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A Nonlinear Autoregressive Stochastic Frontier Model
with Dynamic Technical Inefficiency in Panel Data
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A branch of researches is devoted to semiparametric and nonparametric estimation
of stochastic frontier models to employ the advantages in the operations research
technique of data envelopment analysis. The stochastic frontier model is the
parametric competition of data envelopment technique. This paper focused on a
nonlinear autoregressive stochastic frontier production model that covers dynamic
technical inefficiency. We consider a semiparametric method for the model by
combining a parametric regression estimator with a nonparametric adjustment. The
unknown parameters are estimated using the full maximum likelihood and pairwise
composite likelihood methods. After the parameters are estimated by parametric
methods, the obtained regression function is adjusted by a nonparametric factor, and
the nonparametric factor is obtained through a natural consideration of the local L,-
fitting criterion. Some asymptotic and simulation results for the semiparametric
method are discussed.
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1. Introduction

Operations research (OR) is an analytical method of problem-solving and decision-
making that is useful in the management of organizationsOne of the primary . characteristics
of all operations research efforts is optimization, which purposes to achieve the best
performance under the given circumstances. Quality management is an effective system in
operation research that can be measured by efficiency. ,Two classes of methods data
envelopment analysis (DEA) and stochastic frontier analysis (SFA) to ,were developed
.(making units (DMU-the efficiency of decision eestimatDEA is a nonparametric approach
based on linear programming, which takes the observed input and output values and forms a
production possibility set to make certain assumptions. The inefficiency is measured as the
distance of the DMU from the frontier of this set. This method gives an efficiency relative to
the best practice DMUs. The SFA approach uses observed input-output correspondences to
estimate an underlying relationship between the inputs and outputs. This function is then used
as the frontier against which to measure the efficiencies.

DEA and SFA have been the two premier methods established for studying technical
efficiency, allocated efficiency and productivity, where SFA is the parametric and DEA is the
nonparametric method. Although it has yet to become widespread, applied studies have
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started to embrace the use of both approaches to demonstrate the robustness of empirical
conclusions (Chapple et al. [6], Casu et al. [5]), even though the use of DEA and SFA implies
different assumptions on the production model. However, a DEA-based estimate is sensitive
to measurement errors or other noise in the data because DEA is deterministic and attributes
all deviations from the frontier to inefficiencies, but SFA considers stochastic noise in data,
and it can be used to conduct the conventional tests of hypothesis. Both DEA and SFA
models consider the technical changes in real situations, and both can be applied for the
cross-sectional and panel data.

One aspect of the application of statistical modeling is in the economic data. Among the
economic models, the stochastic frontier model has been widely used to measure technical
efficiency. Deterministic models of technical efficiency, such as DEA, assume that all
deviations from the production frontier are due to inefficiency, whereas, the stochastic
frontier model is an alternative that allows both inefficiency and measurement error. The
basic idea in the stochastic frontier model is the introduction of an additive two-sided error
term that reflects measurement error and a one-sided technical inefficiency of the firm. Ever
since the pioneering works of Aigner et al. [1] and Meeusen and van Den Broeck [11], the
stochastic frontier (SF) model has obtained a great deal of academic attention and has been
extended in abundant fields.

Some common areas of application of the stochastic frontier model have been studied in
the literature, such as the efficiency of banks (Koetter et al. [7], Casu et al. [5]) and technical
efficiency of three types of rice crop in Bangladesh (Baten and Hossain [3]). Lai and
Kumbhakar [8] introduced a panel stochastic frontier model that allows the dynamic
adjustment of technical inefficiency and described three approaches for estimation. Recently,
Tsukamoto (2019) proposed a spatial autoregressive stochastic frontier model for panel data,
which contains the spatial lag term of explained variables and the joint structure of a
production possibility frontier. The maximum likelihood approach is selected for parameter
estimation.

