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Solving single facility goal Weber location problem using 

stochastic optimization methods  
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Location theory is one of the most important topics in optimization and operations research. In 

location problems, the goal is to find the location of one or more facilities in a way such that 

some criteria such as transportation costs, customer traveling distance, total service time, and 

cost of servicing are optimized. In this paper, we investigate the goal Weber location problem in 

which the location of a number of demand points on a plane is given, and the ideal is locating the 

facility in the distance 𝑅𝑖, from the i-th demand point. However, in most instances, the solution of 

this problem does not exist. Therefore, the minimizing sum of errors is considered. The goal 

Weber location problem with the ℓ𝑝 norm is solved using the stochastic version of the LBFGS 

method, which is a second-order limited memory method for minimizing large-scale problems. 

According to the obtained numerical results, this algorithm achieves a lower optimal value in less 

time with comparing to other common and popular stochastic optimization algorithms. Note that 

although the investigated problem is not strongly convex, the numerical results show that the 

SLBFGS algorithm performs very well even for this type of problem. 
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1. Introduction  
 

Today, optimization is widely used in the various fields. One of the practical areas of 

optimization is location problem. The first and most basic steps in planning to provide a service or 

products for applicants is to determine the best place to provide the service or products. Depending 

on the situation, a variety of location models have been proposed by researchers in this regard. 

Location research has been very extensive and has had a wide range of practical applications in 

various fields. Since the classic Weber problem [43] was formulated in 1909 to determine the 

location of a warehouse, location theory has been an active part of research for the last decades. 

The location problem varies in objective functions, distances, number and size of facilities to be 

established, and several other factors. Hongzhong et al. [15] introduced eight factors that are 

effective in classifying facility location models. These eight factors are: geographical 

characteristics, facility characteristics, objectives, solution method, demand patterns, supply chain 

types, time horizon and input parameters. Therefore, depending on the type of goal and using each 
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of these different indicators, we will achieve different models of location problem. Continuous 

location problems are a specific type of location problems where we seek to locate one or more 

facilities on the plane. One of the most well-known and important continuous location problems is 

the Fermat-Weber single facility location problem. In this case, there are some given points on the 

plane and the goal is to find a new point on the plane so that the sum of total distances of the 

demand points to the new point is minimized [21]. 

In 1937, Weiszfield [44] proposed an iterative method to the Fermat-Weber problem. Then, in 

1958, Mihl [23] developed the Weiszfield method for multi-facilities location problems with 

Euclidean norm. In 1964, Francis [12] investigated the problem of multi-facilities with rectangular 

norm using the Wieszfield method. In 1971, Wesolowsky and Love [45] considered the location 

problem on a plane with a rectangular distance between the demand points and rectangular areas. 

Maurice and Verdini [26] in 1973, and Morris [27] in 1981, discussed the Wieszfield algorithm for 

location problems with ℓ𝑝 norm. Also in 2010, Iyigun and Ben Israel [16], used the Weiszfield 

algorithm for allocation problems. Fathali [8] investigated the backup multi-facilities location 

problem on the plane in 2014 by presenting a Weiszfield-like algorithm. Tirkolaee et al. [41,42] in 

2020, considered the green location-allocation-inventory problem in uncertainty system and rescue 

unit allocation problem, respectively.  

In recent decades, many attempts have been made to create location models that take into 

account more characteristics of the real world. One of these characteristics that has emerged in 

recent optimization theories is the concept of "goal location". Hence, Fathali et al. [11], for the first 

time, raised a specific problem of Weber’s goal location. In this case, they considered an ideal 

distance for each demand point and considered the location of the facility in such a way that its 

distance from the demand points is equal to the corresponding ideal distance. Since in reality there 

is seldom a place for the facility where the distance to the demand points is exactly equal to the 

ideal distance, they sought to minimize total weighted squares error in this model. They proposed 

the big square-small square geometric method to solve the problem with the Euclidean norm. Then 

Jamalian and Fathali [17] proposed a linear programming model for the problem with the aim of 

minimizing the total weighted absolute error. Fathali and Jamalian [9] studied the problem of 

minimizing the sum of squares error and named it Goal Square Weber Location Problem (GSWLP). 

They used Particle Swarm Optimization (PSO) algorithm to solve the above problem with 

Euclidean norm. Recently, Soleimani et al. [39, 40] solved two models of the goal location problem 

under the symmetric and asymmetric loss functions using nonlinear optimization methods. The 

fuzzy version of goal location problem with asymmetric loss function was developed by Nazari et 

al. [28]. 

In this paper, we consider a large-scale goal location problem with ℓ𝑝 norm. Solving large-scale 

problems using deterministic optimization methods is unreasonable due to the slow convergence 

rate. Since calculating the gradient and inverse Hessian or the approximation of Hessian inverse 

costs a high computational cost, so stochastic optimization methods have a special roll in large-

scale problems. One of the second-order stochastic optimization methods is the stochastic version of 

the LBFGS (Limited memory BFGS) method, which in practice gives good results for large-scale 

problems. Therefore, we use this method to solve the problem of goal location and present the 

numerical results obtained from it. 

In what fallows of this paper, the goal Weber location problem is defined in Section 2. A brief 

review of stochastic optimization methods is given in Section 3. Solving the goal Weber location 

problem using stochastic optimization methods is described in Section 4. Finally, computational 

results are reported in Section 5. 

