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A branch of researches is devoted to semiparametric and nonparametric estimation 

of stochastic frontier models to employ the advantages in the operations research 

technique of data envelopment analysis. The stochastic frontier model is the 

parametric competition of data envelopment technique. This paper focused on a 

nonlinear autoregressive stochastic frontier production model that covers dynamic 

technical inefficiency. We consider a semiparametric method for the model by 

combining a parametric regression estimator with a nonparametric adjustment. The 

unknown parameters are estimated using the full maximum likelihood and pairwise 

composite likelihood methods. After the parameters are estimated by parametric 

methods, the obtained regression function is adjusted by a nonparametric factor, and 

the nonparametric factor is obtained through a natural consideration of the local   -

fitting criterion. Some asymptotic and simulation results for the semiparametric 

method are discussed. 
 

Keywords: Technical inefficiency, Stochastic frontier models, Nonparametric 

adjustment, Panel data. 

 
Manuscript was received on 12/06/2019, revised on 02/18/2020 and accepted for publication on 03/19/2020. 

 

1. Introduction 

 

 Operations research (OR) is an analytical method of problem-solving and decision-

making that is useful in the management of organizations .yrhir th nu enO  characteristics 

of all operations research efforts is optimization, which purposes to achieve the best 

performance under the given circumstances. Quality management is an effective system in 

operation research that can be measured by efficiency. sdi teeTThT ir  h tiwT, data 

envelopment analysis (DEA) and stochastic frontier analysis (SFA) dhnh whehei hw, i

hT u e h thhrrutuhrtOirwhtuTuir- eDursiru T ikam.i DEA is a nonparametric approach 

based on linear programming, which takes the observed input and output values and forms a 

production possibility set to make certain assumptions. The inefficiency is measured as the 

distance of the DMU from the frontier of this set. This method gives an efficiency relative to 

the best practice DMUs. The SFA approach uses observed input-output correspondences to 

estimate an underlying relationship between the inputs and outputs. This function is then used 

as the frontier against which to measure the efficiencies. 

DEA and SFA have been the two premier methods established for studying technical 

efficiency, allocated efficiency and productivity, where SFA is the parametric and DEA is the 

nonparametric method. Although it has yet to become widespread, applied studies have 
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started to embrace the use of both approaches to demonstrate the robustness of empirical 

conclusions (Chapple et al. [6], Casu et al. [5]), even though the use of DEA and SFA implies 

different assumptions on the production model. However, a DEA-based estimate is sensitive 

to measurement errors or other noise in the data because DEA is deterministic and attributes 

all deviations from the frontier to inefficiencies, but SFA considers stochastic noise in data, 

and it can be used to conduct the conventional tests of hypothesis. Both DEA and SFA 

models consider the technical changes in real situations, and both can be applied for the 

cross-sectional and panel data. 

 

One aspect of the application of statistical modeling is in the economic data. Among the 

economic models, the stochastic frontier model has been widely used to measure technical 

efficiency. Deterministic models of technical efficiency, such as DEA, assume that all 

deviations from the production frontier are due to inefficiency, whereas, the stochastic 

frontier model is an alternative that allows both inefficiency and measurement error. The 

basic idea in the stochastic frontier model is the introduction of an additive two-sided error 

term that reflects measurement error and a one-sided technical inefficiency of the firm.Ever 

since the pioneering works of Aigner et al. [1] and Meeusen and van Den Broeck [11], the 

stochastic frontier (SF) model has obtained a great deal of academic attention and has been 

extended in abundant fields.  
 

Some common areas of application of the stochastic frontier model have been studied in 

the literature, such as the efficiency of banks (Koetter et al. [7], Casu et al. [5]) and technical 

efficiency of three types of rice crop in Bangladesh (Baten and Hossain [3]). Lai and 

Kumbhakar [8] introduced a panel stochastic frontier model that allows the dynamic 

adjustment of technical inefficiency and described three approaches for estimation. Recently, 

Tsukamoto (2019) proposed a spatial autoregressive stochastic frontier model for panel data, 

which contains the spatial lag term of explained variables and the joint structure of a 

production possibility frontier. The maximum likelihood approach is selected for parameter 

estimation. 

