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Solving single facility goal Weber location problem using
stochastic optimization methods

A. Soleimani Kourandeh', J. Fathali 2*, S. Taherifard >

Location theory is one of the most important topics in optimization and operations research. In
location problems, the goal is to find the location of one or more facilities in a way such that
some criteria such as transportation costs, customer traveling distance, total service time, and
cost of servicing are optimized. In this paper, we investigate the goal Weber location problem in
which the location of a number of demand points on a plane is given, and the ideal is locating the
facility in the distance R;, from the i-th demand point. However, in most instances, the solution of
this problem does not exist. Therefore, the minimizing sum of errors is considered. The goal
Weber location problem with the £, norm is solved using the stochastic version of the LBFGS
method, which is a second-order limited memory method for minimizing large-scale problems.
According to the obtained numerical results, this algorithm achieves a lower optimal value in less
time with comparing to other common and popular stochastic optimization algorithms. Note that
although the investigated problem is not strongly convex, the numerical results show that the
SLBFGS algorithm performs very well even for this type of problem.
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1. Introduction

Today, optimization is widely used in the various fields. One of the practical areas of
optimization is location problem. The first and most basic steps in planning to provide a service or
products for applicants is to determine the best place to provide the service or products. Depending
on the situation, a variety of location models have been proposed by researchers in this regard.
Location research has been very extensive and has had a wide range of practical applications in
various fields. Since the classic Weber problem [¢Y] was formulated in 1909 to determine the
location of a warehouse, location theory has been an active part of research for the last decades.

The location problem varies in objective functions, distances, number and size of facilities to be
established, and several other factors. Hongzhong et al. [Y°] introduced eight factors that are
effective in classifying facility location models. These eight factors are: geographical
characteristics, facility characteristics, objectives, solution method, demand patterns, supply chain
types, time horizon and input parameters. Therefore, depending on the type of goal and using each
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of these different indicators, we will achieve different models of location problem. Continuous
location problems are a specific type of location problems where we seek to locate one or more
facilities on the plane. One of the most well-known and important continuous location problems is
the Fermat-Weber single facility location problem. In this case, there are some given points on the
plane and the goal is to find a new point on the plane so that the sum of total distances of the
demand points to the new point is minimized [Y'].

In 1937, Weiszfield [¢¢] proposed an iterative method to the Fermat-Weber problem. Then, in
1958, Mihl [YY] developed the Weiszfield method for multi-facilities location problems with
Euclidean norm. In 1964, Francis [ Y] investigated the problem of multi-facilities with rectangular
norm using the Wieszfield method. In 1971, Wesolowsky and Love [£°] considered the location
problem on a plane with a rectangular distance between the demand points and rectangular areas.
Maurice and Verdini [Y1] in 1973, and Morris [YV] in 1981, discussed the Wieszfield algorithm for
location problems with £, norm. Also in 2010, lyigun and Ben Israel [Y1], used the Weiszfield
algorithm for allocation problems. Fathali [A] investigated the backup multi-facilities location
problem on the plane in 2014 by presenting a Weiszfield-like algorithm. Tirkolaee et al. [41,42] in
2020, considered the green location-allocation-inventory problem in uncertainty system and rescue
unit allocation problem, respectively.

In recent decades, many attempts have been made to create location models that take into
account more characteristics of the real world. One of these characteristics that has emerged in
recent optimization theories is the concept of "goal location". Hence, Fathali et al. [11], for the first
time, raised a specific problem of Weber’s goal location. In this case, they considered an ideal
distance for each demand point and considered the location of the facility in such a way that its
distance from the demand points is equal to the corresponding ideal distance. Since in reality there
is seldom a place for the facility where the distance to the demand points is exactly equal to the
ideal distance, they sought to minimize total weighted squares error in this model. They proposed
the big square-small square geometric method to solve the problem with the Euclidean norm. Then
Jamalian and Fathali [1V] proposed a linear programming model for the problem with the aim of
minimizing the total weighted absolute error. Fathali and Jamalian [4] studied the problem of
minimizing the sum of squares error and named it Goal Square Weber Location Problem (GSWLP).
They used Particle Swarm Optimization (PSO) algorithm to solve the above problem with
Euclidean norm. Recently, Soleimani et al. [V4, ¢ +] solved two models of the goal location problem
under the symmetric and asymmetric loss functions using nonlinear optimization methods. The
fuzzy version of goal location problem with asymmetric loss function was developed by Nazari et
al. [YA]

In this paper, we consider a large-scale goal location problem with £,, norm. Solving large-scale
problems using deterministic optimization methods is unreasonable due to the slow convergence
rate. Since calculating the gradient and inverse Hessian or the approximation of Hessian inverse
costs a high computational cost, so stochastic optimization methods have a special roll in large-
scale problems. One of the second-order stochastic optimization methods is the stochastic version of
the LBFGS (Limited memory BFGS) method, which in practice gives good results for large-scale
problems. Therefore, we use this method to solve the problem of goal location and present the
numerical results obtained from it.