Yu et al. [21] considered an unknown nonlinear autoregressive function and proposed a
semiparametric method by combining a parametric regression estimator with a nonparametric
adjustment. They considered a crude guess of the unknown function and the initial parametric
approximation is adjusted by a nonparametric multiplier. The L,-fitting, the natural
consideration of a criterion, is used to estimate the adjustment factor. Hence, the parametric
method and nonparametric adjustment are combined. The nonparametric adjustment is
estimated through the smooth-kernel method. Nademi and Farnoosh (2014) introduced
Mixtures of autoregressive-autoregressive conditionally heteroscedastic models and extended
a semiparametric method to estimate regression function. Hajrajabi and Fallah (2018)
introduced the nonlinear semiparametric AR(1) model with skew-symmetric innovations and
the scheme of estimation of the nonlinear function resembles the work of Yu et al. (2009).
Farnoosh et al. (2019) explored the nonlinear AR(1) model with independent and dependent
errors. For estimation of the nonlinear function, they used the Taylor series expansion instead
of a crude guess of the nonlinear function.

Many empirical relevant phenomena represent nonlinear dynamic structures such as
biology, medicine, engineering, finance and economics. One of the common procedures for
modeling such phenomena is the nonlinear autoregressive (NAR), which is illustrated by
many researchers. For example, a nonlinear autoregressive approach with exogenous input
(NARX) neural network model is considered by Alsumaiei [2] to provide a robust water
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management tool in controlling the development of low deep water. Tealab et al. [17]
demonstrated the nonlinear autoregressive neural network, recurrent neural network, which
has moving average autoregressive in the nonlinear case (NARMA) and focused on the
capacity of these networks to predict nonlinear time series. Blasques et al. [4] proposed a
class of unknown time-varying coefficients nonlinear autoregressive model, where parameter
is updated based on the score of the predictive likelihood function at each point in time.
Multivariate autoregressive equation-error systems with autoregressive noise are introduced
by Liu et al. [9] and represented maximum likelihood recursive generalized least squares
estimation algorithm and a multivariate recursive generalized least square algorithm.

In this paper, we expand a nonlinear stochastic frontier model for the panel data with
dynamic technical inefficiency. As firms in a competitive environment will compare the
performances with their competitors, it is highly unlikely that inefficiency will be constant for
several periods. Our new model covers the dynamic properties of inefficiency that will be
more match with real situations. Besides, the nonlinear structure of the output makes it more
flexible and applicable.

Panel data modeling has a principal quota in the inferential analysis of
econometricians, accountants and financial managers that contains information on each
individual unit across time. Despite the various literature on nonparametric modeling in
econometrics, little investigation has been done to nonparametric estimation in dynamic
panels, due to the difficulty of treating individual effects and the autoregressive structure
simultaneously in the context of nonparametric estimation. All these challenges, stimulate us
to research panel data in stochastic frontier models, therefore likelihood estimation is not
straightforward in such situations due to a large number of parameters. Hence, pairwise
composite likelihood approach is suggested for estimating the parameters of the proposed
frontier model.

The rest of the paper is organized as follows. In Section 2, a panel data nonlinear
autoregressive  stochastic frontier model is introduced with dynamic technical
inefficiency. Also, in this section the transformed model is obtained. The estimation of the
parameters by two approaches (full maximum likelihood and pairwise composite likelihood)
are discussed in section 3 and semiparametric regression estimator is introduced by a natural
consideration of the local L,-fitting criterion. The asymptotic behavior of the estimators is
investigated in Section 3. In Section 4, a simulation study is performed to confirm the
advantage of this method.

2. Definition of the model

In recent years, a combination of parametric forms and nonlinear functions has been used
to make a more efficient model in various branches of science, particularly in applied
statistics, econometrics and financial studies. Besides, outputs in each firm in real data, also
has autocorrelated structure, that in most models is ignored. Owing to this, we consider the
stochastic frontier (SF) autoregressive model in panel data. The superiority of using panel
data is that allows examining and modeling the behavior of technical efficiency of each firm
over time. We consider the panel data stochastic production frontier model with an unknown
autoregressive function of output and dynamic technical inefficiency as follows

Yit:m(Yl‘t_l)‘i'ﬁ,Xit‘l'Vit_uit, l=1,,n, t=1,,T (1)
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where Y;; represents the output of firm i in time period t, X;; is the vector of random
regressor, m(.) is supposed to be an unknown but smooth function, g is vector parameter and
B' denotes the transpose of . Random disturbance v;; — u;; is the composite error in which
v;; represents the two-sided statistical noise with distribution N (0, 5:2), and u;, is the one-
sided stochastic technical inefficiency that is allowed to change both across firms and over
time.