 

Yu et al. [21] considered an unknown nonlinear autoregressive function and proposed a 

semiparametric method by combining a parametric regression estimator with a nonparametric 

adjustment. They considered a crude guess of the unknown function and the initial parametric 

approximation is adjusted by a nonparametric multiplier. The   -fitting, the natural 

consideration of a criterion, is used to estimate the adjustment factor. Hence, the parametric 

method and nonparametric adjustment are combined. The nonparametric adjustment is 

estimated through the smooth-kernel method. Nademi and Farnoosh (2014) introduced 

Mixtures of autoregressive-autoregressive conditionally heteroscedastic models and extended 

a semiparametric method to estimate regression function. Hajrajabi and Fallah (2018) 

introduced the nonlinear semiparametric AR(1) model with skew-symmetric innovations and 

the scheme of estimation of the nonlinear function resembles the work of Yu et al. (2009). 
Farnoosh et al. (2019) explored the nonlinear AR(1) model with independent and dependent 

errors. For estimation of the nonlinear function, they used the Taylor series expansion instead 

of a crude guess of the nonlinear function. 
 

Many empirical relevant phenomena represent nonlinear dynamic structures such as 

biology, medicine, engineering, finance and economics. One of the common procedures for 

modeling such phenomena is the nonlinear autoregressive (NAR), which is illustrated by 

many researchers. For example, a nonlinear autoregressive approach with exogenous input 

(NARX) neural network model is considered by Alsumaiei [2] to provide a robust water 
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management tool in controlling the development of low deep water. Tealab et al. [17] 

demonstrated the nonlinear autoregressive neural network, recurrent neural network, which 

has moving average autoregressive in the nonlinear case (NARMA) and focused on the 

capacity of these networks to predict nonlinear time series. Blasques et al. [4] proposed a 

class of unknown time-varying coefficients nonlinear autoregressive model, where parameter 

is updated based on the score of the predictive likelihood function at each point in time. 

Multivariate autoregressive equation-error systems with autoregressive noise are introduced 

by Liu et al. [9] and represented maximum likelihood recursive generalized least squares 

estimation algorithm and a multivariate recursive generalized least square algorithm.  

 

In this paper, we expand a nonlinear stochastic frontier model for the panel data with 

dynamic technical inefficiency. As firms in a competitive environment will compare the 

performances with their competitors, it is highly unlikely that inefficiency will be constant for 

several periods. Our new model covers the dynamic properties of inefficiency that will be 

more match with real situations. Besides, the nonlinear structure of the output makes it more 

flexible and applicable. 

 

Panel data modeling has a principal quota in the inferential analysis of 

econometricians, accountants and financial managers that contains information on each 

individual unit across time. Despite the various literature on nonparametric modeling in 

econometrics, little investigation has been done to nonparametric estimation in dynamic 

panels, due to the difficulty of treating individual effects and the autoregressive structure 

simultaneously in the context of nonparametric estimation. All these challenges, stimulate us 

to research panel data in stochastic frontier models, therefore likelihood estimation is not 

straightforward in such situations due to a large number of parameters. Hence, pairwise 

composite likelihood approach is suggested for estimating the parameters of the proposed 

frontier model.  

 

The rest of the paper is organized as follows. In Section 2, a panel data nonlinear 

autoregressive stochastic frontier model is introduced with dynamic technical 

inefficiency. Also, in this section the transformed model is obtained. The estimation of the 

parameters by two approaches (full maximum likelihood and pairwise composite likelihood) 

are discussed in section 3 and semiparametric regression estimator is introduced by a natural 

consideration of the local   -fitting criterion. The asymptotic behavior of the estimators is 

investigated in Section 3. In Section 4, a simulation study is performed to confirm the 

advantage of this method. 