In what fallows of this paper, the goal Weber location problem is defined in Section 2. A brief
review of stochastic optimization methods is given in Section 3. Solving the goal Weber location
problem using stochastic optimization methods is described in Section 4. Finally, computational
results are reported in Section 5.

2. Problem definition
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Suppose A4,..., 4, are the location of demand points in the plane. Let for i = 1,...,n, 4; =
(ai, b;) and we have an ideal distances R;, and a positive weight w;, corresponding to point A4;. The
goal is to find the location of a new facility with coordinate X = (x,y) on the plane so that the
weighted distance between X and the demand point 4; is exactly equal to R;. But since such point
may not actually be found, we seek to estimate the location of X so that the distance from this point
to the demand point 4; is as close as possible to R;.

Selecting this estimated location will result in an error (loss) relative to the goal point (facility).
In this case, we are looking to minimize the error caused by selecting this location on the plane.
Therefore, using the appropriate loss function (error function) is of particular importance.
Therefore, according to the problem, the appropriate loss function should be selected. Thus, the goal
Weber location problem with £,, norm is modeled as follows:

minf(X) = -, w. E(d(X,A) —R), (1)

where E(d(X, A;) — R;) is the loss function, and d (X, 4;) is the distance between two points X and
A; with £, norm.

As mentioned in [11] the goal Weber location problem can be applied for finding the location of a
company in the vicinities of some cities with respect to the establishing and transportation cost. This
problem also has some applications in finding the location of desirable and undesirable facilities. In
these cases, because of undesirability of the facilities, they shouldn’t be closer than a specified
distance to the facility centers. On the other hand, if the facilities be so far from the facility centers,
cost of providing security, human forces, transportation installation, and other costs will increase.

In this paper, we consider the goal Weber location problem under the least squares loss function
and £, norm as follows.
. 1
minf(X) = -X¥iL; wi. (d(X,4) —R)* + UX),  (2)
where

1

p PN\p,
d(x,A) = ((x —a)? +&)2 + (- b +)2), (3)
and U: R? — R is the regularizer term. Regularization is a technique used for tuning the function by
adding an additional penalty term in the error function. The additional term controls the excessively
fluctuating function such that the solutions don’t take extreme values. In addition, regularization
prevents overfitting. So we added the regularizer term to the loss function. We will assume that the

regularizer is an £, regularizer, i.e., U(X) = g Il X II> where g > 0 is regularizer parameter.

In large scale problems, n is a large number, so calculating the Hessian (or Hessian
approximation) and gradient for these problems has a high computational cost that can be reduced
by using stochastic optimization methods. Now, by assuming,

fi=w. (dX,4)—R)? (4
for the subset S < {1,...,n}, the function f; is defined as follows
fs(X) = 5 Sies i) +UE).  (5)
We first assume that the regularization term has been divided equally and included in f;. That is, the
problem (2) is assumed to be minf (X) = % e [i(X).

3. Stochastic optimization techniques

In this section we will summarize some basic ideas for optimization techniques for large-scale
problems. These techniques are described in two main ways: first-order methods and second-order
methods.
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3.1 First-order methods

The first-order methods are popular in optimization algorithms because these methods achieve
the desired result at a time proportional to the problem dimension. In fact, first-order methods are
gradient-based (i.e., first-order information of function) method.

Stochastic Gradient Descent (SGD): The gradient descent method is a first-order iterative
method that attempts to reduce the value of a function in each iteration by moving in the opposite
direction of the gradient as follow,

= X ——Z VS (Xeon).

