
Iranian Journal of Operations Research 

Vol. 11, No. 2, 2020, pp. 65-79 

DOI  

A novel type I and II fuzzy approach for solving single allocation 

ordered median hub location problem 
 

B. Tootooni
1
, A. Sadegheih

2,
*, H. Khademi Zare

3
, M. A. Vahdatzad

4 

 

Hubs are facilities that can decrease the cost of many-to-many distribution systems by 

acting as an interconnector between the demand and supply nodes. This type of facility can 

reduce the number of direct links needed in a logistics network. Hub location problems 

(HLP) have been discussed by many authors for more than four decades, and different 

approaches have been developed for modeling and solving this problem. We propose a 

fuzzy type I and II programming approach for a new model presented in the literature, i.e., 

the single allocation ordered median problem. The level of flow among the nodes will be 

considered as a fuzzy parameter. In the fuzzy type I approach, a linear programming 

problem with fuzzy parameters is used, while for the fuzzy type II approach, the rules of 

interval arithmetic are developed to simplify the problem to the fuzzy type I case. Finally, 

we apply our method on Kalleh Dairy Co. data of transportation as a case study and 

compare crisp and fuzzy situations. We show that the results of the fuzzy approach could be 

2% better than the crisp approach and also discuss the pros and cons of fuzzy type I and 

type II approaches. 
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1. Introduction 
 

Hubs are facilities that can improve transshipment in many-to-many distribution systems. 

Instead of having a direct path between each origin-destination pair to serve the demand, hub 

facilities play an intermediate role. In other words, the flows of different nodes are directed to the 

hub, and then each demand goes from the hub to its relevant supplier. This routine can efficiently 

utilize the economy of scale. Figure 1 shows a network of hub and non-hub nodes. Figure 2 shows 

the network of American airlines, where New York, Miami, and Boston are depicted as hubs. In 

general, the number of nodes is denoted by N. It seems that Goldman [13] is the first paper to 

address the network hub location problem. During recent decades, there have been numerous 

studies focusing on the hub location problem with a great level of variation. These variations 

involve modeling concepts, the type of the objective function, and the constraints. The main focus 

in these studies has been on minimizing the overall cost in the system, which is the sum of the 

transportation cost of each origin-destination path (see e.g. Campbell [2]).  

Among the studies so far carried out on this problem, the one performed by Alumur and Kara [1] 

can be considered as the most influential. From the structural point of view of a network, two types 

of problems can be considered, i.e., single allocation and multiple allocation. In the single 

allocation problem, each non-hub node is assigned to just one hub node (see e.g., Momayezi et al. 

[21] and Sangsawang and Chanta [32]). However, in the multiple allocation problem, each demand 
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center is assigned to more than one hub, and thus it can receive and send flows through more than 

one hub (see e.g., Ghaffarinasab et al. [12] and Monemi et al. [22]). 
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Figure 1. A network, in which nodes 1 and 5 are hub nodes and other vertices are non-hubs 

 

 
Figure 2. Part of American airlines that shows New York, Miami, and Boston as hub nodes of 

the network 

 

The vast scope of the hub location problem is made up of four major branches. The first and the 

most-studied branch is the p-hub median problem, whose aim is to minimize the total transportation 

cost of n demand nodes with a fixed number of hubs (p). Some of the studies focusing on this type 

of objective function include Rouzpeykar et al. [31], Fernández and Sgalambro [11], and Mokhtar et 

al. [20]. Another group of problems deals with a fixed cost for establishing a hub. In these problems, 

in addition to the transportation cost, there is a cost for choosing a node as a hub; hence, the number 

of hubs is not fixed to a value of p, and it is identified in the problem (see e.g., Taherkhani and 

Alumur [35], Monemi et al. [22], Özgün-Kibiroğlu et al. [27] and Khodemani-Yazdi et al. [16]). 

The third branch involves the p-hub center problem, which deals with an objective function of the 

minimax type. One possible objective is minimizing the maximum cost for each origin-destination 

pair. Campbell [3] has considered three different types of p-hub center problems and has formulated 

all three. Other relevant studies include Shahparvari et al. [33] and Ernst et al. [9]. The fourth and 

final major type of hub location problem is the hub set-covering problem. The goal of the hub set-

covering problem is to place the hubs in such a way to cover all demand while minimizing the cost 

of opening the hub facilities (see e.g., Nickel et al. [24]). On the other hand, the maximal hub-

covering problem maximizes the demand covered by a fixed number of hubs, and both of these 

problems have been modeled by Campbell [3]. 