2. Definition of the model  

In recent years, a combination of parametric forms and nonlinear functions has been used 

to make a more efficient model in various branches of science, particularly in applied 

statistics, econometrics and financial studies. Besides, outputs in each firm in real data, also 

has autocorrelated structure, that in most models is ignored. Owing to this, we consider the 

stochastic frontier (SF) autoregressive model in panel data. The superiority of using panel 

data is that allows examining and modeling the behavior of technical efficiency of each firm 

over time. We consider the panel data stochastic production frontier model with an unknown 

autoregressive function of output and dynamic technical inefficiency as follows 

                                                      

 
(1) 
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where     represents the output of firm   in time period  ,     is the vector of random 

regressor,      is supposed to be an unknown but smooth function,   is vector parameter and 

   denotes the transpose of  . Random disturbance         is the composite error in which 

    represents the two-sided statistical noise with distribution       
  , and     is the one-

sided stochastic technical inefficiency that is allowed to change both across firms and over 

time.  

 

The technical inefficiency in each firm may impact from the last time values of the 

technical inefficiency in that firm. For this purpose, we have also taken attention to the 

autocorrelation of technical inefficiency in our model. The technical inefficiency component 

    follows an autoregressive (AR) process of order one, it means which  

              
   (2) 

where   is an autoregressive coefficient and    
  is a nonnegative random noise with half-

normal distribution as        
  , Moreover,    

  and    
  are independent of each other for 

given  ,       and          
  

 

     .  

 

In order to obtain the stationarity, the coefficient   is bounded between 0 and 1, that leads 

to       and the inefficiency component be positively correlated with the previous 

inefficiency component. 

 

 

2.1. The transformed model 

 

The correlation between the composite errors comes from     not    , because the 

inefficiency component     follows an AR(1) process. To omit this autocorrelation in    , 

subtracting (1) by       , then we can obtain the transformed model as 

                                                           
  (3) 

 

By considering    
             and        

     
 , the model can be rewritten as  

                                                  

The composite error has a first order moving averaging process (MA(1)) representation as 

follows,  

                

where,                        and remind that                   
 . Due to the 

MA(1) representation, the mean, variance and autocovariance of     are obtained as  

            
        

                      
    √
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  (
   

 
)  

   

and  

             

{
 
 

 
 
    

             

        
  (

   

 
)   

         

             

  

 so, the autocorrelation of         is represented as  

              

{
 
 

 
 

    
 

        
  (

   

 
)  

 
           

         
             

. (4) 

 

The       process must be negatively correlated with the previous component. 

In order to perform the statistical inference on the frontier autoregressive model with 

autocorrelated technical inefficiency, derive the distribution of     is necessary, that we know 

it is a combination of two normal and half-normal random variables. Therefore, it is 

necessary to derive the joint distribution of                  for each  . Let                  
  

and    
      

         
   , then the vector of the composite errors                  

  can be 

written as  

            
     

     
   

where    
       is a     vector and  

  

(

 
 

         
         
      
         

)

 
 
  

is a         matrix. We call the matrix   the transformation matrix. 

 

With the distributional assumptions on     and    
 , we can derive the joint distribution of 

   . The main results are summarized in Theorem 2.1. 

 

Theorem 2.1.   If           
  ,    

         
   and                   

 , the vector 

of the composite errors     of the transformed model has the closed skew normal (CSN) 

distribution, i.e.,  
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           (        
          

       
     )   

 The corresponding joint pdf of     is  

    
                        (   

             
       

     )   

 

where     
       

   ,   denotes the vector of parameters,           and           be 

the probability density function (pdf) and cumulative distribution function (cdf) of a T-

dimensional normal distribution with mean   and variance matrix  . 

 Proof. See Lai and Kumbahkar [8].    

3. Estimation of the parameters  

 

The parametric or nonparametric approach can be modified to estimate the autoregression 

function     . If we get some information from the previous experience and analysis of the 

underlying structure, then we suppose      has a parametric framework, namely, a 

parametric model  

                   (5) 

 is prepared as a prior selection, where      is the parameter space. So, the unknown 

parameter vector   is estimated instead of the regression function. Consequently, the 

regression function      is estimated by  

 ̂         ̂   (6) 

where  ̂ is an estimator of  . If the parametric assumption (5) is affirmed, the parametric 

method (6) is noteworthy for several reasons. However, if the parametric assumption (5) does 

not hold, the result of the parametric method leads to a confusing inference about the 

autoregression function. In this case, the nonparametric method can be adopted without the 

assumption that the underlying structure is controlled or captured by a finite-dimensional 

parameter.  