The technical inefficiency in each firm may impact from the last time values of the
technical inefficiency in that firm. For this purpose, we have also taken attention to the
autocorrelation of technical inefficiency in our model. The technical inefficiency component
u;¢ follows an autoregressive (AR) process of order one, it means which

Uir = QUi + U, )

where «a is an autoregressive coefficient and u;; is a nonnegative random noise with half-
normal distribution as N*(0,02), Moreover, u;j, and uj, are independent of each other for

0'2
1—22)'

given i, (i # s) and u;o ~ N*(0,

In order to obtain the stationarity, the coefficient a is bounded between 0 and 1, that leads
to u;; >0 and the inefficiency component be positively correlated with the previous
inefficiency component.

2.1. The transformed model

The correlation between the composite errors comes from u;; not v;;, because the
inefficiency component wu;; follows an AR(1) process. To omit this autocorrelation in u;;,
subtracting (1) by aY;;_, then we can obtain the transformed model as

Yie —aVy_y = mYie—1) —am(Yi—p) + B'Xiy — af' Xip—1 + Vi — avie—q — uj; 3)
By considering v;; = v;; — av;;_q and &; = v;; — u;;, the model can be rewritten as
Yie = a¥ie—q + m(Yie—q) — am(Yie—2) + B’ (Xie — aXjr—1) + &4

The composite error has a first order moving averaging process (MA(1)) representation as
follows,

Eit = €jt — i1,
where, e;; = Y;; — m(Yie—1) — B'Xir and remind that &; = v;; — av;;_1 — u;;. Due to the

MA(1) representation, the mean, variance and autocovariance of &;, are obtained as

2
E(eir) = E(vip) = E(uy) = E(vi —avyeq) — E(uy) = — ;Uu:
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* 2y .2 m—2 2
Var(ey) = Var(vie — avie—q —uyp) = (1+ a®)oy + - Oy

and
—ao?, li—s|=1
m—2
2\ 2 2 .
Cov(ey, &) = A+ a*)oy + <—n )au, i=s )

so, the autocorrelation of g;;, €; is represented as

( -ac? Lol —
(1+a2)0'5+(n7_2)0'§’ li=sl=1
Corr(giy, €is) =11, i=s . 4)
0, li—s|>1

\

The {¢;;} process must be negatively correlated with the previous component.

In order to perform the statistical inference on the frontier autoregressive model with
autocorrelated technical inefficiency, derive the distribution of ¢;; is necessary, that we know
it is a combination of two normal and half-normal random variables. Therefore, it is
necessary to derive the joint distribution of €4, &;5,..., &, for each i. Let v; = (vig, ..., vir)’
and u; = (ujy,...,uir)’, then the vector of the composite errors &; = (&4,..., &)’ can be
written as

*

* *
& =Qvi —u; =v; —u,

where v; = Qv; isaT x 1 vector and

—2 1 0 0 .. 0
0 —a 1 0 0

Q= P .
0 0 0 —a 1

isaT x (T + 1) matrix. We call the matrix Q the transformation matrix.

With the distributional assumptions on v; and u;, we can derive the joint distribution of
&; . The main results are summarized in Theorem 2.1.

Theorem 2.1. If v;; ~ N(0,02), uj, ~ N*(0,02) and &; = v;y — avj;_1 — uj,, the vector
of the composite errors g; of the transformed model has the closed skew normal (CSN)
distribution, i.e.,


http://iors.ir/journal/article-1-678-en.html

[ Downloaded from iors.ir on 2026-01-31 ]

64 Feizi and Pourdarvish

&, ~ CSNy (07,2, —0227%, 07, 02 (Ir — 02271)).
The corresponding joint pdf of ¢; is
f:&'i_ (Si.' 9) = 2T¢T(Ei.) OT! Z)CDT(_O-‘I%Z_lgi.) OT) O-li (IT - 0-52_1))1

where £ = 02QQ’ + oIy, 6 denotes the vector of parameters, ¢+ (., 1, X) and @4 (., 1, X) be
the probability density function (pdf) and cumulative distribution function (cdf) of a T-
dimensional normal distribution with mean u and variance matrix .