Recently, some other studies have considered identifying a reliable hub location as a new field 

(see e.g., Shen et al. [34]). Moreover, some authors have recently worked on different types of 

discount factors, including Cunha and Silva [4]. The discount factor         is a parameter 
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that results in a discount for the transportation cost of the inter-hub connections. In addition, 

O’Kelly and Bryan [26] indicated that the assumption of flow-independent costs would not only 

erroneously select the optimal hub locations and the allocations, but it would also miscalculate the 

total network cost. Furthermore, they proposed a non-linear cost function, allowing costs to increase 

at a decreasing rate as the flows increase. 

On the other hand, an interesting problem in the area of p-hub median problems is the ordered 

median hub location problem Puerto et al. [29]. In this problem, a new parameter is defined, called 

the rank-dependent compensation factor                 , which incorporates flexibility into the 

model. To put it more simply, the parameter            is a coefficient for the      largest 

transportation cost that is a member of a special set of transportation costs, which will be defined 

later. Parameter    acts as a scaling factor that will be assigned to the origin nodes depending on the 

order of the sequence of the transportation costs of the commodity with the same origin node as the 

first hub. Solution methods for hub location problems vary from exact methods, such as the B&B, 

to meta-heuristics, such as SA and TS. O'Kelly [25] made use of heuristics to solve his quadratic 

integer programming. Klincewicz [18] proposed an exchange heuristic to solve the problem. 

Moreover, the same author used Tabu Search (TS) and GRASP heuristics in Klincewicz [17]. The 

most effective heuristic is the Lagrangian relaxation-based heuristic presented in Pirkul and 

Schilling [28]. It should be noted that among the best meta-heuristics are the Tabu search heuristic 

presented in Ghaffarinasab et al. [12], and the simulated annealing heuristic presented in Zarandi et 

al. [41]. The most efficient exact solution procedure is the shortest-path-based branch-and-bound 

algorithm presented in Ernst and Krishnamoorthy [10]. So far, the largest set of problems that have 

been optimally solved has 100 nodes.  

A new approach for solving the hub location problem involves fuzzy programming and there 

have been a limited number of studies carried out in this area, all published from 2010 to 2013, 

mostly by Iranian authors. Among these studies, Davari et al. [7] deals with the reliable fuzzy hub 

location problem, Davari and Fazel Zarandi [6] and Davari and Fazel Zarandi [5] took advantage of 

fuzzy parameters in the modeling process to obtain a more realistic model, Mirakhorli [19] utilized 

chance-constrained programming with a fuzzy cover radius in a hub covering problem, and Mostafa 

et al. [23] used a hybrid algorithm for solving a p-hub median problem. Moreover, among recent 

studies, there are distinguished articles that discuss supply chain and network problems with a fuzzy 

solving approach. For example, Tirkolaee et al. [37] uses fuzzy decision making for sustainable-

reliable supplier selection in two-echelon supply chain design, Tirkolaee et al. [36] takes advantage 

of fuzzy approach in a multi-trip location-routing problem for medical waste management during 

the COVID-19 outbreak, and finally Rokhsari and Sadeghi-Niaraki [30] suggests fuzzy-AHP and 

TOPSIS in GIS environment to assess risk in an urban network. 

The novelty of this paper involves utilizing fuzzy type I and II mathematical programming for an 

ordered p-hub median problem. In the next section, some notations and basic definitions will be 

presented. Section 3 discusses the formulation of the model. Section 4 deals with the solution 

method. In section 5 we apply our method on Kalleh Dairy Co. data of transportation as a case 

study and compare crisp and fuzzy situations. It will be shown that the results of the fuzzy approach 

could be better than the crisp approach and also the pros and cons of fuzzy type I and type II 

approaches will be discussed. Finally, we discuss the conclusion and some future points of research 

in Section 6.  

 

2. Notation and Basic Definitions 
 

2.1. Ordered p-Hub Median Problem Notations 
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Let N denote a given number of clients or nodes in a network, and                       denote 

indices for identifying a specific node. Each node   sends a particular amount of commodity to 

another node  , denoted by    . Some routine notations for the problems are as follows: 

 

2.1.1. Parameters 
 

 : Number of hubs 

                : Vector of compensation parameters 

 : Discount factor for inter-hub links         

 : Discount factor for hub and final destination links         

   : Unit cost of traveling from node i to node j 

   : Amount of flow from node i to node j 

   ∑      : All commodity sends from node i 

 

2.1.2. Decision Variables 
 

  : 1 if a hub locates at node k; 0 o.w. 

   
 : if the flow from origin site j goes first to hub k and       is the ith lowest value of the 

transportation costs from each origin to its first hub; 0 o.w. 

