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In this paper, an efficient method is proposed for solving nonlinear quadratic optimal control problems 

with inequality constraints. The method is based upon Chebyshev cardinal wavelets. The operational matrix 

of integration is given for related procedures. This matrix is used to reduce the solution of the nonlinear 

constrained optimal control to a nonlinear programming one to which existing well-developed algorithms 

may be applied. Finally, the applicability and validity of method are shown by numerical results of some 

examples. Moreover, the comparison with the existing results show the preference of this method. 
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1. Introduction 
 

Solving an optimal control problem is complicated. Due to the complexity of the majority of the 

applications, optimal control problems are often solved numerically. Numerical methods for solving 

optimal control problems date back to nearly seven decades, the 1950s with the work of Bellman et 

al. [2, 3, 4]. Numerical methods for solving optimal control problems are divided into two major 

classifications, direct methods and indirect methods. In an indirect method, the calculus of 

variations [14, 19] is applied to determine the first-order optimality conditions of the original 

optimal control problem. The indirect approach leads to a multiple-point boundary-value problem 

that is solved to determine the candidate optimal trajectories called extremals. Each of the computed 

extremals is then examined to see if it is a local minimum, maximum, or a saddle point. Among the 

locally optimizing solutions, the specific extremal with the lowest price is selected. One of the 

widely used methods to solve optimal control problems is the direct method. There is a large 

number of studies that apply this method to solve optimal control problems (see for example [5, 6, 

9, 16, 21, 22, 24] and the references therein). This method transforms the optimal control problem 

into a mathematical programming problem by using either the discretization technique [5, 6] or the 

parameterization technique [9, 21, 22, 24]. The discretization technique converts the optimal control 

problem into a nonlinear programming problem with a large number of unknown parameters and a 

large number of constraints [6]. On the other hand, parameterizing the control variables [9, 24] 

needs the integration of the state equations. While the simultaneous parameterization of both the 

state variables and the control variables [24], results in a nonlinear programming problem with a 

large number of parameters and a large number of equality constraints. In the last several years, 

various methods have been proposed to solve these problems. Yen and Nagurka [33] proposed a 

method based on the state parameterization, using Fourier series, to solve the linear-quadratic 

optimal control problem (with equal number of state variables and control variables) subject to state 
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and control inequality constraints. Also, Razzaghi and Elnagar proposed a method to solve the 

unconstrained linear-quadratic optimal control problem with equal number of state and control 

variables [31]. Their approach is based on using the shifted Legendre polynomials in order to 

parameterize the derivation of each of the state variables. In [16] Jaddu and Shimemura proposed a 

method to solve the linear-quadratic and the nonlinear optimal control problems by using 

Chebyshev polynomials to parameterize some of the state variables, then the remaining state 

variables and the control variables are determined from the state equations. The approach proposed 

in [24] is based on approximating the state variables and control variables with hybrid functions. 

The aim of this paper is developing a computational approach for solving nonlinear constrained 

quadratic optimal control problems by using Chebyshev cardinal wavelets. The method is based on 

approximating the state variables and the control variables with Chebyshev cardinal wavelets [13]. 

We remind that the Chebyshev cardinal wavelets have advantages such as cardinality, orthogonality 

and spectral accuracy. The key advantage of these new wavelets, in comparison with other popular 

wavelets, such as the Chebyshev wavelets [12] and the Legendre wavelets [10], is their cardinality 

property. The cardinality property saves us from computing some integrals that are often appeared 

in evaluating the coefficients of the Chebyshev cardinal wavelets expansion of a function. In fact, 

the intended coefficients are achieved by computing the values of the considered function at some 

grid points which are also utilized in generating these wavelets. It must be noted that Chebyshev 

cardinal wavelets contain both features of the wavelets and Chebyshev cardinal functions. 

This paper considers the following sections: In Section 2 we describe the basic formulation of 

the Chebyshev cardinal wavelets required for our subsequent development. Section 3 is devoted to 

the formulation of optimal control problems. Section 4 summarizes the application of these methods 

to the optimal control problems and we report our numerical findings and demonstrate the accuracy 

of the proposed methods. Sections 5 completes this paper with a brief conclusion.  

 

2. Properties of Chebyshev cardinal wavelets  
 

The Chebyshev cardinal wavelets are reviewed in summary, and interested properties are presented 

in this section. 

2.1. The Chebyshev cardinal wavelets 

By using the process of building polynomial wavelets which has been defined in [11, 13], we can 

define the Chebyshev cardinal wavelets over [0,1]as follows: 

 
12

2 1
2 (2 2 1) < ,

ˆ = 2 2

0 ,

k

k

m k k
nm

M n n
C t n t

t

otherwise

 


 

  




 (1) 

where t  is an independent variable defined on [0,1] , k is an arbitrary non-negative integer, 

=1,2, ,2kn and 
mC  is the Chebyshev cardinal function of order m . Note that the coefficient 

2M


 is used for normality. The set ˆ{ ( ) | = 1,2, ,2 , = 1,2, , , }k

nm t n m M M  

generates an orthonormal basis for 
2 [0,1]w

n
L  (the subscript indicates weighted orthogonality), i.e.  