Proof. See Lai and Kumbahkar [8].
3. Estimation of the parameters

The parametric or nonparametric approach can be modified to estimate the autoregression
function m(.). If we get some information from the previous experience and analysis of the
underlying structure, then we suppose m(.) has a parametric framework, namely, a
parametric model

m(y) € {g(y,4); 1 € A}, (5)

is prepared as a prior selection, where A I RP is the parameter space. So, the unknown
parameter vector A is estimated instead of the regression function. Consequently, the
regression function m(.) is estimated by

my) =g, ), (6)

where 1 is an estimator of A. If the parametric assumption (5) is affirmed, the parametric
method (6) is noteworthy for several reasons. However, if the parametric assumption (5) does
not hold, the result of the parametric method leads to a confusing inference about the
autoregression function. In this case, the nonparametric method can be adopted without the
assumption that the underlying structure is controlled or captured by a finite-dimensional
parameter.

Like Yu et al. [21], we propose procedure which includes both the parametric and
nonparametric methods. We assume that m(y) takes the form of g(y, 1), where g(y, 1) is a
known function of y and A, the parametric regression estimator (6) is regarded as a crude
guess of m(y). When this initial parametric approximation is modified by nonparametric
multiplier £(y), we get the semiparametric form g(y, 1)&(y). The natural consideration of a
criterion called local L,-fitting is used to estimate the adjustment factor £(y). If the estimator
of £(y) is denoted by £(y), we can finally obtain the estimator m(y) = g(y, DEW). Itisa
special semiparametric method with a parametric estimation as its starting point and
nonparametric estimation as its adjustment.
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For the model identification, A should be well defined. Therefore, first of all parameters of
the model including A must be estimated. We investigate parameters estimation of the model
with both full maximum likelihood (FML) and pairwise composite likelihood (PCL)
estimation methods.

3.1. The full maximum likelihood (FML) estimator

In this section, we estimate the parameters 8 = («, S, 0y,0,,4) by full maximum
likelihood method. The full log-likelihood function of the transformed model is written as

In(L (s, 0))rmr = Xizy In(fe, (€1, 6)). ()

Therefore the estimation of the parameter vector 6 is obtained by maximizing the
In(L(&;,0))rpy, With respect to 6. The FML estimators can be easily computed by using the
numerical solution with statistical package R.

Let gy, = (&, B, 6y, 6,,1) denote the FML estimates of 6 = (a, B, 0y, 0, 1), given a
specified value. Under the usual regularity conditions

Vn(Beyy — 6) ~ Ng(04, —H(O)™),

where d is the dimension of 8, H(8) is the Hessian matrix and the variance of 8p,,; can be
estimated as

= ~ 621nf(?:-_,§pML) -1
Var(OemL) = _[ =1 Talel] )

where &; is the predicted residual vector of the transformed model.

Assessment of equation (7) involves a numerical integration of dimension T, which has
no closed form and usually relies on Gaussian quadrature or a simulation approach to obtain
its function value. If the number of period T is large, the numerical integration would be
difficult and the approximation error is almost intractable. In the following, we focus on
pairwise composite likelihood approach to simplify the computations.

3.2. The pairwise composite likelihood estimator

Composite likelihood is an inference function derived by multiplying a collection of
component likelihoods with some weights. Here each individual component has a conditional
or marginal density, so the estimating equation obtained from the derivative of the composite
log-likelihood is an unbiased estimating equation (see Varin et al. [19]). Molenberghs and
Verbeke [12] in the context of longitudinal studies, and Mardia et al. [10] in bioinformatics,
construct composite likelihoods by pooling pairwise conditional densities.
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Discussions on the consistency and asymptotic normality of the PCL estimator can be
found in Renard et al. [14]. Following Renard et al. [14], we consider the PCL method to
simplify the computations that consists of a combination of valid likelihood objects. The
merit of the PCL method is that it reduces the computational complexity so that it is possible
to deal with high dimensional and complex models.