Like Yu et al. [21], we propose procedure which includes both the parametric and 

nonparametric methods. We assume that      takes the form of       , where        is a 

known function of   and  , the parametric regression estimator (6) is regarded as a crude 

guess of     . When this initial parametric approximation is modified by nonparametric 

multiplier     , we get the semiparametric form      ̂     . The natural consideration of a 

criterion called local   -fitting is used to estimate the adjustment factor     . If the estimator 

of      is denoted by  ̂   , we can finally obtain the estimator  ̂         ̂  ̂   . It is a 

special semiparametric method with a parametric estimation as its starting point and 

nonparametric estimation as its adjustment. 
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For the model identification,   should be well defined. Therefore, first of all parameters of 

the model including   must be estimated. We investigate parameters estimation of the model 

with both full maximum likelihood (FML) and pairwise composite likelihood (PCL) 

estimation methods. 

3.1. The full maximum likelihood (FML) estimator 

In this section, we estimate the parameters                 by full maximum 

likelihood method. The full log-likelihood function of the transformed model is written as  

                 ∑   
          

                                                                       

 Therefore the estimation of the parameter vector   is obtained by maximizing the 

                with respect to  . The FML estimators can be easily computed by using the 

numerical solution with statistical package R.  

 Let  ̂    ( ̂  ̂  ̂   ̂   ̂) denote the FML estimates of                , given a 

specified value. Under the usual regularity conditions  

 √ ( ̂     )                  

 where   is the dimension of  ,      is the Hessian matrix and the variance of  ̂    can be 

estimated as  

    ̂  ̂      *∑   
   

     ( ̂    ̂   )

     +
  

  

 where   ̂  is the predicted residual vector of the transformed model. 

 Assessment of equation (7) involves a numerical integration of dimension  , which has 

no closed form and usually relies on Gaussian quadrature or a simulation approach to obtain 

its function value. If the number of period   is large, the numerical integration would be 

difficult and the approximation error is almost intractable. In the following, we focus on 

pairwise composite likelihood approach to simplify the computations. 

 

3.2. The pairwise composite likelihood estimator 

 

Composite likelihood is an inference function derived by multiplying a collection of 

component likelihoods with some weights. Here each individual component has a conditional 

or marginal density, so the estimating equation obtained from the derivative of the composite 

log-likelihood is an unbiased estimating equation (see Varin et al. [19]). Molenberghs and 

Verbeke [12] in the context of longitudinal studies, and Mardia et al. [10] in bioinformatics, 

construct composite likelihoods by pooling pairwise conditional densities. 
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Discussions on the consistency and asymptotic normality of the PCL estimator can be 

found in Renard et al. [14]. Following Renard et al. [14], we consider the PCL method to 

simplify the computations that consists of a combination of valid likelihood objects. The 

merit of the PCL method is that it reduces the computational complexity so that it is possible 

to deal with high dimensional and complex models.  

 For the transformed model in (3), the PCL function is much easier to evaluate than the 

full likelihood function. However, the convenience may come at a cost of losing efficiency 

since the cross-period sample information is not fully incorporated. Since how much 

efficiency we lose due to using the pairwise composite likelihood approach is not clear, we 

will investigate this problem by comparing the finite sample performance of the PCL and 

FML estimators using Monte Carlo simulations. 

 By using (4), the correlation matrix of the vector     has the structure  

          

(

 
 
 
 

 
    

 

        
  (

   

 
)  

 
      

    
 

        
  (

   

 
)  

 
 

    
 

        
  (

   

 
)  

 
     

      

      
    

 

        
  (

   

 
)  

 
 
)

 
 
 
 

  (8) 

 As we can see in (8), the pair           is independent if         and thus their joint pdf is 

the product of their marginals. The joint pdf of a pair           has the following form  

        
            {

                    
                    

  

 where               is the product of the marginal pdfs of     and     and               is the 

joint pdf of two consecutive    ’T. 