 

2. Problem definition  
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Suppose 𝐴1, . . . , 𝐴𝑛 are the location of demand points in the plane. Let for 𝑖 = 1, . . . , 𝑛, 𝐴𝑖 =
(𝑎𝑖 , 𝑏𝑖) and we have an ideal distances 𝑅𝑖, and a positive weight 𝑤𝑖, corresponding to point 𝐴𝑖. The 

goal is to find the location of a new facility with coordinate 𝑋 = (𝑥, 𝑦) on the plane so that the 

weighted distance between 𝑋 and the demand point 𝐴𝑖 is exactly equal to 𝑅𝑖. But since such point 

may not actually be found, we seek to estimate the location of 𝑋 so that the distance from this point 

to the demand point 𝐴𝑖 is as close as possible to 𝑅𝑖. 

Selecting this estimated location will result in an error (loss) relative to the goal point (facility). 

In this case, we are looking to minimize the error caused by selecting this location on the plane. 

Therefore, using the appropriate loss function (error function) is of particular importance. 

Therefore, according to the problem, the appropriate loss function should be selected. Thus, the goal 

Weber location problem with ℓ𝑝 norm is modeled as follows:  

min𝑓(𝑋) =
1

𝑛
∑𝑛

𝑖=1 𝑤𝑖. 𝐸(𝑑(𝑋, 𝐴𝑖) − 𝑅𝑖), (1) 

where 𝐸(𝑑(𝑋, 𝐴𝑖) − 𝑅𝑖) is the loss function, and 𝑑(𝑋, 𝐴𝑖) is the distance between two points 𝑋 and 

𝐴𝑖 with ℓ𝑝 norm. 

As mentioned in [11] the goal Weber location problem can be applied for finding the location of a 

company in the vicinities of some cities with respect to the establishing and transportation cost. This 

problem also has some applications in finding the location of desirable and undesirable facilities. In 

these cases, because of undesirability of the facilities, they shouldn’t be closer than a specified 

distance to the facility centers. On the other hand, if the facilities be so far from the facility centers, 

cost of providing security, human forces, transportation installation, and other costs will increase. 

 

In this paper, we consider the goal Weber location problem under the least squares loss function 

and ℓ𝑝 norm as follows.  

min𝑓(𝑋) =
1

𝑛
∑𝑛

𝑖=1 𝑤𝑖. (𝑑(𝑋, 𝐴𝑖) − 𝑅𝑖)2 + 𝑈(𝑋), (2) 

where  

𝑑(𝑋, 𝐴𝑖) = (((𝑥 − 𝑎𝑖)2 + 𝜀)
𝑝

2 + ((𝑦 − 𝑏𝑖)2 + 𝜀)
𝑝

2)

1

𝑝
,     (3) 

and 𝑈: ℝ𝑑 → ℝ is the regularizer term. Regularization is a technique used for tuning the function by 

adding an additional penalty term in the error function. The additional term controls the excessively 

fluctuating function such that the solutions don’t take extreme values. In addition, regularization 

prevents overfitting. So we added the regularizer term to the loss function. We will assume that the 

regularizer is an ℓ2 regularizer, i. e., 𝑈(𝑋) =
𝛽

2
∥ 𝑋 ∥2 where 𝛽 > 0 is regularizer parameter. 

In large scale problems, 𝑛 is a large number, so calculating the Hessian (or Hessian 

approximation) and gradient for these problems has a high computational cost that can be reduced 

by using stochastic optimization methods. Now, by assuming,  

𝑓𝑖 = 𝑤𝑖. (𝑑(𝑋, 𝐴𝑖) − 𝑅𝑖)2, (4) 

for the subset 𝑆 ⊆ {1, . . . , 𝑛}, the function 𝑓𝑆 is defined as follows  

𝑓𝑆(𝑋) =
1

|𝑆|
∑𝑖∈𝑆 𝑓𝑖(𝑋) + 𝑈(𝑋). (5) 

We first assume that the regularization term has been divided equally and included in 𝑓𝑖. That is, the 

problem (2) is assumed to be min𝑓(𝑋) =
1

𝑛
∑𝑛

𝑖=1 𝑓𝑖(𝑋). 

 

3. Stochastic optimization techniques  
 

 In this section we will summarize some basic ideas for optimization techniques for large-scale 

problems. These techniques are described in two main ways: first-order methods and second-order 

methods.  
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3.1  First-order methods 

 

 The first-order methods are popular in optimization algorithms because these methods achieve 

the desired result at a time proportional to the problem dimension. In fact, first-order methods are 

gradient-based (i.e., first-order information of function) method.  

Stochastic Gradient Descent (SGD): The gradient descent method is a first-order iterative 

method that attempts to reduce the value of a function in each iteration by moving in the opposite 

direction of the gradient as follow,  

𝑋𝑡 = 𝑋𝑡−1 −
𝜂

𝑛
∑

𝑛

𝑖=1

∇𝑓𝑖(𝑋𝑡−1). 

 This method converges linearly to the optimal point. Although, traditional gradient-based 

methods may be effective for solving small-scale (small 𝑛) optimization problems, we incur high 

computational cost for large-scale problems because we have to calculate 𝑛 gradients in each 

iteration (batch gradient, or full gradient method), so we use a random type of gradient-based 

algorithms. This method was proposed by Robbins and Monro [33] in 1951 as the stochastic 

gradient method. In this method, we select 𝑖 in each iteration randomly from {1,2, . . . , 𝑛} and update 

the problem parameter as follows  

𝑋𝑡 = 𝑋𝑡−1 − 𝜂∇𝑓𝑖(𝑋𝑡−1), 
where 𝜂 is called the step size. The advantage of this method is that in each iteration, only one 

gradient ∇𝑓𝑖 is calculated. Thus, its computational cost is 
1

𝑛
 of the computational cost of the standard 

gradient descend method. But using one gradient as the unbiased estimator for the true (full) 

gradient, causes reduction in the convergence rate. The SGD method also converges sublinearly 

even for strongly convex functions and we have  

𝑓(𝑋𝑡) − 𝑓(𝑋∗) = 𝑂(1/𝑡). 
 A significant advancement in terms of the running time of first order methods was achieved 

recently by a clever merging of stochastic gradient descent with its full version to provide variance 

reduction.  