This method converges linearly to the optlmal point. Although, traditional gradient-based
methods may be effective for solving small-scale (small n) optimization problems, we incur high
computational cost for large-scale problems because we have to calculate n gradients in each
iteration (batch gradient, or full gradient method), so we use a random type of gradient-based
algorithms. This method was proposed by Robbins and Monro [¥Y] in 1951 as the stochastic
gradient method. In this method, we select i in each iteration randomly from {1,2,...,n} and update
the problem parameter as follows

) ) Xe=Xe1— nvf_i(Xt—l)' ) ) ) )
where n is called the step size. The advantage of this method is that in each iteration, only one
gradient Vf; is calculated. Thus, its computational cost is % of the computational cost of the standard
gradient descend method. But using one gradient as the unbiased estimator for the true (full)
gradient, causes reduction in the convergence rate. The SGD method also converges sublinearly
even for strongly convex functions and we have
o L fD - fED) =0(1/0). _

A significant advancement in terms of the running time of first order methods was achieved
recently by a clever merging of stochastic gradient descent with its full version to provide variance
reduction.

3.1.1 Variance reduction methods

Recently, an important achievement has been obtained in the first order methods, which
improves the running time of the algorithm by reducing the variance. These methods are linearly
converged for strongly convex function that improve sublinear rate of SGD. This is achieved by
increasing computation cost or increasing storage. These algorithms include Stochastic Average
Gradient (SAG) [Y'£], [1] and Stochastic Variance Reduced Gradient (SVRG) [YA], [VA].

Stochastic variance reduced gradient (SVRG): This method operates in cycles. Each cycle
begins with a batch (full) gradient at X;, i. e. Vf(X;) = —Z 1 Vfi(X¢). Then, for the inner loop, we

first set X, = X, , and the internal iterations are updated by Xi+1 = Xy — 1§y, Where
e = Vfi i) = (Vfi, XD =V (XD),  (6)

and i, is chosen randomly from {1,...,n}. We can interpret (6) as follows. It is obvious that the
expected value of Vf; (X;) is equal to Vf(X;) where random variable i) € {1,...,n} is chosen
randomly. Thus, Vf; (X;) — Vf(X,) is the bias in the gradient estimate Vf; (X;). Therefore, the
algorithm randomly chooses iy, € {1,...,n} and calculates the stochastic gradient Vf;, (X,) in every
iteration, and corrects it according to the corresponding bias. Note that X, is the current point in
inner loop. With these explanations we can say that g, is an unbiased estimator of V£ (X,). Note
that if we chose gi = Vf; (X)) as SGD, it has a larger variance than this method. Therefore, one
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iteration of SVRG is much more expensive than one of SGD, and in fact is comparable to a full
gradient iteration. This method is given in Algorithm SVRG.

Algorithm SVRG [¥]

input: Xy, f(X) = =¥, fi(X),T,m
Fort=1toT do
1. Compute the full gradient V£ (X;).
2. LetX, =X,
3. Fork=1tom do
3.1. Choose i}, randomly from {1,...,n}.
3.2. Set g = Vfi, (Xi) — (Vfi,, (Xp) — Vf (Xp)).
3.3. Set Xk+1 = Xk - T]gk
3.4. Endfor.
4. Option (8): X¢1q1 = Xinsq-
Option (b): Xerr = — 21y Kiear.
6. Option (c): Choose k randomly from {1,...,m} and set X,,; = Xj.,1.
End for.
End of algorithm.

Stochastic Average Gradient (SAG): In this method, by reducing the estimator variance, we
can achieve a linear convergence rate similar to the full gradient method while maintaining the
computational cost of iteration such as the SGD method. This method combines the low cost of the
SGD iteration and the linear convergence rate similar to the full gradient descend method. The form
of iterations is

i=1
In fact, the algorithm chooses i.-th data randomly at each iteration and set

t_ fi,(Xt) ifi =i,

PPt ow
Thus, at each iteration, only one gradient with respect to i;-th data are calculated, and instead of the
other gradients, we take the same values of the previous iteration. It means, like the full gradient
method, the step incorporates a gradient with respect to each data. However, the same as the SGD
method, each iteration only computes the gradient with respect to a single data and the cost of the
iterations is independent of n. Clearly, this method requires more storage because it must store the
gradients of the previous iteration.

3.1.2 Other Popular Methods

There are other optimization techniques that have made some useful gains. In this subsection, we
introduce these methods which include gradient methods with momentum, accelerated gradient
methods, and coordinate descent methods.