    : flow that goes through a first hub k and a second hub l with destination m 

Parameter    is a type of rank-dependent weighting factor. The goal of these weights is to 

compensate for unfair situations. For example, the reader may note that we are simultaneously 

making decisions on locating the hubs that define the intermediate distribution system, and 

establishing the delivery paths from the origin nodes to the final destination. Thus, a solution that is 

good for the system (i.e., the entire supply chain) might not be acceptable for individual nodes if 

their costs for reaching the system in that solution are too high relative to similar costs for the other 

nodes. In this case, some compensation for unhappy nodes may be needed to prevent them from not 

using the system. For instance, if a solution places a set of hubs in a way that the accessibility cost 

for the origin node i is greater than the corresponding cost for the origin node j, the model tries to 

favor i over j when assigning the weights      . (Note that these weights do not penalize node j; 

rather, they compensate node i because these lambdas reduce the dispersion of the costs). These 

scaling factors (i.e., lambdas) will be assigned to the origin nodes depending on the order of the 

sequence of the transportation costs of the commodity with the same origin node as the first hub. 

Notice that depending on different choices of the   vector, different criteria will be considered 

for the objective function. For instance, if                   ⏞    
 

 , the objective function will be the 

sum of k biggest costs of transportation (k-centrum in the literature), and for              , this 

will become a p-center problem. 

 

2.2. Fuzzy Notations and Definitions 
 

A fuzzy set  ̃ of a universe   is characterized by its membership function (MF) (Zadeh [39]): 

 ̃        ̃    |     (1) 

 

Where   ̃    is the membership degree of x in  ̃. 

Moreover, the  -cut of a fuzzy set  ̃ is defined as follows: 
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       |  ̃       (2) 

 

In other words, the -cut of a fuzzy set  ̃ is a subset of the elements in  ̃, whose membership 

degree is higher than or at least equal to  . Figure 3 shows the  -cut of the fuzzy set. 

( )
A
x

1

x
a

 
Figure 3.  -cut of a fuzzy set  ̃ 

 

A fuzzy number is a fuzzy set  ̃ on the real numbers line R, whose membership function   ̃    is upper 

semi-continuous such that: 

    ̃    

{
 
 

 
 
           
                            
           
                           
           

 (3) 

 

Therefore, we can show the  -cut of the fuzzy number  ̃ as follows: 

      
        

       (4) 

 

The expected interval of a fuzzy number  ̃ is denoted by     ̃ , which is defined as follows 

(Heilpern [14]): 

    ̃     
    

   [∫   
     

 

 

    ∫   
     

 

 

   ] (5) 

 

The expected value of a fuzzy number  ̃ is denoted by    ̃ , which is defined as follows 

(Heilpern [14]): 

    ̃  
  

    
 

 
 (6) 

 

Given two fuzzy numbers  ̃  ̃, any arithmetic operation  ̃   ̃ can be aggregated to a fuzzy 

number based on Zadeh’s minimum extension principle (Zadeh [40]): 

  ̃  ̃       
     

      ̃      ̃     (7) 

 

When the extended minimum principle is used to aggregate fuzzy numbers, Dubois and Prade 

[8] show the following relationship: 

       
            

           
         

         
         

       (8) 
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Where  ̃  ̃ are fuzzy numbers, and     are non-negative real numbers. 

Therefore, it can easily be deduced that: 

     ̃    ̃       ̃       ̃  (9) 

     ̃    ̃       ̃       ̃  (10) 

 

3. Model Formulation 
 

First, the deterministic model of the ordered p-Hub Median problem will be shown, and each 

constraint will be explained. Afterward, the paper discusses the fuzzy form of the problem. The 

deterministic model is as follows:  

   ∑∑ ∑         
   

 

   

 

   

 

   

 ∑ ∑ ∑                

 

   

 

   

 

   

 (11) 

    ∑∑   
 

  

      (12) 

∑∑   
 

  

      (13) 

∑∑   
 

  

        (14) 

∑   
 

 

       (15) 

∑    

 

 ∑∑   
 

 

   

 

      (16) 

∑∑   
 

 

     

 

 ∑∑   
   

 

     

 

              (17) 

           ∑   

 

            (18) 

∑∑    

  

   ∑  

 

    (19) 

∑∑    

  

   ∑  

 

    (20) 

∑  

 

   (21) 

   
                                           (22) 

 

In this model, the flows (   ) between different nodes can be considered as fuzzy numbers 

because of the uncertain nature of this parameter. Thus, the fuzzy form of the model above can be 

obtained by replacing     with  ̃   and    with  ̃  , where  ̃   and  ̃  are fuzzy numbers. We 

consider a triangular membership function for these parameters in the solution method and the 

numerical result of this paper. However, any other membership function is allowed. Note that 

   ∑     , so  ̃  ∑  ̃   . 
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4. The Solution Method 
 

4.1. The Fuzzy type I Approach 

The general form of our model is presented below, which is a linear programming problem with 

fuzzy parameters. 