 

3.1.1 Variance reduction methods 

 

 Recently, an important achievement has been obtained in the first order methods, which 

improves the running time of the algorithm by reducing the variance. These methods are linearly 

converged for strongly convex function that improve sublinear rate of SGD. This is achieved by 

increasing computation cost or increasing storage. These algorithms include Stochastic Average 

Gradient (SAG) [34], [6] and Stochastic Variance Reduced Gradient (SVRG) [18], [38].  

Stochastic variance reduced gradient (SVRG): This method operates in cycles. Each cycle 

begins with a batch (full) gradient at 𝑋𝑡, i. e. ∇𝑓(𝑋𝑡) =
1

𝑛
∑𝑛

𝑖=1 ∇𝑓𝑖(𝑋𝑡). Then, for the inner loop, we 

first set 𝑋̃1 = 𝑋𝑡 , and the internal iterations are updated by 𝑋̃𝑘+1 = 𝑋̃𝑘 − 𝜂𝑔̃𝑘, where  

𝑔̃𝑘 = ∇𝑓𝑖𝑘
(𝑋̃𝑘) − (∇𝑓𝑖𝑘

(𝑋𝑡) − ∇𝑓(𝑋𝑡)), (6) 

and 𝑖𝑘 is chosen randomly from {1, . . . , 𝑛}. We can interpret (6) as follows. It is obvious that the 

expected value of ∇𝑓𝑖𝑘
(𝑋𝑡) is equal to ∇𝑓(𝑋𝑡) where random variable 𝑖𝑘 ∈ {1, . . . , 𝑛} is chosen 

randomly. Thus, ∇𝑓𝑖𝑘
(𝑋𝑡) − ∇𝑓(𝑋𝑡) is the bias in the gradient estimate ∇𝑓𝑖𝑘

(𝑋𝑡). Therefore, the 

algorithm randomly chooses 𝑖𝑘 ∈ {1, . . . , 𝑛} and calculates the stochastic gradient ∇𝑓𝑖𝑘
(𝑋̃𝑘) in every 

iteration, and corrects it according to the corresponding bias. Note that 𝑋̃𝑘 is the current point in 

inner loop. With these explanations we can say that 𝑔̃𝑘 is an unbiased estimator of ∇𝑓(𝑋̃𝑘). Note 

that if we chose 𝑔̃𝑘 = ∇𝑓𝑖𝑘
(𝑋̃𝑘) as SGD, it has a larger variance than this method. Therefore, one 
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iteration of SVRG is much more expensive than one of SGD, and in fact is comparable to a full 

gradient iteration. This method is given in Algorithm SVRG. 

  

Algorithm SVRG [3] 

input: 𝑋1, 𝑓(𝑋) =
1

𝑛
∑𝑛

𝑖=1 𝑓𝑖(𝑋), 𝑇, 𝑚   

For 𝑡 = 1 to 𝑇 do   

1. Compute the full gradient ∇𝑓(𝑋𝑡).    

2. Let 𝑋̃1 = 𝑋𝑡   

3. For 𝑘 = 1 to 𝑚  do 

3.1. Choose 𝑖𝑘 randomly from {1, . . . , 𝑛}.   

3.2. Set 𝑔̃𝑘 = ∇𝑓𝑖𝑘
(𝑋̃𝑘) − (∇𝑓𝑖𝑘

(𝑋𝑡) − ∇𝑓(𝑋𝑡)).   

3.3. Set 𝑋̃𝑘+1 = 𝑋̃𝑘 − 𝜂𝑔̃𝑘. 

3.4.    End for.   

4.  Option (a): 𝑋𝑡+1 = 𝑋̃𝑚+1.   

5. Option (b): 𝑋𝑡+1 =
1

𝑚
∑𝑚

𝑘=1 𝑋̃𝑘+1.   

6. Option (c): Choose 𝑘 randomly from {1, . . . , 𝑚} and set 𝑋𝑡+1 = 𝑋̃𝑘+1.   

End for.    

End of algorithm. 

 

Stochastic Average Gradient (SAG): In this method, by reducing the estimator variance, we 

can achieve a linear convergence rate similar to the full gradient method while maintaining the 

computational cost of iteration such as the SGD method. This method combines the low cost of the 

SGD iteration and the linear convergence rate similar to the full gradient descend method. The form 

of iterations is  

𝑋𝑡 = 𝑋𝑡−1 −
𝜂

𝑛
∑

𝑛

𝑖=1

𝑦𝑖
𝑡 . 

In fact, the algorithm chooses 𝑖𝑡-th data randomly at each iteration and set  

𝑦𝑖
𝑡 = {

𝑓𝑖
′(𝑋𝑡) if 𝑖 = 𝑖𝑡 ,

𝑦𝑖
𝑡−1 𝑜. 𝑤.

