 

       2019 Hu et al 

       2019 Hu et al 

       2020 Salehi and Tikani 

       This paper 
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3. Proposed mathematical model 
 

In this study, the integrated problem of hub location and revenue management in the aviation 

industry will be presented by considering uncertainty conditions. The structure of studied network is 

shown in Figure 1. There is a central hub and several nodes where some of them are selected as hub 

nodes. The objective of the problem is to maximize revenues from the transportation network and 

minimize total costs. In this section, the proposed model, including problem definition, 

assumptions, notation, and mathematical model, will be presented. In this study, there is a central 

hub that connects to several other hub points. There are many candidate points for hub nodes, from 

which the p points must be selected as the hub. Each of the non-hub points should then be 

connected to one of the hub points. The purpose of this problem is to minimize the total cost of 

transportation and operation of hubs so as to maximize revenue from ticket sales. Based on the 

airplane capacity, the route is determined from the hub point to the non-hub point so that the 

demand of each demand point is provided. The assumptions of the problem are as follows. 

 
Figure 1. The proposed network design 

 

3.1. Assumptions  

The assumptions considered in this issue are as follows. 

o All origin and destination points are candidates for selection as hub points. 

o The number of hubs is determined from the beginning. 

o The location of the central hub is known from the beginning. 

o Each node is assigned to only one hub. 

o Both nodes should be connected directly to each other but should be done by a hub. 

o Transport between hubs is done by the central hub. In other words, there is no direct 

connection between the two hubs. 

o The number of flights between two nodes is limited. 

o Aircraft have different capacities. 

o Additional luggage is allowed for passengers. 

o It is possible to carry goods in addition to the passenger. 
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3.2.  Sets and indices  

N  Number of nodes 
p  Number of hubs p N  

K  Number of flight classes 

,i m  Index of node  , 1,2,...,i m N  

j  Index of hub  1,2,...,j P  

k  Index of flight class  1,2,...,k K  

3.3.  Parameters  

Distance between the central hub and hub j 
0jdis
 

Distance between hub j and non-hub node i 
ijdis

 
Unit cost of travel between the central hub and hub j 

0j kc
 

Unit cost of travel between hub j and non-hub node i 
ijkc

 
Number of available flights from the central hub to hub j 

0jcap
 

Number of available flights from hub j to non-hub node i 
ijcap

 
Ticket price from node i to node m with flight class k 

imkp
 

Unit price of the additional load from node i to node m with flight class k 
imkph

 
Unit price of goods from node i to node m 

impg
 

Demand from node i to node m with flight class k  
imkd

 
The amount of additional load from node i to node m with flight class k 

imkvh
 

Goods transported from node i to node m with flight class k 
imvg

 
Path capacity between central hub and other hubs 

1cl
 

Path capacity between hubs and non-hub points 
2cl
 

Fixed cost of setting up a central hub 
0fc
 

Fixed cost of setting up a hub j 
jfc
 

A large integer A  
The level of confidence of the decision-maker for the path between nodes i 

and m 
im  

An independent stochastic variable     

A deviation from the nominal coefficient      ̂   

The deviation from the nominal coefficient    

the protection level for the i-th block.    
he estimated value of the customer demand parameter  

imkd
 

The fluctuation rate of the demand parameter ˆ
imkd

 
 

3.4. Variables 

Number of tickets sold between nodes i and m with flight class k 
imkx

 
Level of protection between nodes i and m with flight class k 

imky
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If the node non-hub i is assigned to hub j 1 and otherwise 0 
ijz

 
If node i is selected as a hub 1 and otherwise 0 

jjz
 

If there is a flight between nodes i and m, otherwise 0 
imo

 

3.5.  Mathematical model 

The proposed mathematical model is formulated as follows. 