For the transformed model in (3), the PCL function is much easier to evaluate than the
full likelihood function. However, the convenience may come at a cost of losing efficiency
since the cross-period sample information is not fully incorporated. Since how much
efficiency we lose due to using the pairwise composite likelihood approach is not clear, we
will investigate this problem by comparing the finite sample performance of the PCL and
FML estimators using Monte Carlo simulations.

By using (4), the correlation matrix of the vector ¢; has the structure

Corr(g;) =
—ao?
1 ot 0 0 ... 0\
—aol -ao}
(1+a2)a§+(n7_z)aﬁ 1 (1+a2)0'5+(n7_2)0'§ 0 . 0 | (8)
: : : P o :
\0 0 0 (1+a2)05+(”7_2)a§ 1/

As we can see in (8), the pair (&, €;5) is independent if |t — s| > 1 and thus their joint pdf is
the product of their marginals. The joint pdf of a pair (&, €;5) has the following form

_(filgin€s,0) Jt—s|>1
fsmeis(Sit,Sis,Q) - {fz(git'gis' 0) |t—s|=1

where f; (&, €is, 0) 1S the product of the marginal pdfs of €;; and g;5 and £, (&, &5, 0) 1S the
joint pdf of two consecutive g;;’s.

As special cases of Theorem 2.1, both marginal and joint pdf can be obtained when T = 1
and T = 2, respectively. When T=1 we have £ = 6% = (1 + a®)oy + 0%

ok 9L+ e0)

2
gt ~ CSNy 4 (0,0 5z 0 =

and similarly,

(e 0) = 201 (2) 0, (— i), ©

o (1+a?)oZ]o

when the lag difference |t — s| > 1, by means of independence of ¢;; and ¢, the joint pdf of
& and g5 1S
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f1 (e, €5, 0) = [, (€t 0) fe (s, 6),
where f, (&, ) is given by (9).
Remind that
i = —AVirq + Vig — Uy,
Eit+1 = —AVie + Vier1 — Ujrer-

Let define &; = (&i¢,€ir41)" @S @ 2 X 1 vector of the composite errors from consecutive
periods and

-a 1 0
Q= (0 —a 1)' Vie = (Vie-1, Vies Vier1)'s

* * * I * * * I
Vie = Wips Vigr1)' Ui = (Ui Ujp1)")
then &;; can be represented as
_ * * *
it = QVir — U = Vip — Uy (10)

Note that since Var(v;;) = o213 and uj, ~ N*(0,,021,) each element in v;; and uj, is
independent across time. The joint pdf of ¢;, is given in the following Corollary.

Corollary 3.1. Under the same assumption of Theorem 2.1, the 2 x 1 vector g;, defined in
(20) has the following closed skew-normal distribution,

git ~ CSNp (05,2, —0227%,0,5,05 (I, — 0227Y)),

where X = UEQ Q’ + 02 I, isa T x T matrix. The corresponding joint pdf of g;; is

feie (Eit, 0) = 4¢2(§it' Oz»z)q’z (—aﬁZ‘lgt, 02,04 (I, — 032_1))- (11)

By the Corollary, we have f, (&, &i5,0) = fg,, (€ie, 8). Therefore, it follows from (10) and
(11) that the pairwise composite log-likelihood function for all combinations of possible pairs
for the firm i is

T-1 T
In(L (9)>m—z D 0 (frpe G 2is,0))
=1 s=t+1
T-1 T-1 T
= (felt Sit41 (€it» Eit+1s 9) Z fsu Eig (it &isr 9))
t=1 t=1 s=t+
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T-1
Z ln(fz(gltvnglg)) + Z Z ln(fl(glt'gls'g))
t= =1 s=t+2

The pairwise composite log-likelihood for the whole sample is In(L(8))pcL =
™1 In(L;(0))pcr- So, the maximum PCL estimator is defined as

OpcL = arg(m@ax In(L(8))pcL-

According to Varin and Vidoni [20], under the usual regularity conditions the PCL
estimator is consistent and asymptotically normally distributed, i.e.,

Vn(Bpcr, — ) ~ Ng(04, Hper (0) ™ per, (0)Hpcr (6) ™),

92%In(L;(8)) aIn(L;(8)) aIn(L;(6))
Where HPCL(Q) == E [W] and ]PCL(H) == E [ 90 PCL. PY'L PCL].