 

Thus, at each iteration, only one gradient with respect to 𝑖𝑡-th data are calculated, and instead of the 

other gradients, we take the same values of the previous iteration. It means, like the full gradient 

method, the step incorporates a gradient with respect to each data. However, the same as the SGD 

method, each iteration only computes the gradient with respect to a single data and the cost of the 

iterations is independent of n. Clearly, this method requires more storage because it must store the 

gradients of the previous iteration.  

 

3.1.2 Other Popular Methods 

 

There are other optimization techniques that have made some useful gains. In this subsection, we 

introduce these methods which include gradient methods with momentum, accelerated gradient 

methods, and coordinate descent methods.  

Gradient Methods with Momentum: Each step of this method is chosen as a combination of the 

steepest descent direction and the most recent iterate displacement. Initially, we consider a point 𝑋0, 

and the sequences of scalers {𝛼𝑡} and {𝛽𝑡} which are predetermined or dynamical. Then the form of 

iteration is  

𝑋1 = 𝑋0,    𝑋𝑡+1 = 𝑋𝑡 − 𝛼𝑡∇𝑓(𝑋𝑡) + 𝛽𝑡(𝑋𝑡 − 𝑋𝑡−1). (7) 
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The right-hand is called the momentum term, which preserves the movement of algorithm 

recursively along previous search directions. For large scale problems, a stochastic gradient is used 

instead of the full gradient in (7). Using the idea of Nesterov’s momentum [29], Katyusha algorithm 

[2] introduced the concept of negative momentum which is a variance-reduction based method. In 

fact, Katyusha accelerate SVRG algorithm for the strongly convex problem by the mini-batch 

setting.    

Accelerated Gradient Methods: The formula of this method is similar to (7) and it’s idea of 

acceleration proposed by Nesterov [30]. Each iteration has the form  

𝑤̃𝑡 = 𝑋𝑡 + 𝛽𝑡(𝑋𝑡 − 𝑋𝑡−1), 
𝑋𝑡+1 = 𝑤̃𝑡 − 𝛼𝑡∇𝑓(𝑤̃𝑡), 

which one can easily obtain:  

𝑋𝑡+1 = 𝑋𝑡 − 𝛼𝑡∇𝑓(𝑋𝑡 + 𝛽𝑡(𝑋𝑡 − 𝑋𝑡−1)) + 𝛽𝑡(𝑋𝑡 − 𝑋𝑡−1). (8) 

In (7), first one takes the steepest descent step and then applies the momentum term, whereas in (8), 

one follows the momentum term first, then applies a steepest descent step (with the gradient 

evaluated at 𝑤̃𝑘, not at 𝑋𝑘). For large scale problems, a stochastic gradient is used instead of the full 

gradient in (8). This technique has been applied to a large class of algorithms. One of these 

algorithms is Catalyst [20] which use this strategy to accelerate gradient method.  

Coordinate Descent Methods: Another method, among the oldest in optimization method, is 

Coordinate descent (CD). These methods work by considering steps along coordinate directions: 

one tries minimizing the objective function with respect to a single variable while all others are kept 

fixed, then other variables are updated similarly in an iterative procedure. The form of iteration is  

𝑋𝑡+1 = 𝑋𝑡 − 𝛼𝑡∇𝑖𝑡
𝑓(𝑋𝑡)𝑒𝑖𝑡

,    𝑤ℎ𝑒𝑟𝑒    ∇𝑖𝑡
𝑓(𝑋𝑡): =

∂𝑓

∂𝑤𝑖𝑡
(𝑋𝑡).      (9) 

 Note that 𝑋𝑖𝑡
 indicates the 𝑖𝑡-th component of 𝑤, and 𝑒𝑖𝑡

 indicates the 𝑖𝑡-th coordinate vector for 

some 𝑖𝑡 ∈ {1, . . . , 𝑑}.  For large-scale problems, a stochastic version of the CD method can be 

discussed, which is called Stochastic Dual Coordinate Ascent (SDCA) [36]. For this purpose, it is 

not typical that one replaces ∇𝑖𝑡
𝑓(𝑋𝑡) in (9) with stochastic version, because we can usually 

calculate a d-dimensional stochastic gradient to apply an SG method. So, one can nevertheless 

apply stochastic setting for CD method by maximizing its dual problem and using positive gradient 

steps instead of negative one. (Thus, however, using the maximizing dual problem and using 

positive gradient steps rather than negatives, stochastic approximation can be applied to the CD 

method.) SDCA has linear convergent rate with constant dependent on the parameter dimension 𝑑. 

Furthermore, for Accelerated Stochastic Dual Coordinate Ascent method you can see [37] and [9].  

 

3.2 Second-order methods 

  

Second-order methods such as the Newton method are popular because of their quadratic 

convergence rate, but computing the full Hessian matrix and its inversion is costly (𝑂(𝑛𝑑2) and 

𝑂(𝑑3), respectively). Recently, NewSamp’s algorithm [7] proposed ideas for solving these two 

problems. It uses the sub-sampling technique to approximate Hessian and uses low-rank projection 

techniques to reduce the cost of inverting Hessian.  

 

3.2.1 Hessian-Free Newton Methods 

  

As we know, to get the direction of Newton method, 𝑠𝑡, we need to solve equation 𝐻𝑡𝑠𝑡 = −𝑔𝑡. 

Solving this equation requires computation and storage that will cost us. Thus, instead of solving 

the Newton equation exactly, inexact methods such as the Newton Conjugate Gradient (NCG) 

method can be used to solve this equation and to obtain a superlinear convergence rate. 
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 In the NCG method, we do not need to access to the Hessian matrix itself precisely, but rather 

the Hessian-vector production is sufficient, which is why Hessian-free is mentioned. one can see 

[22] and [4] for further studies. 