1

1 1 1

1 1 1

1 1

max
N N K

imk imk

i m k

N N K

imk imk im

i m k

N N

im im im

i m

z p x

ph vh o

pg vg o

  

  

 

 

  

  






 

(1) 

2 0 0

1 1 1 1, 2

0

1 1, 2

1 1, 1,1 1

min (1 )

(1 )

P K N N
imk

j k j ij mj

j k i m m i

N N
imk

j ij mj

i m m i

K N N
imk imk

ijk ij ji

k m m i m m i

x
z c dis z z

cl

x
dis z z

cl

x x
c dis dis

cl cl

    

  

    

   
     

   

  
     

  

    
     

    

  

 

   0

1 1 1

N P P

ij j jj

i j j

z fc z fc
  

  

 

s.t. 

(2) 

1

1 1,2,...,
P

ij

j

z i N


  
 

(3) 

1

N

jj

j

z P



 

(4) 

1,2,..., , 1,2,...,ij jjz z i N j P    
 

(5) 

, 1,2,..., , 1,2,...,imk imkx d i m N k K    
 

(6) 

, 1,2,..., , 1,2,...,imk imkx y i m N k K    
 

(7) 

1

, 1, 2,...,
K

imk im

k

x o i m N


  
 

(8) 

1

, 1, 2,...,
K

imk im

k

x A o i m N


   
 

(9) 

1 1 1 2

0

1 1 1 2

(1 )

(1 ) 1,2,...,

N P K
imk

ij mj

i j k

N P K
mik

ij mj j jj

i j k

y
z z

cl

y
z z cap z j P

cl

  

  

 
  

 

 
     

 




 

(10) 
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1 1 1 1 11 1

1,2,...,
N K N K P

imk mik
ij ij ii

m k m k j

y y
cap z A z i N

cl cl    

   
         

   
  

 

(11) 

, {0,1} , 1,2,..., , 1,2,...,ij imz o i m N j P    
 

(12) 

, 0 , 1,2,..., , 1,2,...,imk imkx y i m N k K    
 

(13) 

Equation (1) maximizes the total revenues obtained from sold tickets in different classes, 

carrying an extra cargo of passengers and carrying goods. Equation (2) minimizes the total cost of 

the network, including the cost of transportation between nodes and the cost of setting up hubs. The 

profits from the network are obtained from the difference between the above two expressions. 

Equation (3) ensures that each non-hub node is assigned to only one hub. Equation (4) states that 

there are exactly p hubs in the network. Equation (5) indicates that a non-hub node is assigned to a 

node when that node is selected as the hub. Equations (6) and (7) represent that the maximum 

allowable amount of sold tickets is equal to the amount of demand and protection level, 

respectively. Equations (8) and (9) indicate that a flight between two nodes occurs when a ticket has 

been sold for that route. Equation (10) states that the protection level should not exceed the physical 

capacity between the central hub and other hubs. It means that the number of passenger carried by 

plane in both route from central hub to other hubs or from hubs to other nodes have not exceeded 

than the number of passengers considered as protection level. Equation (11) represents that the level 

of protection should not exceed the physical capacity between hubs and non-hub points. Finally, 

Equations (12) and (13) express the nature of the problem’s decision variables. 

4. Robust optimization 

 

In this study, a robust optimization approach is used to solve the proposed problem. Robust 

optimization planning provides a risk-averse approach to deal with uncertainties in optimization 

problems. According to Pishvaee et al. [26], a solution to a robust optimization problem can be 

achieved only when it is feasibility and optimality robust at the same time. Feasibility robust 

means that the proposed solution must remain feasible for (almost) all possible values of the 

uncertain parameters, and robust optimality means that the value of the objective function for 

(almost) all possible values of the uncertain parameters is close to the optimal value or at least has 

an insignificant deviation from the optimal value. In this study, the proposed approach of 

Bertsimas et al. [27] is used because of developing a linear mathematical model and considering a 

controllable level of conservatism close to real-world conditions. 