Gradient Methods with Momentum: Each step of this method is chosen as a combination of the
steepest descent direction and the most recent iterate displacement. Initially, we consider a point X,
and the sequences of scalers {a,} and {B,} which are predetermined or dynamical. Then the form of
iteration is

X1 =Xo, Xey1 =Xt — aVF(Xe) + Be(Xe — Xe—q). (7)
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The right-hand is called the momentum term, which preserves the movement of algorithm
recursively along previous search directions. For large scale problems, a stochastic gradient is used
instead of the full gradient in (7). Using the idea of Nesterov’s momentum [Y 4], Katyusha algorithm
[Y] introduced the concept of negative momentum which is a variance-reduction based method. In
fact, Katyusha accelerate SVRG algorithm for the strongly convex problem by the mini-batch
setting.
Accelerated Gradient Methods: The formula of this method is similar to (7) and it’s idea of
acceleration proposed by Nesterov [3+]. Each iteration has the form
Wy = X¢ + Be(Xp — X¢—1),
Xeyr = Wy — @, Vf (W),
which one can easily obtain:
Xeg1 = Xe — V(X + Be(Xe — X)) + B (Xe — Xe—1). (8)
In (7), first one takes the steepest descent step and then applies the momentum term, whereas in (8),
one follows the momentum term first, then applies a steepest descent step (with the gradient
evaluated at W, not at X}). For large scale problems, a stochastic gradient is used instead of the full
gradient in (8). This technique has been applied to a large class of algorithms. One of these
algorithms is Catalyst [Y «] which use this strategy to accelerate gradient method.
Coordinate Descent Methods: Another method, among the oldest in optimization method, is
Coordinate descent (CD). These methods work by considering steps along coordinate directions:
one tries minimizing the objective function with respect to a single variable while all others are kept
fixed, then other variables are updated similarly in an iterative procedure. The form of iteration is
Xepr = Xe = aVi f(Xe,, where Vif(Xp):=-L-(X). (9)

Note that X;, indicates the i;-th component of w, and e;, indicates the i.-th coordinate vector for
some i, € {1,...,d}. For large-scale problems, a stochastic version of the CD method can be
discussed, which is called Stochastic Dual Coordinate Ascent (SDCA) [Y1]. For this purpose, it is
not typical that one replaces V; f(X;) in (9) with stochastic version, because we can usually
calculate a d-dimensional stochastic gradient to apply an SG method. So, one can nevertheless
apply stochastic setting for CD method by maximizing its dual problem and using positive gradient
steps instead of negative one. (Thus, however, using the maximizing dual problem and using
positive gradient steps rather than negatives, stochastic approximation can be applied to the CD
method.) SDCA has linear convergent rate with constant dependent on the parameter dimension d.
Furthermore, for Accelerated Stochastic Dual Coordinate Ascent method you can see [YV] and [?].

3.2 Second-order methods

Second-order methods such as the Newton method are popular because of their quadratic
convergence rate, but computing the full Hessian matrix and its inversion is costly (0(nd?) and
0(d?), respectively). Recently, NewSamp’s algorithm [7] proposed ideas for solving these two
problems. It uses the sub-sampling technique to approximate Hessian and uses low-rank projection
techniques to reduce the cost of inverting Hessian.

3.2.1 Hessian-Free Newton Methods

As we know, to get the direction of Newton method, s;, we need to solve equation H;s; = —g;.
Solving this equation requires computation and storage that will cost us. Thus, instead of solving
the Newton equation exactly, inexact methods such as the Newton Conjugate Gradient (NCG)
method can be used to solve this equation and to obtain a superlinear convergence rate.
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In the NCG method, we do not need to access to the Hessian matrix itself precisely, but rather
the Hessian-vector production is sufficient, which is why Hessian-free is mentioned. one can see
[Y¥] and [4] for further studies.

Also in 2017, LiSSA (Linear (time) Stochastic Second-Order Algorithm) [Y] used a special
technique for calculating the Hessian inverse, and obtained an unbiased estimator for the Hessian
inverse, and achieved linear convergence rate.

3.2.2 Quasi-Newton methods

As mentioned earlier, the Hessian matrix computation is costly, other methods used to reduce
this computational cost are called quasi-Newton methods stemming from the BFGS algorithm
(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) and its limited memory variant
(LBFGS) [Y"]. In this method, the approximations to Hessian are calculated using gradient changes.
In fact, it has been proven that the limited memory version is effective for problems with millions of
variables.