         ̃   (23) 

            ̃  ̃       | ̃    ̃                  (24) 

 

There are two challenges to solving this model. The first challenge involves the method for 

determining the feasibility of a decision vector x when the constraints contain fuzzy parameters. The 

second challenge involves the method that can be used for defining the optimality for an objective 

function with fuzzy coefficients. 

We need a criterion for comparing the two fuzzy numbers and deciding on which number is 

larger. Based on JIMÉNEZ [15], for any pair of fuzzy numbers  ̃  ̃, the degree based on which  ̃ is 

larger than  ̃ is defined as follows: 

    ̃  ̃  

{
 
 

 
         

    
   

  
    

 

  
    

     
    

  
       [  

    
    

    
 ]

        
    

   

 (25) 

 

It can be observed that when     ̃  ̃     ,  ̃  ̃ will be the same. Based on the last definition, 

when     ̃  ̃   , we can say that  ̃ is larger than or equal to  ̃ at least at a degree of  , which is 

also shown by  ̃    ̃. This leads us to the next definition: 

Suppose      is a decision vector. This vector is feasible at degree   if: 

   
         

     ̃    ̃      (26) 

 

In which,  ̃    ̃    ̃        ̃   . Another form for (26) is: 

 ̃     ̃               (27) 

 

Based on (9) and (25), the following key relationship can be inferred: 

[       
      

  ]     
          

   (28) 

 

Based on the previous equation, the first challenge is mitigated. With regard to the second 

challenge, the following definition solves the problem: 

Vector       is an acceptable optimal solution for models (23) and (24) if it is an optimal 

solution of the following problem: 

          ̃   (29) 

             ̃  ̃       | ̃     ̃                  (30) 

 

In which,     ̃       ̃       ̃           ̃   . The above-mentioned model is a crisp  -

parametric model, which is very difficult to solve if   is considered as a variable. To solve this 

problem, it is common to consider a specific set as potential values for  . We solve the model for 

discrete values of  , i.e., when     , where generally: 

           |          
    

 
        (31) 
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In which,    is the minimum constraint, the feasibility degree depends on the decision-maker 

(DM) of the system, and m is a step for incrementing  . In the specific model of this paper, there is 

equality (16) that does not allow   to be more than 0.5. Moreover, we suppose that   =0.1, m=0.05. 

Therefore, in our specific model, the set M is: 

               |          
       

    
              (32) 

A set of   -acceptable optimal solutions will be obtained as                , and based on 

each       , the value of  ̃      is calculated as follows: 

 ̃       ̃       (33) 

 

When  ̃ has a triangular MF,  ̃     will also be a triangular fuzzy number because        is a 

crisp vector. 

After observing different values of  ̃     , the DM should consider a tradeoff between the 

feasibility degree of the problem, denoted by  , and the possibility of reaching an acceptable value 

for the objective function. In order to handle the second issue, it is common to define a goal 

function, which is used as a comparison tool for identifying the degree of satisfaction for each 

 ̃     . This satisfaction degree is defined as follows: 

  ̃    {

           

                              ̅

          ̅

 (34) 

 

Based on this, when    , it is completely satisfactory; however, when    , it is completely 

unsatisfactory. Now, an index, proposed by Yager [38], will be used to compute the degree of 

satisfaction for the fuzzy goal  ̃ by each  -acceptable optimal solution (see Figure 4). The Yager’s 

index is: 

  ̃        
∫   ̃          ̃     

  

  

∫   ̃         
  

  

 (35) 

 

The final step of the solution procedure is to balance the feasibility and the optimality of the 

solution. We define two fuzzy sets  ̃  ̃. Let 

  ̃            (36) 

  ̃  
         ̃  ̃       (37) 

 

Now, we are ready to define a fuzzy decision  ̃   ̃   ̃, i.e.,: 

  ̃              ̃  ̃       (38) 

 

Where * is an arbitrary t-norm operator, such as the minimum, the drastic product, the algebraic 

product, and so on. 

Therefore,      is the final solution with the highest membership degree in the fuzzy set 

decision ( ̃) if: 

  ̃        
    

      ̃  ̃        (39) 
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Figure 4. Possibility of occurrence for a crisp objective value z and its goal satisfaction degree. 