 As special cases of Theorem 2.1, both marginal and joint pdf can be obtained when     

and    , respectively. When T=1 we have              
    

   

          .     
   

 

  
   

  
          

  

  /  

 and similarly,  

    
        

 

 
  (

   

 
)  ( 

     

[        
 ] 

)   
                     

(9) 

 

when the lag difference        , by means of independence of     and    , the joint pdf of 

    and     is  
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 where     
        is given by (9). 

 Remind that  

                   
   

                       
   

 Let define                
  as a     vector of the composite errors from consecutive 

periods and  

  (
    
    

)                            
       

     
      

       
                    

      
       

                       

 then     can be represented as  

            
     

     
   (10)  

 

 Note that since            
    and    

          
     each element in     and    

  is 

independent across time. The joint pdf of     is given in the following Corollary. 

Corollary 3.1.  Under the same assumption of Theorem 2.1, the     vector     defined in 

(10) has the following closed skew-normal distribution,  

          (         
          

       
     )   

 where     
        

     is a     matrix. The corresponding joint pdf of     is  

    
           (        )  (   

             
       

     )  (11) 

 

By the Corollary, we have                   
       . Therefore, it follows from (10) and 

(11) that the pairwise composite log-likelihood function for all combinations of possible pairs 

for the firm   is  

             ∑  

   

   

∑  

 

     

  (        
           ) 

 ∑  

   

   

  (          
             )  ∑  

   

   

∑  

 

     

  (        
           ) 
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 ∑  

   

   

  (              )  ∑  

   

   

∑  

 

     

  (             )  

 The pairwise composite log-likelihood for the whole sample is             

∑   
               . So, the maximum PCL estimator is defined as  

 ̂           
 

              

 According to Varin and Vidoni [20], under the usual regularity conditions the PCL 

estimator is consistent and asymptotically normally distributed, i.e.,  

 √ ( ̂     )               
                     

 where          *
               

     + and          *
              

  
 
              

   +. 

Therefore, the variance of  ̂   can be estimated by  

   ̂  ̂     [∑ 

 

   

                

     
]

  

[∑  

 

   

             

  

             

  
] [∑  

 

   

              

     
]

  

  

 

3.3. Semiparametric estimation of the function      

 

In this section, we will adjust the initial approximation by the semiparametric form 

 (   ̂)    , where      is the adjustment factor. The remaining issue is to determine     . 

We can get the estimator  ̂    by minimizing the local   -fitting criterion with respect to 

     as follows  

       
 

  
∑ 

 

   

∑ 

 

   

 (
       

  
) {          (       ̂) }

 
  

 Then we obtain  

 ̂    
∑   

   ∑   
    (

       
  

)         (       ̂)

∑   
   ∑   

    (
       

  
)  (       ̂)

  

 So, the estimator of      is represented as   

 ̂     (   ̂)
∑   

   ∑   
    (

       
  

)         (       ̂)

∑   
   ∑   

    (
       

  
)  (       ̂)

  (12) 
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 However, the formula above contains the unknown function     . Note that  

∑ 

 

   

∑ 

 

   

 (
       

  
)         (       ̂)

 ∑ 

 

   

∑ 

 

   

 (
       

  
) [     ̂      ̂  ] (       ̂)  

 where the technical inefficiency  ̂             is computed in the next section. 

 Therefore we get a nonparametric estimator of      as  

 ̃    
∑   

   ∑   
    (

       
  

) [     ̂      ̂  ] (       ̂)

∑   
   ∑   

    (
       

  
)  (       ̂)

  

 Finally, the unknown smooth function estimator is obtained by   

 ̃     (   ̂)
∑   

   ∑   
    (

       
  

) [     ̂      ̂  ] (       ̂)

∑   
   ∑   

    (
       

  
)  (       ̂)

  (13) 

Here, some properties and the asymptotic behaviors of the estimator are investigated. In order 

to obtain the properties, the assumptions (A1)–(A11) are considered as follows. 

   A1.  The sequence                   is a stationary ergodic sequence of 

integrable random variables. 

   A2.  
  