For large-scale optimization problems, stochastic techniques are used and stochastic Newton
methods are proposed in different forms. In 2007, for the first time, a simple stochastic model was
introduced for the BFGS algorithm by sampling technique for computing gradient differences [Y°].
In addition, Mokhtari [Y£] has provided a regularized stochastic BFGS algorithm. Byrd et al. [°]
also computed estimators for average curvature information using the subsampled Hessian-vector
products technique. But these algorithms all have sub-linear convergence rates. Finally, in 2016, an
important achievement was provided by Moritz et al. [Y°] who achieved linear convergence rates
with ideas of variance reduction (similar to the SVRG method) and mini-batch technique.

4. Stochastic version of LBFGS algorithm

In this section, we use a second-order stochastic method to minimize the goal location problem
error. This method gives acceptable solutions in less time in cases where the set of demand points
has a large size. For this purpose, we introduce a stochastic version of the LBFGS method and
minimize the location problem error using this method.

Solving large-scale problems using deterministic optimization methods is unreasonable due to
the slow convergence rate, because calculating the gradient and inverse Hessian or the
approximation of Hessian inverse has a high computational cost, so stochastic optimization methods
have a special roll in large-scale problems. One of the second-order stochastic optimization methods
is the stochastic version of the LBFGS method, which in practice gives good results for large-scale
problems.

Although most stochastic algorithms have high processing and execution speeds, the variance
obtained from gradient estimator reduces the convergence rate near the optimal solution. For
example, in the SGD method, even if we initialized at the optimum, we may achieve the objective
function with a worse value. For this reason, we need diminishing step sizes to guaranty
convergence. One way to solve this problem is to use methods that reduce the variance of the
gradient estimator and increase the speed of the algorithm.

We now describe the stochastic version of the LBFGS method and use a technique similar to the
SVRG method to reduce the variance of the gradient estimator. This algorithm performs well in
large-scale problems and has a high convergence rate for strongly convex functions due to the use
of the idea of variance reduction technique.

4.1 SLBFGS algorithm
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In this section, we describe the stochastic version of the LBFGS algorithm and explain its
important points.

Our updates will use stochastic estimates of the gradient Vf; as well as stochastic
approximations to the inverse Hessian V2f;. In order to decouple the estimation of the gradient
from the estimation of the Hessian, we use distinct subsets S,T € {1,...,n} and let |S| = b, |T| =
by.

Similar to the SVRG method, in order to reduce the variance of the gradient estimator, the full
gradient is calculated once in each outer loop and the iterations are updated according to the
following rule

Xi+1 = X — MeHy vy,
where H,, represents the approximate Hessian inverse and v, represents the stochastic gradient
estimator with the reduced variance in the k-th iteration.

The iterations of this algorithm are shown in Algorithm 4.1. This algorithm has several
parameters, which we will describe in the following. The parameter n indicates the step size of the
algorithm. The positive integer m, indicates the number of iterations of the inner loop, represents
the number of calculations of the full gradient. As mentioned earlier, using the full gradient reduces
the variance of the stochastic gradient estimator. In addition, every L iterations, the approximation
for inverse Hessian is updated. The vector s, stores the average directions obtained during the 2L
recent iteration of the algorithm. The vector y, is obtained by multiplying the vector s, in the
estimator of Hessian matrix. Note that one of the differences between the SLBFGS and LBFGS
algorithms is how the y,. vector is defined. In the LBFGS algorithm, the vector y, is defined as the
difference of the gradients, but in the stochastic version, the mentioned definition performs better.
Now we use the vectors y, and s, to calculate the approximations for the inverse Hessian. For this
purpose, we put p; = 1/szy]-, M' = min{M,r} and recursively, define approximations for the
inverse of Hessian as follows

HY = (1 — p;siyTHY U = pysjyl) +pjsjsT, je€r—M +1,...,7}.  (10)
Initial with Hr(r_M’) ="S;T$ and set H, =HT(T). Note that the above rule preserves positive
definiteness (p; > 0). Before describing the convergence theorem, we define the A-strongly convex

and A-smooth function.
Definition 1 The convex function f: R — R is A-strongly convex and A-smooth when