 Also in 2017, LiSSA (Linear (time) Stochastic Second-Order Algorithm) [1] used a special 

technique for calculating the Hessian inverse, and obtained an unbiased estimator for the Hessian 

inverse, and achieved linear convergence rate.  

 

3.2.2 Quasi-Newton methods 

  

As mentioned earlier, the Hessian matrix computation is costly, other methods used to reduce 

this computational cost are called quasi-Newton methods stemming from the BFGS algorithm 

(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) and its limited memory variant 

(LBFGS) [31]. In this method, the approximations to Hessian are calculated using gradient changes. 

In fact, it has been proven that the limited memory version is effective for problems with millions of 

variables. 

For large-scale optimization problems, stochastic techniques are used and stochastic Newton 

methods are proposed in different forms. In 2007, for the first time, a simple stochastic model was 

introduced for the BFGS algorithm by sampling technique for computing gradient differences [35]. 

In addition, Mokhtari [24] has provided a regularized stochastic BFGS algorithm. Byrd et al. [5] 

also computed estimators for average curvature information using the subsampled Hessian-vector 

products technique. But these algorithms all have sub-linear convergence rates. Finally, in 2016, an 

important achievement was provided by Moritz et al. [25] who achieved linear convergence rates 

with ideas of variance reduction (similar to the SVRG method) and mini-batch technique.  

 

4. Stochastic version of LBFGS algorithm 
  

In this section, we use a second-order stochastic method to minimize the goal location problem 

error. This method gives acceptable solutions in less time in cases where the set of demand points 

has a large size. For this purpose, we introduce a stochastic version of the LBFGS method and 

minimize the location problem error using this method. 

Solving large-scale problems using deterministic optimization methods is unreasonable due to 

the slow convergence rate, because calculating the gradient and inverse Hessian or the 

approximation of Hessian inverse has a high computational cost, so stochastic optimization methods 

have a special roll in large-scale problems. One of the second-order stochastic optimization methods 

is the stochastic version of the LBFGS method, which in practice gives good results for large-scale 

problems. 

Although most stochastic algorithms have high processing and execution speeds, the variance 

obtained from gradient estimator reduces the convergence rate near the optimal solution. For 

example, in the SGD method, even if we initialized at the optimum, we may achieve the objective 

function with a worse value. For this reason, we need diminishing step sizes to guaranty 

convergence. One way to solve this problem is to use methods that reduce the variance of the 

gradient estimator and increase the speed of the algorithm. 

We now describe the stochastic version of the LBFGS method and use a technique similar to the 

SVRG method to reduce the variance of the gradient estimator. This algorithm performs well in 

large-scale problems and has a high convergence rate for strongly convex functions due to the use 

of the idea of variance reduction technique. 

 

4.1 SLBFGS algorithm 
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 In this section, we describe the stochastic version of the LBFGS algorithm and explain its 

important points. 

Our updates will use stochastic estimates of the gradient ∇𝑓𝑆 as well as stochastic 

approximations to the inverse Hessian ∇2𝑓𝑇. In order to decouple the estimation of the gradient 

from the estimation of the Hessian, we use distinct subsets 𝑆, 𝑇 ⊆ {1, . . . , 𝑛} and let |𝑆| = 𝑏, |𝑇| =
𝑏𝐻. 

Similar to the SVRG method, in order to reduce the variance of the gradient estimator, the full 

gradient is calculated once in each outer loop and the iterations are updated according to the 

following rule  

𝑋𝑘+1 = 𝑋𝑘 − 𝜂𝑘𝐻𝑘𝑣𝑘, 
where 𝐻𝑘 represents the approximate Hessian inverse and 𝑣𝑘 represents the stochastic gradient 

estimator with the reduced variance in the 𝑘-th iteration. 

The iterations of this algorithm are shown in Algorithm 4.1. This algorithm has several 

parameters, which we will describe in the following. The parameter 𝜂 indicates the step size of the 

algorithm. The positive integer 𝑚, indicates the number of iterations of the inner loop, represents 

the number of calculations of the full gradient. As mentioned earlier, using the full gradient reduces 

the variance of the stochastic gradient estimator. In addition, every 𝐿 iterations, the approximation 

for inverse Hessian is updated. The vector 𝑠𝑟 stores the average directions obtained during the 2𝐿 

recent iteration of the algorithm. The vector 𝑦𝑟 is obtained by multiplying the vector 𝑠𝑟 in the 

estimator of Hessian matrix. Note that one of the differences between the SLBFGS and LBFGS 

algorithms is how the 𝑦𝑟 vector is defined. In the LBFGS algorithm, the vector 𝑦𝑟 is defined as the 

difference of the gradients, but in the stochastic version, the mentioned definition performs better. 

Now we use the vectors 𝑦𝑟 and 𝑠𝑟 to calculate the approximations for the inverse Hessian. For this 

purpose, we put 𝜌𝑗 = 1/𝑠𝑗
𝑇𝑦𝑗, 𝑀′ = min{𝑀, 𝑟} and recursively, define approximations for the 

inverse of Hessian as follows  

𝐻𝑟
(𝑗)

= (𝐼 − 𝜌𝑗𝑠𝑗𝑦𝑗
𝑇)𝑇𝐻𝑟

(𝑗−1)
(𝐼 − 𝜌𝑗𝑠𝑗𝑦𝑗

𝑇) + 𝜌𝑗𝑠𝑗𝑠𝑗
𝑇 ,    𝑗 ∈ {𝑟 − 𝑀′ + 1, . . . , 𝑟}.      (10) 

Initial with 𝐻𝑟
(𝑟−𝑀′)

=
𝑠𝑟

𝑇𝑦𝑟

∥𝑦𝑟∥2 and set 𝐻𝑟 = 𝐻𝑟
(𝑟)

. Note that the above rule preserves positive 

definiteness (𝜌𝑗 > 0). Before describing the convergence theorem, we define the 𝜆-strongly convex 

and Λ-smooth function.   