Therefore, the variance of O, can be estimated by

az ln(L (9))PCL aln(L (9))PCL dln(L; (9))PCL zln(Li(e))PCL -
9006’ 0006’

Var(Bpc,) = [

3.3. Semiparametric estimation of the function m(y)

In this section, we will adjust the initial approximation by the semiparametric form
9(y, 1)&(y), where &(y) is the adjustment factor. The remaining issue is to determine &().

We can get the estimator £(y) by minimizing the local L,-fitting criterion with respect to
&(y) as follows

T n
1
a0n9) =50 2 K(H) ) 9 (Vi D)
ni=1 i=1
Then we obtain
Yo . — .
?=1 Z?=1 K (%) m(Yit—1)g(Yit—1:/1)

Y;
Ty T K (15Y) 02 (Fie- )

() =

So, the estimator of m(y) is represented as

Yip 4 — A
=1 Xim K (%) MYit-1)9(Yie-1,4)

Y:
=1 1 K( lt}: )g (Ytt 1')‘)

ny) = g(y,4) (12)
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However, the formula above contains the unknown function m(y). Note that

T n

> > K (* ) mie- g (ies )
1

t=1 i=
n

T
~ Z Z K( it-1 — )[Ylt B'Xie — | g (Yie—1, A),

t=1 i=1
where the technical inefficiency 4;; = E (u;|Q¢) is computed in the next section.

Therefore we get a nonparametric estimator of ¢(y) as

Y A . A
5 Z=1 ?:1 K (L> [th B'Xie — uit]g(Yit—LA)

s) =
Y ~
Iy B0 K (H5=Y) g2(Ye0, )

Finally, the unknown smooth function estimator is obtained by
T n Ylt 1 1 ~ o)
t=1 2i=1 K (—n) [th B'Xit — uit]g(Yit—lf/l)
Y;
L ) K( ltﬁ )9 (Ylt 1"1)

Here, some properties and the asymptotic behaviors of the estimator are investigated. In order
to obtain the properties, the assumptions (A1)-(A11) are considered as follows.

M) = g(y, 1) (13)

Al. The sequence {Y;;},1<1<n, 1<t<T is a stationary ergodic sequence of
integrable random variables.

ag o2 a3
A2. —g, g , g
02;" 94,07 04,020

exist and are continuous forall A € A,1 < L,j, k < p.

and

. ) ]
A3. For 1<ij<p, E()’lt—g)a—i|<oo, E|(Ylt_g)a,1iag/1j
dg OJdg
— .| <®
|a/1i azjl

A4. For i,j,k =1,...,p, there exist functions H® (Vr—1), H® (V1) H? Y-y,
H{3), (Yie_1) such that

< y®

dg d%g
|g|SH(O)' ‘_|<H'(1) 37 49 i,jk

oxl =i ‘aaiaaj =

@ |99
TR PV T IErn

forall A € Aand
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E [V ()| < oo, E [HO (- )H V-1 < 00,

E

Hi(l)(ylt—l)Hj(,i)(Ylt—l)| S ®©
AS.

EWelYie—1,--Y0) = ECVelYie—1, -0, Vieem), a.s. t=zm,

E <Utz (é) ’ag(ga'/{lt—l) . 69(9; Ylt—l)

9,

><oo, 1<ij<p

where Up(0) = Yy — EYelYiem1) = Yie = m(Yie—1) + B'E(Xie|Yie—1) — E (uyy).
Define the following matrices

v=I|E <69(é' Ylt—l).ag(é' Yit-1)

=1
a2, a2, ) bJ= 5P

ag(é, Yit-1) ag(é, Yie-1)

W= E(UE(@) 5 7
i J

) , iL,j=1,...,p

We will assume throughout that IV and W are positive definite.
A6. The sequence {Y;;},1<1<n, 1 <t <Tisa-mixing.

A7. Y, has the distribution 7(.), the density u(.) of m(.) exists, is bounded,
continuous and strictly positive in a neighborhood of the point y.

A8. m(y) and g(y, A) are bounded and continuous with respect to y, away from 0
in a neighborhood of the point y. Set go(¥) = g(y, 1).