We will further explain the Bertsimas et al. [27] model for the linear optimization problem. In 

this model, the objective function is minimized, and the uncertainty coefficients have existed in 

both the objective function and the constraints in order to be more consistent with the original 

research model. We considered the following optimization problem in general: 

(14) Min     

 Subject to     Ax≤b 

 l ≤ x ≤ u 

Uncertainty intervals are defined as follows: 

Each of the constraint coefficients         {       } is modeled as an independent 

stochastic variable with a symmetric but unknown distribution  ̂        in the interval      

 ̂         ̂    is a value that  ̂   indicates a deviation from the nominal coefficient    . Each of the 

coefficients of the objective function is set as        in the range              , where    

represents the deviation from the nominal coefficient   . It should be noted that since the type of 

the objective function is minimization, and the goal of robust models is to obtain the maximum 
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regret, only one side of the interval is used, i.e., it is assumed that    takes value in the interval 

[        ]. To formulate a robust counterpart of the problem,    is defined as follows. 

Consider the i-th constraint of the problem as   
         is defined as a set of uncertain 

coefficients in line i. For each line i, we define the parameter    which is not necessarily an integer, 

such that       |  | . In fact, the role of    in constraints is to regulate the robustness of the 

proposed method. In fact, the proposed method is the conservatism level of the solution. However, 

it is unlikely that all coefficients could be uncertain together (Bertsimas et al. [27]). Therefore, we 

assume that the maximum value changes to [  -⌊   ⌋]     In other words, we assume that only a 

subset of the coefficients will be allowed to affect the obtained solution adversely. Considering this 

assumption, it is guaranteed that under the occurrence of such coincidence, in reality, the robust 

optimal solution will be definitely feasible. Also, due to the symmetric distribution of the 

variables, even if the number of varying coefficients exceeds ⌊  ⌋, the optimal answer will be 

feasible with high probability. Therefore, we call    the protection level for the i-th block. 

The parameter    controls the level of stability in the objective function. Therefore, we want to 

find the optimal solution in the cases where    changes from the objective function coefficients 

and has the greatest effect on the solution. 

Accordingly, the robust counterpart of the nominal linear optimization is obtained as follows 

(Bertsimas et al. [27]): 

(15)              
{  |      |  |   }

{∑   |  |

    

} 

 S.t. 

 ∑      

 

   
{   {  }|      |  | ⌊  ⌋         }

{∑  ̂  |  |   

    

   ⌊  ⌋  ̂   |   |}     

 l ≤ x ≤ u 

If we want to transform the above model into a linear optimization model, the following 

theorem is needed. 

Theorem: for the vector   , the protection function of the i-th limit obtained from the following 

equation: 

(16)     
         

{   {  }|      |  | ⌊  ⌋         }
{∑  ̂  | 

 
 |   

    

   ⌊  ⌋  ̂   | 
 
  |} 

It is equal to the optimal value of the objective function of the following linear problem. 

(17) 

 
    

         ∑  ̂  

    

|  
 |    

 S.t. 

 ∑     

    

   

 0≤    ≤1                                                              

The proof of the above theorem is given in the paper by Bertsimas et al. [27]. By replacing the 

dual of (4) in the main robust counterpart, it can be formulated as follows: 

(18)                 ∑    

    

 

  S.t. 
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    ∑      

 

     ∑    

    

    

                   

                   ̂     

               

         

         

              

       ≤        

Since the amount of demand for each route ( imkd ) is naturally uncertain in the proposed 

mathematical model, an uncertainty interval is defined as ( ˆ ˆ,imk imk imk imkd d d d  
 

) based on the 

Bertsimas and Sim approach. According to the interval uncertainty space, each of the uncertain 

imkd  is in a symmetric, finite space and with the center imkd  in the form of ˆ
imk imkd d  . Where 

imkd the estimated value of the customer demand parameter is, ˆ
imkd  is the fluctuation rate of the 

demand parameter and ρ> 0 is the level of uncertainty. 

According to the proposed mathematical model, the constraint (6) due to the uncertain 

parameter’s existence leads to uncertainty of the model; hence, it should be made robust based on 

Bertsimas et al. [27] proposed model. Due to the implemented changes, the demand-related 

constraints are rewritten as follows. 

ˆ ˆ , 1,2,..., , 1, 2,...,imk imk imk imk imkd d x d d i m N k K       
 

(19) 

It should be noted that the levels of conservatism (uncertainty) associated with constraint (18) 

are equal to           , which have similar definitions to the proposed Bertsimas et al. [27] 

model. The final model of the robust problem is formulated by substituting equation (19) instead of 

equation (6), as follows. 