 

4.2. The Type II fuzzy approach 
 

In this section, we assume a fuzzy type II membership function for the flow parameter in the 

network. There are two general types of type II membership functions, i.e., Interval Type II, where 

the MF value for each x in the universe of discourse is an interval and not a single number (similar 

to the type I system), and Total Type II, where the MF value for each x in the universe of discourse 

has an MF itself, which is neither a single number (similar to the type I system) nor an interval 

(similar to the type II interval system). 

In this paper, the interval type II fuzzy system is considered for the parameters, and the required 

relations will be explained. 

For each interval type II fuzzy number (IT2FN, Figure 5), which is triangular in this case, 

define: 

 ̃                           (40) 

 

( )
A
x

1

x11A h

( )
lA
h

( )
uA
h

12A mA 21A 22A
 

Figure 5. An Interval type II fuzzy number 

 

Now, taking advantage of the interval arithmetic, shown below, we can develop the previous 

relations of type I system for an IT2 system:  

                      (41) 

                      (42) 

                                                (43) 

                            (44) 
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To develop the relations, the expected interval can be calculated as: 

    ̃     
    

        
     

       
     

   

 [ 
 

 
         

 

 
           

 

 
         

 

 
         ] 

(45) 

 

Thus, the expected value results from: 

    ̃  
  

    
 

 
 

    
     

       
     

  

 
  

   
     

 

 
 
   

     
 

 
  (46) 

 

Based on the previous equation, we can start modeling the constraints in a mathematical model 

with IT2FN as parameters. 

[         
      

         
      

   ]       
      

             
      

    (47) 

 

After simplification, we have: 

[        
       

           
       

  ]  [    
           

       
           

  ] (48) 

 

Again, we use the feasibility level of   for this equation, thus: 

          
            

            
        

    

      
            

            
            

   
(49) 

 

The fuzzy set  ̃ is also defined as an IT2FN. Let: 

  ̃       ̃
       ̃

                  (50) 

  ̃           ̃    
       ̃    

                  (51) 

                                              (52) 

                                              (53) 

 

Then: 

  ̃        
∫    ̃    

       ̃    
         ̃

       ̃
       

  

  

∫    ̃
       ̃

       
  

  

 
∫              

  

  

∫    ̃
       ̃

       
  

  

 
 ∫        ∫        

  

  

  

  

 ∫   ̃
       

  

  ∫   ̃
       

  

  

  ∫        ∫        
  

  

  

  

    ∫   ̃
       

  

  

  ∫   ̃
       

  

  

    ̃
   ̃         ̃

   ̃        

(54) 

 

We have to develop the IT2F relations for the decision-making index as well. i.e.: 

   ̃
            ̃

                 ̃
   ̃         ̃

   ̃        (55) 

   ̃
        ̃

          
    

       ̃
   ̃         ̃

   ̃         (56) 

 

5. The Case Study 
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5.1. The Crisp and Type I fuzzy approach 

 

Kalleh Dairy Co. was established in 1991 with a vast range of products from cheese to dessert 

and ice cream. The main factory absorbs 2500 tons of raw milk and the result is 1800 tons of 

products each day. In this process, more than 4000 employees involved directly. The company has 

42 branches around the country. Before running the result of this research, the products were sent 

directly from the factory in Amol city to these branches and then distributed to stores in nearby 

cities. (Figure 6) 

 

 
Figure 6. The primal network of sending products from factory to branches 

 

For this primal network the total cost of transportation was as follows: (   is the amount of 

products sent from factory to the branch j per kg and    is the average cost of transportation per kg) 

∑    

  

   

                

In the first phase, we applied the model of section 3 with crisp amount of parameters on the 

network. Using experts opinion we considered the following amounts     , 

                  ⏞    
  

 ,              and                  . The amount of objective function 

with exact method using GAMS 23.5 software is as follows: 

∑∑ ∑         
   

  

   

  

   

  

   

 ∑ ∑ ∑                

  

   

  

   

  

   

                

In the second phase, we consider     as a fuzzy parameter, and each     has a triangular MF. We 

apply the model of section 3 using the procedure of section 4 to obtain a solution with the same p, 

 ,  and   as phase I. The problem is executed for all     . 

               |          
       

    
               

To execute the solution procedure, we linked GAMS 23.5 and MATLAB R2010a. In this 

procedure, firstly, the EV and EI for each fuzzy parameter are built in MATLAB. Then, these 

parameters are entered into GAMS as input. Afterward, GAMS will solve the crisp  -parametric 

MIP model, and the results are returned to MATLAB. Next, MATLAB builds   ̃  and   ̃ functions, 
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and finally, it uses the   ̃ function to compare       , and it returns   . The results are presented 

in the following tables: 