   
 

   

      
 

   

         
 exist and are continuous for all              . 

A3.  For        ,  |       
  

   
|   ,  |       

   

      
|    and 

  
  

   
 
  

   
   . 

A4.  For              , there exist functions               
   

            
           

      
           such that  

                 |
  

   
|    

   
         |

   

      
|      

   
         |

   

         
|        

   
 

for all     and  
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 |         
          |                      |                 

          |         

   |  
              

          |    

A5.   

                                                                 

 .  
 ( ̂) |

  ( ̂      )

   
 
  ( ̂      )

   
|/                

where     ̂                                                     . 

Define the following matrices  

  ( .
    ̂       

   
 
    ̂       

   
/)                      

  ( .  
   ̂ 

    ̂       

   
 
    ̂       

   
/)                      

We will assume throughout that   and   are positive definite. 

A6.  The sequence                   is  -mixing. 

A7.     has the distribution     , the density      of      exists, is bounded, 

continuous and strictly positive in a neighborhood of the point  . 

 A8.       and        are bounded and continuous with respect to  , away from 0 

in a neighborhood of the point  . Set            ̂ . 

A9.         has a continuous derivative with respect to  , and the derivative at the 

point  ̂ is uniformly bounded with respect to  . 

A10.  The kernel         is a compactly symmetric bounded function, such that 

       for   in a set of positive Lebesgue measures. 

A11.        
 

 , where    .  

Theorem 3.2. Assume (A1)–(A11). Let  ̂    be as in (12), then  ̂    
 

               .  

Theorem 3.3. Assume (A1)–(A11). Let  ̃    be as in (13), then  ̃    
 

               .  

The proof of Theorem 3.2 and Theorem 3.3 are the same as Yu et al. [21], so we eliminated 

the proof. 
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4. Prediction of the technical efficiency 

 

Having attained the maximum-likelihood (full or composite) estimates of the parameters, 

the next step is to estimate the technical efficiency of each unit per time. As usual in frontier 

models, if the response is measured in logs, the technical efficiency of the  -th unit at time   

is measured by the deviation of the observed output from the maximum producible output 

and is estimated by  

                  

 where    denotes the information set available at time  . Under the specification of (2), since 

the inefficiency term     follows an AR(1) process, the iterative substitution suggests  

              
  ∑ 

   

   

       
         

 which has a moving average representation. Under the independence assumption of    
  and 

   
  for all    ,  

             [   ( ∑ 

   

   

       
       )    ] 

 ∏ 

   

   

 [            
        ] [           ]  

 So, to find the conditional expectation     , we need to compute moment generating 

function of    
  and    . Lai and Kumbahkar [8] showed that  

 [        
      ]     (

 

 
          )

 (
   
      )

 (
   
  )

  (14) 

where     
(    )  

   
 

        
    

   and     
      

 

        
    

 .  

The moment generating function of     is represented by  

 [         ]      .
    

 

       
/ (

   

√    
)  (15) 

Now, we are able to derive the predictors of TE and technical inefficiency.  

      ∏ 

   

   

*
 (

     
       )

 (
     
  )

+ .
     

√    
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    ,
     

 

       
 ∑     

   (
 

 
              )-                                        (16)  

 Similarly, it follows from moment generating function (14) and (15), their first order 

derivatives with respect to   and by calculating the derivatives at    , the predictor of 

technical inefficiency  [      ] is obtained as  

 [      ]    √
   

 

       
 ∑ 

   

   

  (        
 (

     
  )

 (
     
  )

)  (17) 

Equations (16) and (17) provide the predictors of technical efficiency and the technical 

inefficiency. 

 

5.   Simulation result 

 

By simulation result, the accuracy of the nonparametric estimators is evaluated. First, 

assume that      has a parametric framework, afterward FML or PCL estimators is obtained, 

consequently the unknown smooth function can be estimated. The kernel function is chosen 

to be the Gaussian kernel where the bandwidth is equal to     .  

The finite sample performances of the FML and PCL estimators are evaluated via Monte 

Carlo simulation result and how much efficiency we lose due to adopting the composite 

likelihood instead of the full likelihood method is investigated. 