A )
VX,Z, VI OTZ =X +5 0 Z =X IP2 f(2) = fX) 2 VO Z =) +5 1 Z =X I

Algorithm SLBFGS [Y°]
Input: Xy, m, L, n
Letr =0 and Hy =1

Fork =0,..
1. Compute the full gradient u;, = Vf(Xy).
2. Let Xg = Xk

3. Fort=0tom—1
3.1 Choose randomly S, . € {1,...,n}
3.2 Compute the stochastic gradient Vs, , (x;)
33 Setv, = Vfs, ,(xt) = Vfs,, (Xi) +
34 Letx;q = x; —nH,v;
3.5 If t = 0 mod L then
351 Incrementr =r+1
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352 Setw, =;Xil,
3.5.3 Choose randomly T, < {1,...,n} to define the stochastic approximation
V2 fr, (ur)
354 Compute s, = u, —up_4
355 Compute y, = V2fr (u,)s,
3.5.6  Define H, as (10).
End if
End loop
4. LetXy,q = x; wherei € {0,...,m — 1} is randomly choosed.
End loop

Lemma 1 ([Y¥]) The objective function of (2) is nonconvex.

Lemma 2 ([Y°]) Suppose that f is a function A-strongly convex and A-smooth, and every f; is
convex and twice continuously differentiable for each i € {1,...,n}. Then, the constants 0 <y <T
exist such that

yl < H. <TI vr > 1.

In [Ye], it is proved that y and I" have the following values,
1 ((d + M)A)d+M-1

T d+MA’ Ad+M

14

Lemma 3 ([Y°]) Let X* be the unique minimizer of f. Let y, = Vf(X,) and v, = Vfs(x;) —
Vfs(Xy) + uy be the variance-reduced stochastic gradient, then

E[ll ve I7] < 4A(f (xe) — F(X) + f(Xi) — FXT)).

Theorem 1 ([Y°]) Suppose that f is a function A-strongly convex and A-smooth, and every f; is
convex and twice continuously differentiable for each i € {1,...,n}. Let X* be the unique
minimizer of f. Then for all k > 0,
E[f () = f(X)] < a*E[f (Xo) = f(X")]

where the convergence rate a is given by

_ 1/(2mn) +nl2A?

&= T A reaz

Also, assuming that n < yA/(2I'?A?) and m is selected large enough to satisfy

YA > 1 + 2nT2A?
2mn '

<1

This method achieves desirable convergence properties with the help of stochastic techniques
for large scale problems. In addition, due to the use of variance reduction techniques, it has a high
speed and achieves a lower optimal value in less time than other popular methods of stochastic
optimization. Another advantage of this method is its limited memory feature, which leads to
limited memory usage. The convergence of this method has been proven for strongly convex
functions, but according to numerical results, it has a good performance even for the nonconvex
function, which has not yet been proved for nonconvex functions, and this is an issue for further
studies of this method.

5. Computational results
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In this section, the proposed algorithms were tested on some test problems with 30 to 1000 points
that are generated randomly in MATLAB. In these problems the demand point's coordinates,
weights and radiuses, all are positive numbers and generated randomly in the intervals [1,100],
[1,3] and [1,10], respectively. The numerical results are obtained by solving the goal location
problem (2) with £, norm using SLBFGS algorithm. The results of this method are compared with
those obtained by SGD and SVRG methods. All algorithms are implemented using Matlab-R2017b
and a laptop with Intel core i7-4510U processor and 8 GB RAM.

For all three algorithms, the regularizer parameter is assumed to be 0.1. For the SVRG and
SLBFGS methods a fixed step size of 0.0001 is used and for the SGD method a diminishing step
size of 1/1l V£ (Xy) Il is used.

Note that although the problem of goal location with the convex ¢,, norm is not strongly convex,
the numerical results presented in this section show that the SLBFGS algorithm performs very well
even for this type of problem.

Figures 1, 3 and 5 compare the values of the objective function of the goal location problem with
the £, norm for the problems with 30, 100 and 1000 demand points, respectively, using the SVRG,
SGD, and SLBFGS algorithms versus the iterations. As one can see in these figures, the SGD
algorithm has obtained the values of the objective function in an oscillating manner and has not
performed well, but the SLBFGS and SVRG algorithms have performed well and have reduced the
values of the objective function very well. In addition, SLBFGS achieves a lower loss function
value than SVRG in fewer iterations.

DataSet: 30

5500
qi —&—SLBFGS30
so00 | [\ SVRG30
1\ —5—56D30

4500
4000
£ 3500
[:5]
3000
2500

2000 ‘\EL

2]

1500
o 5 10 15 20 25

# of lterations
Figure 1: Comparison of the values of the objective function of the goal location problem using
SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 30 demand points.