 

Table 1. Feasibility, optimality, decision making indices and MF of objective value for p=10 

k      ̃  ̃         ̃                              

0 0.0 0 0.0 937,38 957,96 9,748, 

0 0.05 0 0.05 947049 967085 9,7906 

2 0.2 0 0.2 94735, 967404 997005 

3 0.25 0.8992 0.24,05 947928 967689 997363 

4 0.3 0.8582 0.29,,6 957246 9,7002 9976,, 

5 0.35 0.8206 0.32220 957555 9,7420 997896 

6 4.0 4.0800 4.888.0 957964 0,7,84 987285 

, 0.45 0.6932 0.30,44 967336 997024 987543 

9 0.5 0.5225 0.26025 967645 997333 987952 

 

It can clearly be seen that the best value for   ̃        =0.3339 occurs at k=6, which in the 

feasibility level is 0.4 and the optimality level is 0.8348. The value of        is 87,730 which 

shows 1.8% improvement in comparison with phase I (crisp approach). The structure of the network 

for the solution and the position of hubs are shown below. (Figure 7) 

 

 
Figure 7. The network of Kalleh transportation for the solution of fuzzy model. 

 
5.2. The Type II fuzzy approach 

 

Our IT2FN in this model is the flow in the network. Define: 

 ̃        
      

       
      

      
         (57) 

 

Now we utilize the IT2 approach for the case of paper. All other parameters in our case have the 

same amount as the previous section. Therefore, we obtain the following table: 
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Table 2. Feasibility, optimality, decision making indices and MF of objective value for p=10 

(fuzzy type II approach) 

k      ̃
   ̃         ̃

   ̃         ̃
            ̃

                                                 

0 0.0 1.0000 1.0000 0.10000 0.10000 82,064 84,576 85,786 86,622 89,072 

0 0.05 1.0000 1.0000 0.15000 0.15000 82,199 84,931 86,095 86,902 89,439 

2 0.2 1.0000 1.0000 0.20000 0.20000 82,332 85,285 86,404 87,181 89,807 

3 0.25 0.9873 0.9925 0.24683 0.24813 82,623 85,805 86,698 87,400 90,113 

4 0.3 0.9555 0.9885 0.28665 0.29655 82,859 86,269 87,112 87,684 90,486 

5 0.35 0.8653 0.9562 0.30286 0.33467 82,988 86,624 87,421 87,963 90,855 

6 0.4 0.7312 0.8355 0.29248 0.33420 83,116 86,980 87,730 88,241 91,224 

, 0.45 0.5726 0.6836 0.25767 0.30762 83,401 87,502 88,024 88,460 91,531 

9 0.5 0.3305 0.5227 0.16525 0.26135 83,526 87,858 88,333 88,738 91,901 

 

It is clear from the table above that the best interval for   ̃         occurs at k=5, which in the 

feasibility level is 0.35 and the optimality level interval is [0.8653, 0.9562]. The value of        is 

87,421 which shows 0.4% improvement in comparison with fuzzy type I approach and 2.1% 

improvement in comparison with crisp approach. The structure of the network for the solution and 

the position of hubs will remain same as fuzzy type I approach. (Figure 7) 
 

6. Conclusion 
 

This paper can be considered as the first attempt to solve an ordered p-hub median problem 

using a fuzzy programming approach. It’s also the first time that the fuzzy type II approach is 

utilized to solve a hub location problem. We explained both crisp and fuzzy mathematical models 

and the solution method for fuzzy linear programming based on Yager’s index. The method of the 

paper allows us to take a decision interactively with the DM. Through the idea of a feasible optimal 

solution in degree  , the DM has enough information to fix an aspiration level. The DM can also 

choose the degrees of feasibility that he/she is willing to admit depending on the context. It is 

important to highlight that the acceptable optimal solutions in degree   are not fuzzy quantities, 

which makes it easier to decide a simple way by solving a crisp parametric linear program. The DM 

also has additional information about the risk of violation of the constraints, and about the 

compatibility of the cost of the solution with his wishes for the values of the objective function. The 

DM can intervene in all the steps of the decision process which makes our approach very useful to 

be applied in a lot of real-world problems where the information is uncertain or incomplete. Finally, 

a computational test with the transportation network of Kalleh Dairy Co. was described. A possible 

extension for the work in this paper is to use the Total fuzzy type II concept instead of Interval 

fuzzy type II in the mathematical programming of the model. 
 

References 
 

[1] Alumur, S. and B.Y. Kara (2008), Network hub location problems: The state of the art, 

European Journal of Operational Research, Vol. 190, No. 1, 1-21. 