 

Definition 1 The convex function 𝑓: ℝ𝑑 → ℝ is 𝜆-strongly convex and Λ-smooth when  

∀𝑋, 𝑍,    ∇𝑓(𝑋)𝑇(𝑍 − 𝑋) +
Λ

2
∥ 𝑍 − 𝑋 ∥2≥ 𝑓(𝑍) − 𝑓(𝑋) ≥ ∇𝑓(𝑋)𝑇(𝑍 − 𝑋) +

𝜆

2
∥ 𝑍 − 𝑋 ∥2. 

   

Algorithm SLBFGS [25] 

Input: 𝑋0, 𝑚, 𝐿, 𝜂   

Let 𝑟 = 0  and 𝐻0 = 𝐼   

For 𝑘 = 0, . ..   
1. Compute the full gradient 𝜇𝑘 = ∇𝑓(𝑋𝑘).    

2. Let 𝑥0 = 𝑋𝑘   

3. For 𝑡 = 0 to 𝑚 − 1   

3.1 Choose randomly 𝑆𝑘,𝑡 ⊆ {1, . . . , 𝑛}   

3.2 Compute the stochastic gradient ∇𝑓𝑆𝑘,𝑡
(𝑥𝑡)   

3.3 Set 𝑣𝑡 = ∇𝑓𝑆𝑘,𝑡
(𝑥𝑡) − ∇𝑓𝑆𝑘,𝑡

(𝑋𝑘) + 𝜇𝑘   

3.4 Let 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝐻𝑟𝑣𝑡   

3.5 If 𝑡 ≡ 0 mod 𝐿 then 

3.5.1 Increment 𝑟 = 𝑟 + 1   
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3.5.2 Set 𝑢𝑟 =
1

𝐿
∑𝑡−1

𝑗=𝑡−𝐿 𝑥𝑗  

3.5.3 Choose randomly 𝑇𝑟 ⊆ {1, . . . , 𝑛} to define the stochastic approximation 

∇2𝑓𝑇𝑟
(𝑢𝑟)  

3.5.4 Compute 𝑠𝑟 = 𝑢𝑟 − 𝑢𝑟−1   

3.5.5 Compute 𝑦𝑟 = ∇2𝑓𝑇𝑟
(𝑢𝑟)𝑠𝑟  

3.5.6 Define 𝐻𝑟 as (10).    

             End if   

      End loop    

4. Let 𝑋𝑘+1 = 𝑥𝑖 where 𝑖 ∈ {0, . . . , 𝑚 − 1} is randomly choosed.   

End loop   

 

Lemma 1 ([39]) The objective function of (2) is nonconvex.  

 

Lemma 2 ([25]) Suppose that 𝑓 is a function 𝜆-strongly convex and Λ-smooth, and every 𝑓𝑖 is 

convex and twice continuously differentiable for each 𝑖 ∈ {1, . . . , 𝑛}. Then, the constants 0 < 𝛾 ≤ Γ 

exist such that  

𝛾𝐼 ≤ 𝐻𝑟 ≤ Γ𝐼        ∀𝑟 ≥ 1. 
  

In [25], it is proved that 𝛾 and Γ have the following values,  

𝛾 =
1

(𝑑 + 𝑀)Λ
 ,       Γ =

((𝑑 + 𝑀)Λ)𝑑+𝑀−1

𝜆𝑑+𝑀
. 

 

Lemma 3 ([25]) Let 𝑋∗ be the unique minimizer of 𝑓. Let 𝜇𝑘 = ∇𝑓(𝑋𝑘) and 𝑣𝑡 = ∇𝑓𝑆(𝑥𝑡) −
∇𝑓𝑆(𝑋𝑘) + 𝜇𝑘 be the variance-reduced stochastic gradient, then  

𝔼[∥ 𝑣𝑡 ∥2] ≤ 4Λ(𝑓(𝑥𝑡) − 𝑓(𝑋∗) + 𝑓(𝑋𝑘) − 𝑓(𝑋∗)). 
  

Theorem 1 ([25]) Suppose that 𝑓 is a function 𝜆-strongly convex and Λ-smooth, and every 𝑓𝑖 is 

convex and twice continuously differentiable for each 𝑖 ∈ {1, . . . , 𝑛}. Let 𝑋∗ be the unique 

minimizer of 𝑓. Then for all 𝑘 ≥ 0,  

𝔼[𝑓(𝑋𝑘) − 𝑓(𝑋∗)] ≤ 𝛼𝑘𝔼[𝑓(𝑋0) − 𝑓(𝑋∗)] 
where the convergence rate 𝛼 is given by  

𝛼 =
1/(2𝑚𝜂) + 𝜂Γ2Λ2

𝛾𝜆 − 𝜂Γ2Λ2
< 1. 

Also, assuming that 𝜂 < 𝛾𝜆/(2Γ2Λ2) and 𝑚 is selected large enough to satisfy  

𝛾𝜆 >
1

2𝑚𝜂
+ 2𝜂Γ2Λ2. 