Figures 2, 4 and 6 show the variance values of the gradient estimator for the SLBFGS and
SVRG methods versus the iterations for a problem with 30, 100 and 1000 demand points,
respectively. According to these figures, for the instances with 30 and 100 points, the variance of
the gradient estimator decreases at a high rate in both methods, which indicates the excellent
performance of both methods in reducing the variance.
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Figure 2: Comparison of variance values of gradient estimator of goal location problem using
SVRG and SLBFGS algorithms versus the iterations for a problem with 30 demand points.
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Figure 3: Comparison of the values of the objective function of the goal location problem using
SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 100 demand points.

. »108 DataSet: 100
|
—&— SLBFGS100
i SVRG100
af |
|
3.5 I‘
3l
@ o]
2 |
=
225 |
m
= |
2 |
|
15 |
|
1 |
|
0.5 |
0 &
0 5 10 15 20 25 30 35 40

# of lterations
Figure 4: Comparison of variance values of gradient estimator of goal location problem using
SVRG and SLBFGS algorithms versus the iterations for a problem with 100 demand points.
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For the instance with 1000 points, the reduction of variance can be seen well, with the difference
that in the fourth iteration, due to the randomness of the method and undesirable sampling, the
variance of the gradient estimator increased but continued to decrease again. The variance obtained
from the SLBFGS method has a very significant decrease in fewer iterations, which has led to a
decrease in the value of the objective function at a high rate, which confirms the results in Figure 5.
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Figure 5: Comparison of the values of the objective function of the goal location problem using
SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 1000 demand points.
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Figure 6: Comparison of variance values of gradient estimator of goal location problem using
SVRG and SLBFGS algorithms versus the iterations for a problem with 1000 demand points.

Table 1 shows the optimal values, optimal solutions and running time of SVRG, SGD and
SLBFGS algorithms for different values of p.

Table 1: Optimal values, optimal solutions and running time of SVRG, SGD and SLBFGS
algorithms for different values of p.

p niAlgorithm|optimal value| optimal solution running time
3| SGD 1854.9 (7.2772,6.1040)| 0.0307
0 SVRG| 1669.5 (8.2336, 7.6501) |  0.0700
SLBF | 1669.2 (8.2771,7.6902)| 0.7150
GS
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1| SGD [1.3188 x 10°(15.7438,16.1686)| 0.0467
00 SVRG [0.6900 x 10°/(30.4584,29.2005)|  0.3793
SLBF [0.6900 x 105|(30.4642,29.2077)| 0.2877
GS
1| SGD [1.1183 x 109/(23.2480,19.1347)| 0.2576
000 | SVRG|0.7983 x 10°(30.2357,30.3713)|  2.4657
SLBF [0.7992 x 10°(29.9692,30.0746)| 1.4265
GS
3| SGD | 2935.0 (6.9970, 3.8888)| 0.1591
500 SVRG| 2035.3 (8.2336, 7.6501)|  0.1149
SLBF | 2035.9 (8.2772,7.6902)| 1.1868
GS
1| SGD [1.5111 x 10° (19.1842, 0.1244
5 |00 14.04128)
SVRG|0.8457 x 105  (29.8929, 1.3766
29.3884)
SLBF [0.8458 x 105 (30.0533, 1.6145
GS 29.5221)
1| SGD [1.3037 x 10%  (20.6655, 1.0118
5 /000 22.4782)
SVRG(0.9837 x 106  (30.1970, 6.4371
30.55781)
SLBF 0.9835 x 106  (30.3239, 3.4832
GS 30.7762)
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In optimization methods, random sample size plays an important role in reducing the variance
of the estimator and the performance of the algorithm. Therefore, we have implemented SVRG,
SGD and SLBFGS algorithms with different random sample sizes. We represent the random sample
size, which is the number of random Hessian and gradients to calculate the search direction, with
m = |S]|.
Figures 7 to 12 show the results obtained by the algorithms for different values of m. These results
indicate that increasing the random sample size reduces the variance of the gradient estimator and
improves the performance of the algorithms.
Table 2 presents the optimal values, the optimal solutions, the running time and the variance of the
gradient estimator of SVRG, SGD and SLBFGS algorithms for different values of m.