[2] Campbell, J.F. (1996), Hub Location and the p-Hub Median Problem, Operations Research, 

Vol. 44, No. 6, 923-935. 

[3] Campbell, J.F. (1994), Integer programming formulations of discrete hub location problems, 

European Journal of Operational Research, Vol. 72, No. 2, 387-405. 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

01
 ]

 

                            13 / 15

http://iors.ir/journal/article-1-718-en.html


78 Tootooni et al. 
 

[4] Cunha, C.B. and M.R. Silva (2007), A genetic algorithm for the problem of configuring a hub-

and-spoke network for a LTL trucking company in Brazil, European Journal of Operational 

Research, Vol. 179, No. 3, 747-758. 

[5] Davari, S. and M. Fazel Zarandi, The Single-Allocation Hierarchical Hub-Median Problem 

with Fuzzy Flows, in Soft Computing Applications, V.E. Balas, et al., Editors. 2013, Springer 

Berlin Heidelberg. p. 165-181. 

[6] Davari, S. and M.H. Fazel Zarandi (2012), The single-allocation hierarchical hub median 

location probloem with fuzzy demands, African Journal of Business Management, Vol. 6, No., 

347-360. 

[7] Davari, S., M.H.F. Zarandi, and I.B. Turksen. The fuzzy reliable hub location problem. in Fuzzy 

Information Processing Society (NAFIPS), 2010 Annual Meeting of the North American. 2010. 

[8] Dubois, D. and H. Prade (1978), Operations on fuzzy numbers, International Journal of 

Systems Science, Vol. 9, No. 6, 613-626. 

[9] Ernst, A.T., H. Hamacher, H. Jiang, M. Krishnamoorthy, and G. Woeginger (2009), 

Uncapacitated single and multiple allocation p-hub center problems, Computers & Operations 

Research, Vol. 36, No. 7, 2230-2241. 

[10] Ernst, A.T. and M. Krishnamoorthy (1998), An Exact Solution Approach Based on Shortest-

Paths for p-Hub Median Problems, INFORMS Journal on Computing, Vol. 10, No. 2, 149-162. 

[11] Fernández, E. and A. Sgalambro (2020), On carriers collaboration in hub location problems, 

European Journal of Operational Research, Vol. 283, No. 2, 476-490. 

[12] Ghaffarinasab, N., Y. Jabarzadeh, and A. Motallebzadeh (2017), A tabu search based solution 

approach to the competitive multiple allocation hub location problem, Iranian Journal of 

Operations Research, Vol. 8, No. 1, 61-77. 

[13] Goldman, A.J. (1969), Optimal Locations for Centers in a Network, Transportation Science, 

Vol. 3, No. 4, 352-360. 

[14] Heilpern, S. (1992), The expected value of a fuzzy number, Fuzzy Sets and Systems, Vol. 47, 

No. 1, 81-86. 

[15] JIMÉNEZ, M. (1996), RANKING FUZZY NUMBERS THROUGH THE COMPARISON OF 

ITS EXPECTED INTERVALS, International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems, Vol. 04, No. 04, 379-388. 

[16] Khodemani-Yazdi, M., R. Tavakkoli-Moghaddam, M. Bashiri, and Y. Rahimi (2019), Solving 

a new bi-objective hierarchical hub location problem with an M∕ M∕ c queuing framework, 

Engineering Applications of Artificial Intelligence, Vol. 78, No., 53-70. 

[17] Klincewicz, J. (1992), Avoiding local optima in thep-hub location problem using tabu search 

and GRASP, Annals of Operations Research, Vol. 40, No. 1, 283-302. 

[18] Klincewicz, J.G. (1991), Heuristics for the p-hub location problem, European Journal of 

Operational Research, Vol. 53, No. 1, 25-37. 

[19] Mirakhorli, A. Application of chance-constrained programming to capacitated single-

assignment hub covering location problem with fuzzy cover radius. in Computers and 

Industrial Engineering (CIE), 2010 40th International Conference on. 2010. IEEE. 

[20] Mokhtar, H., M. Krishnamoorthy, and A.T. Ernst (2019), The 2-allocation p-hub median 

problem and a modified Benders decomposition method for solving hub location problems, 

Computers & Operations Research, Vol. 104, No., 375-393. 

[21] Momayezi, F., S.K. Chaharsooghi, M.M. Sepehri, and A.H. Kashan (2021), The capacitated 

modular single-allocation hub location problem with possibilities of hubs disruptions: modeling 

and a solution algorithm, Operational Research, Vol. 21, No. 1, 139-166. 