A9. g(y,A) has a continuous derivative with respect to A, and the derivative at the
point @ is uniformly bounded with respect to y.

A10. The kernel K: R! - R* is a compactly symmetric bounded function, such that
K(y) > 0 for y in a set of positive Lebesgue measures.

1
All. h, = Bn s, where § > 0.
p
Theorem 3.2. Assume (Al1)—(A1l). Let #i(y) be as in (12), then mi(y) - m(y) as n — oo.

P
Theorem 3.3. Assume (Al1)—(A1l). Let mi(y) be as in (13), then i (y) - m(y) as n — oo,

The proof of Theorem 3.2 and Theorem 3.3 are the same as Yu et al. [21], so we eliminated
the proof.
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4. Prediction of the technical efficiency

Having attained the maximum-likelihood (full or composite) estimates of the parameters,
the next step is to estimate the technical efficiency of each unit per time. As usual in frontier
models, if the response is measured in logs, the technical efficiency of the i-th unit at time t
is measured by the deviation of the observed output from the maximum producible output
and is estimated by

TE; = E(e™"it|Q,),

where Q; denotes the information set available at time t. Under the specification of (2), since
the inefficiency term u;; follows an AR(1) process, the iterative substitution suggests
t-1
Wjp = AU + Ujp = Z a’ujp_g + atuy,
s=0

which has a moving average representation. Under the independence assumption of u;; and
uj forall t # s,

t-1
E(e™"t|Q,) = E [exp <—Z e = atui()) 19
5=0

t_

= Elexp(—a’uj_g) |l€;e—s]E [exp(—a‘fu;g)].

N

=

Il
o

So, to find the conditional expectation TE;, we need to compute moment generating
function of u;, and u;. Lai and Kumbahkar [8] showed that

(O] (% + 60*)

@ (5*)
—&it04

(1+a?)oi+od’

1
Elexp(Suip)leie] = exp (3670°2 + Sy ) (14

(1+a?)oZo2

wher B
e (1+a?)oZ+02

and pye =

The moment generating function of u;, is represented by

5%0? Say,
Elexp(Su;p)] = 2exp (2(1 — a2)> P (m> (15)

Now, we are able to derive the predictors of TE and technical inefficiency.

t-1 [ .uzts aa) —ato,
TE; = 2 @
] ﬂzt s) V1= 2
S§=
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a*tad t—-1 (1 25 x2 s
.exp{z(l_a2)+ 50 (20( o +a ,ul-t_s)}. (16)

Similarly, it follows from moment generating function (14) and (15), their first order
derivatives with respect to § and by calculating the derivatives at § = 0, the predictor of
technical inefficiency E[u;;|€;] is obtained as

- Hit—s
20' ¢( * )
. =t u x N0 J
Eui|Q¢] = a 17'[(1 — a2 E Hit-s + 0 o (.uit—s) : 17)
s=0 O—*

Equations (16) and (17) provide the predictors of technical efficiency and the technical
inefficiency.

5. Simulation result

By simulation result, the accuracy of the nonparametric estimators is evaluated. First,
assume that m(.) has a parametric framework, afterward FML or PCL estimators is obtained,
consequently the unknown smooth function can be estimated. The kernel function is chosen
to be the Gaussian kernel where the bandwidth is equal to 0.06.

The finite sample performances of the FML and PCL estimators are evaluated via Monte
Carlo simulation result and how much efficiency we lose due to adopting the composite
likelihood instead of the full likelihood method is investigated.

The data-generating process (DGP) is specified as
Yie = m(Yie—1) + B'Xie + vie — wie,

where m(y) = dexp{—y?}+ 0.1y, X;; has Normal distribution with parameters (1,0.5),
Uy = aug_q + uj, follows an AR(1) process that uj, ~ N*(0,02) and v;; ~ N(0,02). The
parameters in the data generating process are g, = 0.7, g, = 0.2, «a =04, § =03, 1 = 2.
Moreover, consider various combinations of n = 25,50,100 and T = 5,10 where the
number of replications is 100.

In Tables 1 and 2, we report the biases and MSEs of the estimations. All biases and MSEs
of the FML and PCL estimators are small in magnitudes and all MSEs of the estimators
decrease when n or T are increased, but the pattern of biases is not so clear.