Table 2: The optimal values, the optimal solutions, the running time and the variance of the

gradient estimator of SVRG, SGD and SLBFGS algorithms for different values of m.

m| n| Algorithm | optimal values | optimal solutions |running time variance
3 SGD 3.1533 x 103 | (4.4316,4.0064) 0.0095 -
0 SVRG | 1.6709 x 103 | (8.2300,7.5365) 0.1720 0.5765
SLBFGS| 1.6703 x 103 | (8.2612,7.5637) 0.4108 | 5.8282 x 103
1 SGD | 1.2717 x 10> |(18.2118,14.7525) 0.0522 -
00 SVRG | 0.6900 x 10° |(30.4584,29.2005) 0.3072 |5.6211 x 10722
SLBFGS| 0.6900 x 105 |(30.4642,29.2077) 0.0661 2.8786
1 SGD 1.3202 x 10° |(20.2169,16.5848) 0.2543 -
000 SVRG | 0.7983 x 10° |(30.2357,30.3713) 1.5258 24.1414
SLBFGS| 0.7984 x 10° |(30.1902,30.3190) 1.4853 100.4597
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3 SGD | 1.8520x 103 (6.8308, 6.5223) 0.0066 -
0| 0 SVRG | 1.6709 x 103 (8.2298, 7.5364) 0.1637 0.5664
SLBFGS| 1.6707 x 103 (8.2341, 7.5429) 0.3625 6.4919

1 SGD | 0.8835 x 10° |(24.2827,20.1608) 0.0599 -

0| 00 SVRG | 0.6900 x 10° |(30.4584,29.2005) 0.2345 |5.0009 x 10~22

SLBFGS| 0.6900 x 10° (30.4584,29.200 0.0473 0.003145
5)
1 SGD | 0.9340 x 10° |(23.9485,24.6625) 0.2624 -
2000 SVRG | 0.7983 x 10° |(30.2325,30.3679) 1.4199 22.9194
SLBFGS| 0.7901 x 10° (30.2402,30.320 15.4827 94.7234
0)
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Figure 7: Comparison of the values of the objective function of the goal location problem using
SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 30 demand points
and m = 10.
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Figure 8: Comparison of variance values of gradient estimator of goal location problem using
SVRG and SLBFGS algorithms versus the iterations for a problem with 30 demand points and m =
10.

5 DataSet: 100
35 10

—&—SLBFGS100
SVRG100
—E&—S8G0100

25

ermor
[N

0.5

0 5 10 15 20 25 30 35 40
# of lterations

Figure 9: Comparison of the values of the objective function of the goal location problem using
SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 100 demand points
and m = 10.
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Figure 10: Comparison of variance values of gradient estimator of goal location problem using
SVRG and SLBFGS algorithms versus the iterations for a problem with 100 demand points and
m = 10.
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Figure 11: Comparison of the values of the objective function of the goal location problem using
SVRG, SGD and SLBFGS algorithms versus the iterations for a problem with 1000 demand points
and m = 32.
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Figure 12: Comparison of variance values of gradient estimator of goal location problem using
SVRG and SLBFGS algorithms versus the iterations for a problem with 1000 demand points and
m = 32.

6. Summary and suggestions for the future works

In this paper, we solve large-scale goal location problems using stochastic optimization methods
and present the numerical results. The results of the implementation of various nonlinear optimization
methods show that the stochastic version of LBFGS methods have better convergence properties than
the other popular methods. Stochastic version of LBFGS methods also performed well for large-scale
problems and achieved fewer objective functions at lower execution times. The results indicate the
outperforming this method with SGD and SVRG methods, specially for large instances. Note that
although the investigated problem is not strongly convex, the numerical results show that the SLBFGS
algorithm performs very well even for this type of problem that is an important and special
achievement.

As the suggestion for the future works, we can solve the goal multivariate location problems using
nonlinear optimization methods. Also, for large-scale problems, a stochastic approach can be
considered and a variety of stochastic techniques can be used. In addition, different loss functions with
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other properties can be considered and minimized. In addition, the field of stochastic optimization has
a wide range of techniques, one of which is called the dynamic sample size technique. In this
technique, the random sample size is dynamically changed using the variance of estimator in each
iteration to help further reduce the variance and increase the speed of the algorithm. Another goal that
we will address in future studies is to solve constrained goal location problems that are considered
constraints on the problem. In addition, the goal location model can be considered on the plane, in
which divided with a line to half spaces with varying norms (see e.g. [10]).
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