 

(1-5)  

ˆ ˆ , 1,2,..., , 1, 2,...,imk imk imk imk imkd d x d d i m N k K       
 

(19) 

(7-13)  

5. Experimental results 

 

All variables should be italic throughout the text. 

In this section, the proposed robust optimization model is investigated. For this purpose, a real-

world case study has been designed and implemented in GAMS software. In this optimization 

problem, Qeshm Airport is considered the central hub. Six airports of Tehran, Mashhad, Isfahan, 

Shiraz, Bandar Abbas, and Kish are considered as demand and candidate points for the hub. Among 

these points, two points should be selected as the hub. Table 2 shows the distance between points in 

kilometers and minutes. Also, the cost of traveling between different places, the cost of overloading, 

and ticket prices are reported in Table 3. 
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Table 2. Distance between points (airports) 

Distance between hubs 

and nodes (minutes) 

Distance between 

hubs and nodes (km) 
Path (From/To) 

100 1,072 Qeshm/ Tehran 

115 1,082 Qeshm/ Mashhad 

90 775 Qeshm/ Isfahan 

65 479 Qeshm/ Shiraz 

15 22 Qeshm/ Bandar Abbas 

45 215 Qeshm/ Kish 

90 741 Tehran/Mashhad 

60 338 Tehran/ Isfahan 

80 682 Tehran/ Shiraz 

85 1,050 Tehran/ Bandar Abbas 

108 1,043 Tehran/ Kish 

75 833 Mashhad/ Isfahan 

90 991 Mashhad/ Shiraz 

95 1,060 Mashhad/ Bandar Abbas 

110 1,203 Mashhad/ Kish 

56 348 Isfahan/ Shiraz 

65 750 Isfahan/ Bandar Abbas 

85 714 Isfahan/ Kish 

50 454 Shiraz/ Bandar Abbas 

55 370 Shiraz /Kish 

50 234 Bandar Abbas/Kish 

  

  

Table 3. Cost of traveling, overloading, and ticket prices 

Overloading cost 

between nodes  

(Rials) 

Ticket price 

between nodes (Rials) 

Unit cost of traveling between 

hubs and nodes  (Rials/person) 
Path (From/To) 

130,000 6,500,000 5,200,000 Qeshm/ Tehran 

143,000 7,150,000 5,720,000 Qeshm/ Mashhad 

87,000 4,350,000 3,480,000 Qeshm/ Isfahan 

67,000 3,350,000 2,680,000 Qeshm/ Shiraz 

30,000 1,500,000 1,200,000 Qeshm/ Bandar Abbas 

58,000 2,900,000 2,320,000 Qeshm/ Kish 

99,000 4,950,000 3,960,000 Tehran/Mashhad 

85,000 4,250,000 3,400,000 Tehran/ Isfahan 

85,800 4,290,000 3,432,000 Tehran/ Shiraz 

130,000 6,500,000 5,200,000 Tehran/ Bandar Abbas 

140,000 7,000,000 5,600,000 Tehran/ Kish 

108,000 5,400,000 4,320,000 Mashhad/ Isfahan 

110,400 5,520,000 4,416,000 Mashhad/ Shiraz 

138,000 6,900,000 5,520,000 Mashhad/ Bandar Abbas 

136,000 6,800,000 5,440,000 Mashhad/ Kish 

74,400 3,720,000 2,976,000 Isfahan/ Shiraz 

76,000 3,800,000 3,040,000 Isfahan/ Bandar Abbas 

118,000 5,900,000 4,720,000 Isfahan/ Kish 

64,400 3,220,000 2,576,000 Shiraz/ Bandar Abbas 

84,000 4,200,000 3,360,000 Shiraz /Kish 

53,000 2,650,000 2,120,000 Bandar Abbas/Kish 
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 Finally, Table 4 shows the other input parameters of the case study, including the number of 

flights, the amount of demand, and the route’s capacity. 