  

 This method achieves desirable convergence properties with the help of stochastic techniques 

for large scale problems. In addition, due to the use of variance reduction techniques, it has a high 

speed and achieves a lower optimal value in less time than other popular methods of stochastic 

optimization. Another advantage of this method is its limited memory feature, which leads to 

limited memory usage. The convergence of this method has been proven for strongly convex 

functions, but according to numerical results, it has a good performance even for the nonconvex 

function, which has not yet been proved for nonconvex functions, and this is an issue for further 

studies of this method.  

 

5. Computational results  
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In this section, the proposed algorithms were tested on some test problems with 30 to 1000 points 

that are generated randomly in MATLAB. In these problems the demand point's coordinates, 

weights and radiuses, all are positive numbers and generated randomly in the  intervals [1,100], 

[1,3] and [1,10], respectively. The numerical results are obtained by solving the goal location 

problem (2) with ℓ𝑝 norm using SLBFGS algorithm. The results of this method are compared with 

those obtained by SGD and SVRG methods. All algorithms are implemented using Matlab-R2017b 

and a laptop with Intel core i7-4510U processor and 8 GB RAM. 

For all three algorithms, the regularizer parameter is assumed to be 0.1. For the SVRG and 

SLBFGS methods a fixed step size of 0.0001 is used and for the SGD method a diminishing step 

size of 1/∥ ∇𝑓(𝑋𝑘) ∥ is used. 

Note that although the problem of goal location with the convex ℓ𝑝 norm is not strongly convex, 

the numerical results presented in this section show that the SLBFGS algorithm performs very well 

even for this type of problem. 

Figures 1, 3 and 5 compare the values of the objective function of the goal location problem with 

the ℓ2 norm for the problems with 30, 100 and 1000 demand points, respectively, using the SVRG, 

SGD, and SLBFGS algorithms versus the iterations. As one can see in these figures, the SGD 

algorithm has obtained the values of the objective function in an oscillating manner and has not 

performed well, but the SLBFGS and SVRG algorithms have performed well and have reduced the 

values of the objective function very well. In addition, SLBFGS achieves a lower loss function 

value than SVRG in fewer iterations.  

 
 Figure 1: Comparison of the values of the objective function of the goal location problem using 

SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 30 demand points. 

   

Figures 2, 4 and 6 show the variance values of the gradient estimator for the SLBFGS and 

SVRG methods versus the iterations for a problem with 30, 100 and 1000 demand points, 

respectively. According to these figures, for the instances with 30 and 100 points, the variance of 

the gradient estimator decreases at a high rate in both methods, which indicates the excellent 

performance of both methods in reducing the variance. 
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Figure 2: Comparison of variance values of gradient estimator of goal location problem using 

SVRG and SLBFGS algorithms versus the iterations for a problem with 30 demand points. 

   

 

 
Figure 3: Comparison of the values of the objective function of the goal location problem using 

SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 100 demand points. 

   

 
Figure 4: Comparison of variance values of gradient estimator of goal location problem using 

SVRG and SLBFGS algorithms versus the iterations for a problem with 100 demand points. 
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For the instance with 1000 points, the reduction of variance can be seen well, with the difference 

that in the fourth iteration, due to the randomness of the method and undesirable sampling, the 

variance of the gradient estimator increased but continued to decrease again. The variance obtained 

from the SLBFGS method has a very significant decrease in fewer iterations, which has led to a 

decrease in the value of the objective function at a high rate, which confirms the results in Figure 5. 

 

 

 
Figure 5: Comparison of the values of the objective function of the goal location problem using 

SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 1000 demand points. 

   

 
Figure 6: Comparison of variance values of gradient estimator of goal location problem using 

SVRG and SLBFGS algorithms versus the iterations for a problem with 1000 demand points. 

   

Table 1 shows the optimal values, optimal solutions and running time of SVRG, SGD and 

SLBFGS algorithms for different values of 𝑝. 

 

Table 1: Optimal values, optimal solutions and running time of SVRG, SGD and SLBFGS 

algorithms for different values of 𝑝. 

𝑝 n Algorithm optimal value optimal solution running time 

2 3

0 

 SGD 1854.9 (7.2772, 6.1040) 0.0307  

SVRG 1669.5 (8.2336, 7.6501)  0.0700  

SLBF

GS 

1669.2 (8.2771, 7.6902) 0.7150  
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2 1

00 

 SGD 1.3188 × 105 (15.7438,16.1686) 0.0467  

SVRG 0.6900 × 105 (30.4584,29.2005)  0.3793  

SLBF

GS 
0.6900 × 105 (30.4642,29.2077) 0.2877  

2 1

000 

 SGD 1.1183 × 106 (23.2480,19.1347) 0.2576  

SVRG 0.7983 × 106 (30.2357,30.3713)  2.4657  

SLBF

GS 
0.7992 × 106 (29.9692,30.0746) 1.4265  

1

.5 

3

0 

 SGD 2935.0 (6.9970, 3.8888) 0.1591  

SVRG 2035.3 (8.2336, 7.6501)  0.1149  

SLBF

GS 

2035.9 (8.2772, 7.6902) 1.1868  

1

.5 

1

00 

 SGD 1.5111 × 105 (19.1842, 

14.04128) 

0.1244  

SVRG 0.8457 × 105 (29.8929, 

29.3884) 

 1.3766  

SLBF

GS 
0.8458 × 105 (30.0533, 

29.5221) 