The data-generating process (DGP) is specified as  

                            

where                    ,     has Normal distribution with parameters        , 

              
  follows an AR(1) process that    

         
   and           

  . The 

parameters in the data generating process are                               . 

Moreover, consider various combinations of             and        where the 

number of replications is 100. 

In Tables 1 and 2, we report the biases and MSEs of the estimations. All biases and MSEs 

of the FML and PCL estimators are small in magnitudes and all MSEs of the estimators 

decrease when   or   are increased, but the pattern of biases is not so clear. 

We compare the performance of the FML and PCL estimators using the statistical relative 

efficiency (SRE), which are defined as     
   ( ̂   )

   ( ̂   )
. As we know,       suggests 

that the FML estimator is more efficient than the PCL estimator. By comparison of the MSE 

values of FML and PCL in Table 2, we can see that SREs are almost greater than 1, which 

suggests that most of the time the FML method is more accurate and efficient than PCL. 
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Table 1: Some simulation results for the model. 

                                    

T n Bias of FML estimator 

 25 0.0206322 -0.0195088 -0.0876922 -0.0622842 -0.0947922 

5 50 -0.0180901 0.0129145 -0.0781868 -0.0885962 -0.0883345 

 100 0.0164405 0.0168157 -0.0754653 -0.053734 -0.0796663 

 25 0.0175603 -0.0088931 -0.0589197 -0.0856701 -0.0167646 

10 50 0.0210986 -0.0079609 -0.0581926 -0.0870603 -0.0189398 

 100 0.0156851 0.0070654 0.0475627 -0.0710781 -0.0176777 

  Bias of PCL estimator 

 25 -0.0866283 -0.0268128 -0.1441584 -0.1073211 -0.1277932 

5 50 -0.0831011 0.0246604 -0.1233138 -0.0852864 -0.1358873 

 100 0.0732005 0.0256779 -0.1200522 0.0945067 0.1026641 

 25 -0.0391821 0.0255223 -0.0772295 -0.0622833 -0.093187 

10 50 -0.0370721 0.0216811 0.0737859 -0.074646 0.1002494 

 100 0.0280778 -0.0199109 -0.0678428 -0.0680038 0.0898149 

 

Table 2: Some simulation results for the model. 

                                    

T n MSE of FML estimator 

  25   0.0065263   0.0036852   0.0462789   0.0388802   0.0276758  

5  50   0.0023105  0.0017448   0.0399162   0.0313716   0.0145807  

  100   0.0008698   0.0008005  0.0348957   0.0299302   0.0131673  

  25   0.0030491   0.0010821   0.0067496   0.0196418   0.0050179  

10  50   0.0015277   0.0004544   0.0054676   0.0155228   0.0025212  

  100   0.0007977   0.0002408   0.0040833   0.0118482   0.0008851  

  MSE of PCL estimator 

  25   0.0220745   0.0097275   0.0777602   0.0774299   0.1602616  

5  50   0.0180122   0.0060388   0.0619799   0.0565843   0.1474436  

  100   0.0131125   0.0025227   0.0444701  0.0500402  0.0995192  

  25   0.0113401   0.0022382   0.0366541   0.0356176   0.0968482  

10  50   0.0088338   0.0017923   0.0100499   0.0295117   0.0626725  

  100   0.0049203   0.0009922   0.0089811   0.0251479   0.0516907  
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Conclusion 

 
 In this paper, a panel nonlinear autoregressive stochastic frontier model is proposed with 

dynamic technical inefficiency which is a spate of operations research technique of data 

envelopment analysis. At first, the regression function is supposed to have a parametric 

framework, then for the unknown autoregression function, a semiparametric form 

     ̂      is suggested, where      is a nonparametric adjustment. Although it is shown 

that the full likelihood function of the model follows a closed skew normal distribution, 

empirical evaluation of the full likelihood function involving a high dimension integration is 

difficult, when time span is large. Therefore, the pairwise composite likelihood function is 

used. At the end, by Monte Carlo simulations, the finite sample performance of the PCL and 

FML estimators are compared and find that PCL estimator performs quite well. 
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