 

Table 4. Other input parameters of the problem 

Path capacity 

between the 

central hub and 

other hubs 

Amount of 

workshop goods 

(kg) 

Demand for 

additional flight 

class load 

(kg/flight) 

Flight Class 

Demand 

(daily) 

Number of flights 

between hubs and 

nodes (daily) 
Path (From/To) 

30 1,000 700 20 11 Qeshm/ Tehran 

5 800 1,000 2 1 Qeshm/ Mashhad 

2 500 500 1 0.5 Qeshm/ Isfahan 

4 400 400 2 1 Qeshm/ Shiraz 

2 100 100 1 0.5 Qeshm/ Bandar Abbas 

4 150 150 2 1 Qeshm/ Kish 

50 800 400 30 22 Tehran/Mashhad 

10 800 300 6 4 Tehran/ Isfahan 

30 800 300 20 16 Tehran/ Shiraz 

40 800 300 25 17 Tehran/ Bandar Abbas 

60 800 300 45 30 Tehran/ Kish 

6 500 400 4 2 Mashhad/ Isfahan 

8 500 400 5 3 Mashhad/ Shiraz 

8 700 300 5 2 Mashhad/ Bandar Abbas 

20 650 300 15 9 Mashhad/ Kish 

5 300 200 2 1 Isfahan/ Shiraz 

8 500 300 5 2 Isfahan/ Bandar Abbas 

9 500 300 6 4 Isfahan/ Kish 

8 300 300 5 3 Shiraz/ Bandar Abbas 

8 300 200 6 3 Shiraz /Kish 

7 150 200 4 2 Bandar Abbas/Kish 

 

The proposed robust optimization mathematical planning model based on the above case study 

was implemented in GAMS software on a 5-core system with a 3 GHz CPU and 2GB RAM and 

solved using CPLEX solver. The obtained results for the case study are reported in detail in Table 5. 

 

Table 5. Optimization results for the case study 

Solution time (Sec) 
The value of the second 

objective function  (Z2) 

The value of the first 

objective function (Z1) 
Case Study 

493.2 202253786000 323786435000 Value  

 

The effect of important parameters of the problem has also been investigated. First, the effect of 

demand on the objective function of the problem was evaluated. As shown in Figure 2, the growth 

in demand directly links to the increase in the value of objective functions. In fact, the revenue and 

cost of the whole network increased as the number of passengers increased. 
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Figure 2. Comparison of solution time 

 

Also, the effect of route capacity on the objective function was analyzed. For this purpose, the 

capacity has changed between -10 to +10 percent. According to Figure 3, the capacity of the route 

has only affected the total cost, so that as the capacity of the route increases, the total cost 

decreases.  

 
Figure 3. Effect of route capacity on the total cost 

 

6. Conclusion 

 

In this study, a mathematical planning model under uncertainty of the hub location and revenue 

management problem is developed using a robust optimization approach. First, to validate the 

proposed mathematical model, a real-world case study with a central hub and six airports is 

presented and solved using the CPLEX solver in GAMS software. The results of the problems and 

the values of the objective functions are then reported. Finally, a sensitivity analysis was performed 
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on the key parameters of the problem, and their effects on the objective functions of the problem 

were investigated. The proposed model help manager to design the network among nodes 

considering several hub nodes that makes minimum cost while maximum service level achieved. 

Specially in aviation industry where the setup and operating costs of airplane are very high. 

As mentioned previously, the revenue objectives of this study included ticket sales, overload, 

and workshop load, while other objectives such as revenue from ticket refunds by passengers, 

revenue from price differences due to changes in flight dates could be considered. In this study, 

Bertsimas et al. [27] approach has been used for robust model optimization. However, other 

approaches such as the worst-case scenario can be used. Moreover, other approaches such as Fuzzy 

theory or stochastic programming can be applied to consider uncertainty. Furthermore, to solve the 

problem in large dimensions, meta-heuristic algorithms such as genetic algorithm (GA), particle 

swarm optimization (PSO) algorithm, ant colony optimization (ACO) algorithm, and gray wolf 

optimization (GWO) algorithm can be used. 
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