[22] Monemi, R.N., S. Gelareh, A. Nagih, and D. Jones (2020), Bi-objective load balancing multiple 

allocation hub location: a compromise programming approach, Annals of Operations Research, 

No., 1-44. 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

01
 ]

 

                            14 / 15

http://iors.ir/journal/article-1-718-en.html


A novel type I and II fuzzy approach for solving single allocation ordered median hub 

location problem 

79 

 

[23] Mostafa, J.J., H. Shavandi, A. Torabi, and M.A. Mohammad (2011), A Hybrid Intelligent 

Algorithm for a Fuzzy p-hub Median Problem, World Applied Sciences Journal, Vol. 13, No. 

10, 2164-2171. 

[24] Nickel, S., H. Karimi, and M. Bashiri (2016), Capacitated single allocation p-hub covering 

problem in multi-modal network using tabu search, International Journal of Engineering, Vol. 

29, No. 6, 797-808. 

[25] O'Kelly, M.E. (1987), A quadratic integer program for the location of interacting hub facilities, 

European Journal of Operational Research, Vol. 32, No. 3, 393-404. 

[26] O’Kelly, M.E. and D.L. Bryan (1998), Hub location with flow economies of scale, 

Transportation Research Part B: Methodological, Vol. 32, No. 8, 605-616. 

[27] Özgün-Kibiroğlu, Ç., M.N. Serarslan, and Y.İ. Topcu (2019), Particle swarm optimization for 

uncapacitated multiple allocation hub location problem under congestion, Expert Systems with 

Applications, Vol. 119, No., 1-19. 

[28] Pirkul, H. and D.A. Schilling (1998), An efficient procedure for designing single allocation hub 

and spoke systems, Management Science, Vol. 44, No. 12-Part-2, S235-S242. 

[29] Puerto, J., A.B. Ramos, and A.M. Rodríguez-Chía (2011), Single-allocation ordered median 

hub location problems, Computers & Operations Research, Vol. 38, No. 2, 559-570. 

[30] Rokhsari, S. and A. Sadeghi-Niaraki (2015), Urban network risk assessment using Fuzzy-AHP 

and TOPSIS in GIS environment, Iranian Journal of Operations Research, Vol. 6, No. 2, 73-

86. 

[31] Rouzpeykar, Y., R. Soltani, and M.A.A. Kazemi (2020), A Robust Optimization Model for the 

Hub Location and Revenue Management Problem Considering Uncertainties, Iranian Journal 

of Operations Research, Vol. 11, No. 1, 107-121. 

[32] Sangsawang, O. and S. Chanta (2020), Capacitated single‐allocation hub location model for a 

flood relief distribution network, Computational Intelligence, Vol. 36, No. 3, 1320-1347. 

[33] Shahparvari, S., A. Nasirian, A. Mohammadi, S. Noori, and P. Chhetri (2020), A GIS-LP 

Integrated Approach for the Logistics Hub Location Problem, Computers & Industrial 

Engineering, No., 106488. 

[34] Shen, H., Y. Liang, and Z.-J.M. Shen (2020), Reliable hub location model for air transportation 

networks under random disruptions, Manufacturing & Service Operations Management, No. 

[35] Taherkhani, G. and S.A. Alumur (2019), Profit maximizing hub location problems, Omega, 

Vol. 86, No., 1-15. 

[36] Tirkolaee, E.B., P. Abbasian, and G.-W. Weber (2021), Sustainable fuzzy multi-trip location-

routing problem for medical waste management during the COVID-19 outbreak, Science of the 

Total Environment, Vol. 756, No., 143607. 

[37] Tirkolaee, E.B., A. Mardani, Z. Dashtian, M. Soltani, and G.-W. Weber (2020), A novel hybrid 

method using fuzzy decision making and multi-objective programming for sustainable-reliable 

supplier selection in two-echelon supply chain design, Journal of Cleaner Production, Vol. 

250, No., 119517. 

[38] Yager, R.R. (1978), Ranking fuzzy subsets over the unit interval, 1978 IEEE Conference on 

Decision and Control including the 17th Symposium on Adaptive Processes, No., 1435-1437. 

[39] Zadeh, L.A. (1965), Fuzzy sets, Information and Control, Vol. 8, No. 3, 338-353. 

[40] Zadeh, L.A. (1978), Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 

Vol. 1, No. 1, 3-28. 

[41] Zarandi, M.H.F., A. Hemmati, and S. Davari (2011), The multi-depot capacitated location-

routing problem with fuzzy travel times, Expert Systems with Applications, Vol. 38, No. 8, 

10075-10084. 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

01
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            15 / 15

http://iors.ir/journal/article-1-718-en.html
http://www.tcpdf.org