1.6145  

1

.5 

1

000 

 SGD 1.3037 × 106 (20.6655, 

22.4782) 

1.0118  

SVRG 0.9837 × 106 (30.1970, 

30.55781) 

6.4371  

SLBF

GS 
0.9835 × 106 (30.3239, 

30.7762) 

3.4832  

 

 In optimization methods, random sample size plays an important role in reducing the variance 

of the estimator and the performance of the algorithm. Therefore, we have implemented SVRG, 

SGD and SLBFGS algorithms with different random sample sizes. We represent the random sample 

size, which is the number of random Hessian and gradients to calculate the search direction, with 

𝑚 = |𝑆|. 
Figures 7 to 12 show the results obtained by the algorithms for different values of 𝑚. These results 

indicate that increasing the random sample size reduces the variance of the gradient estimator and 

improves the performance of the algorithms. 

Table 2 presents the optimal values, the optimal solutions, the running time and the variance of the 

gradient estimator of SVRG, SGD and SLBFGS algorithms for different values of 𝑚. 

 

Table 2: The optimal values, the optimal solutions, the running time and the variance of the 

gradient estimator of SVRG, SGD and SLBFGS algorithms for different values of 𝑚. 
𝑚 n Algorithm optimal values optimal solutions running time variance 

4 3

0 

SGD 3.1533 × 103 (4.4316,4.0064) 0.0095 - 

SVRG 1.6709 × 103 (8.2300,7.5365) 0.1720 0.5765 

SLBFGS 1.6703 × 103 (8.2612,7.5637) 0.4108 5.8282 × 103 

4 1

00 

SGD 1.2717 × 105 (18.2118,14.7525) 0.0522 - 

SVRG 0.6900 × 105 (30.4584,29.2005) 0.3072 5.6211 × 10−22 

SLBFGS 0.6900 × 105 (30.4642,29.2077) 0.0661 2.8786 

4 1

000 

SGD 1.3202 × 106 (20.2169,16.5848) 0.2543 - 

SVRG 0.7983 × 106 (30.2357,30.3713) 1.5258 24.1414 

SLBFGS 0.7984 × 106 (30.1902,30.3190) 1.4853 100.4597 
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1

0 

3

0 

SGD 1.8520 × 103 (6.8308, 6.5223) 0.0066 - 

SVRG 1.6709 × 103 (8.2298, 7.5364) 0.1637 0.5664 

SLBFGS 1.6707 × 103 (8.2341, 7.5429) 0.3625 6.4919 

1

0 

1

00 

SGD 0.8835 × 105 (24.2827,20.1608) 0.0599 - 

SVRG 0.6900 × 105 (30.4584,29.2005) 0.2345 5.0009 × 10−22 

SLBFGS 0.6900 × 105 (30.4584,29.200

5) 

0.0473 0.003145 

3

2 

1

000 

SGD 0.9340 × 106 (23.9485,24.6625) 0.2624 - 

SVRG 0.7983 × 106 (30.2325,30.3679) 1.4199 22.9194 

SLBFGS 0.7901 × 106 (30.2402,30.320

0) 

15.4827 94.7234 

 

  

   

 

 

 
Figure 7: Comparison of the values of the objective function of the goal location problem using 

SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 30 demand points 

and 𝑚 = 10. 
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Figure 8: Comparison of variance values of gradient estimator of goal location problem using 

SVRG and SLBFGS algorithms versus the iterations for a problem with 30 demand points and 𝑚 =
10. 

   

 
Figure 9: Comparison of the values of the objective function of the goal location problem using 

SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 100 demand points 

and 𝑚 = 10. 

 

 
Figure 10: Comparison of variance values of gradient estimator of goal location problem using 

SVRG and SLBFGS algorithms versus the iterations for a problem with 100 demand points and 

𝑚 = 10. 
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Figure 11: Comparison of the values of the objective function of the goal location problem using 

SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 1000 demand points 

and 𝑚 = 32. 

   

 

 
Figure 12: Comparison of variance values of gradient estimator of goal location problem using 

SVRG and SLBFGS algorithms versus the iterations for a problem with 1000 demand points and 

𝑚 = 32. 

   

6. Summary and suggestions for the future works 
 

In this paper, we solve large-scale goal location problems using stochastic optimization methods 

and present the numerical results. The results of the implementation of various nonlinear optimization 

methods show that the stochastic version of LBFGS methods have better convergence properties than 

the other popular methods. Stochastic version of LBFGS methods also performed well for large-scale 

problems and achieved fewer objective functions at lower execution times. The results indicate the 

outperforming this method with SGD and SVRG methods, specially for large instances. Note that 

although the investigated problem is not strongly convex, the numerical results show that the SLBFGS 

algorithm performs very well even for this type of problem that is an important and special 

achievement. 

As the suggestion for the future works, we can solve the goal multivariate location problems using 

nonlinear optimization methods. Also, for large-scale problems, a stochastic approach can be 

considered and a variety of stochastic techniques can be used. In addition, different loss functions with 
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other properties can be considered and minimized. In addition, the field of stochastic optimization has 

a wide range of techniques, one of which is called the dynamic sample size technique. In this 

technique, the random sample size is dynamically changed using the variance of estimator in each 

iteration to help further reduce the variance and increase the speed of the algorithm. Another goal that 

we will address in future studies is to solve constrained goal location problems that are considered 

constraints on the problem. In addition, the goal location model can be considered on the plane, in 

which divided with a line to half spaces with varying norms (see e.g. [10]). 
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