We compare the performance of the FML and PCL estimators using the statistical relative

. . . __ MSE(@pc1)
efficiency (SRE), which are defined as SRE = MSE(Brais)

that the FML estimator is more efficient than the PCL estimator. By comparison of the MSE
values of FML and PCL in Table 2, we can see that SREs are almost greater than 1, which
suggests that most of the time the FML method is more accurate and efficient than PCL.

As we know, SRE > 1 suggests
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Table 1: Some simulation results for the model.
(0y,0,,a,B,2) = (0.7,0.2,0.4,0.3, 2)
T n Bias of FML estimator
25 | 0.0206322 | -0.0195088 | -0.0876922 |-0.0622842 | -0.0947922
5 50 |-0.0180901 | 0.0129145 | -0.0781868 |-0.0885962 | -0.0883345
100 | 0.0164405 | 0.0168157 | -0.0754653 | -0.053734 |-0.0796663
25 | 0.0175603 | -0.0088931 | -0.0589197 |-0.0856701 | -0.0167646
10 50 | 0.0210986 | -0.0079609 | -0.0581926 |-0.0870603 | -0.0189398
100 | 0.0156851 | 0.0070654 | 0.0475627 |-0.0710781|-0.0176777
Bias of PCL estimator
25 [-0.0866283 | -0.0268128 | -0.1441584 | -0.1073211 |-0.1277932
5 50 |-0.0831011| 0.0246604 | -0.1233138 |-0.0852864 | -0.1358873
100 | 0.0732005 | 0.0256779 | -0.1200522 | 0.0945067 | 0.1026641
25 [-0.0391821| 0.0255223 | -0.0772295 |-0.0622833 | -0.093187
10 50 |-0.0370721| 0.0216811 | 0.0737859 | -0.074646 | 0.1002494
100 | 0.0280778 |-0.0199109 | -0.0678428 | -0.0680038 | 0.0898149
Table 2: Some simulation results for the model.
(04, 0,,a,8,1) = (0.7,0.2,0.4,0.3,2)
T n MSE of FML estimator
25 | 0.0065263 | 0.0036852 | 0.0462789 | 0.0388802| 0.0276758
5 50 | 0.0023105 | 0.0017448 | 0.0399162 | 0.0313716| 0.0145807
100 | 0.0008698 | 0.0008005 | 0.0348957 | 0.0299302| 0.0131673
25 | 0.0030491 | 0.0010821 | 0.0067496 | 0.0196418| 0.0050179
10 50 | 0.0015277 | 0.0004544 | 0.0054676 | 0.0155228| 0.0025212
100 | 0.0007977 | 0.0002408 | 0.0040833 | 0.0118482| 0.0008851
MSE of PCL estimator
25 | 0.0220745 | 0.0097275 | 0.0777602 | 0.0774299| 0.1602616
5 50 | 0.0180122 | 0.0060388 | 0.0619799 | 0.0565843| 0.1474436
100 | 0.0131125| 0.0025227 | 0.0444701 |0.0500402 | 0.0995192
25 | 0.0113401 | 0.0022382 | 0.0366541 | 0.0356176| 0.0968482
10 50 | 0.0088338 | 0.0017923 | 0.0100499 | 0.0295117| 0.0626725
100 | 0.0049203 | 0.0009922 | 0.0089811 | 0.0251479| 0.0516907

73
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Conclusion

In this paper, a panel nonlinear autoregressive stochastic frontier model is proposed with
dynamic technical inefficiency which is a spate of operations research technique of data
envelopment analysis. At first, the regression function is supposed to have a parametric
framework, then for the unknown autoregression function, a semiparametric form
g(v, DE(y) is suggested, where £(y) is a nonparametric adjustment. Although it is shown
that the full likelihood function of the model follows a closed skew normal distribution,
empirical evaluation of the full likelihood function involving a high dimension integration is
difficult, when time span is large. Therefore, the pairwise composite likelihood function is
used. At the end, by Monte Carlo simulations, the finite sample performance of the PCL and

FML estimators are compared and find that PCL estimator performs quite well.
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