1

0

1 ( , ) = ( , ),
ˆ ˆ ˆ ˆ( ), ( ) = ( ) ( ) ( )d =

0 ( , ) ( , ),
   

 
  

 
nm n m w nm n m n

n

n m n m
t t t t w t t

n m n m
     (2) 

where  
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1 1
(2 2 1) < ,

( ) = 2 2

0 .

 
  




k

k k
n

n n
w t n t

w t

otherwise

 (3) 

By the usage of some simplifications, Eq. (1) can be rephrased in the following form 

 
2

=1,

2 1
2 ( ) < ,

ˆ = 2 2

0 ,



  







k M

nl

k k
l l mnm nm nl

M t n n
t

t

otherwise



     (4) 

where 
1

1
= ( 2 1)

2
nm mk

n 


   for =1,2, ,2kn  and = 1,2, , ,m M  and the values 

(2 1)
= ( )

2
m

m
cos

M





  are the zeros of the Chebyshev polynomial [7] of order M defined over 

the interval [ 1,1]  for = 1, 2, ,m M . 

For constructing a wavelet basis with the interpolation property, we assume a revised form of 

Eq. (4) as follows:  

  =1,

1
( ) < ,

2 2=

0 .



 







M

nl

k k
l l m nm nlnm

t n n
t

t

otherwise



   (5) 

We remind that the set { ( ) | = 1,2, ,2 , = 1,2, , , }k

nm t n m M M  forms an 

orthogonal basis with respect to the weight function ( )nw t  for 
2 [0,1]w

n
L  and  

1
1

0

( , ) = ( , ),
( ), ( ) = ( ) ( ) ( )d = 2

0 ( , ) ( , ).


   


 

  
  


k

nm n m w nm n m n
n

n m n m
t t t t w t t M

n m n m



     (6) 

  

2.2. Function of a variable approximation 

Any function 
2( ) [0,1]w

n
u t L  can be approximated by the Chebyshev cardinal wavelets as 

follows:  

2

=1 =1

( ) ( ) = ( ),

k M
T

nm nm

n m

u t c t C t ;

 

(7) 

where  

11 12 1 21 22 2 2 1 2 2 2
= [ , , , | , , , | | , , , ] ,T

M M k k k M
C c c c c c c c c c  (8) 

11 12 1 21 2 2 1 2
( ) = [ ( ), ( ), , ( ) | ( ), , ( ) | | ( ), , ( )] , T

M M k k M
t t t t t t t t        (9) 

and  

= ( ), = 1,2, ,2 , = 1,2, , .k

nm nmc u n m M
 

 
(10) 
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It has to be considered that 
nmc  are the items of the vector .C

 
 

 

2.3. Function of two variables approximation 

Let ( , )u t s  be a function of two variables defined for [0,1]t  and [0,1]s . Then ( , )u t s  can 

be expanded as following,  

( , ) = ( ) ( ). Tu t s t U s  (11) 

The following explanation clarifies the above statement: 

Remark 2.3.1. Eq. (7) can be expressed in a more simple form as follows  
ˆ

=1

( ) ( ) = ( ),
m

T

i i

i

v t v t V t;  (12) 

where ˆ = 2km M , 
i nmv v  and ( ) =i nmt   for the index = ( 1) .i n M m    

 Remark 2.3.2. The Chebyshev cardinal wavelets can be used to expand any function 
2

.
([0,1] [0,1]),


 w
n n

u L  

ˆ ˆ

=1 =1

( , ) ( , ) ( ) ( ) = ( ) ( ),
m m

T

p q p q

p q

u x t u x t t t t U s   ;

 

(13) 

where = [ ]pqU u  and its elements are computed as = ( , ).pq p qu u x t  

For example, we have compared the graph of the function ( , ) = (10 )u x t sin xt t (Fig. 1) with 

Fig. 2  and Fig. 3, for = 3M , =1k  and = 3M , = 2k , respectively.  

 

2.4. The operational matrix of integration 

 The operational matrix of integration of the Chebyshev cardinal wavelets have been derived in 

[13]. The integration of the vector ( )t defined in Eq. (9) can be approximated as  

0
( )d ( ), 

t

P t  ;  (14) 

where P  is called the operational matrix of integration for Chebyshev cardinal wavelets which is 

an m̂  order square matrix and has the following form  

 

ˆ ˆ

0

0 0
= .

0 0 0

0 0 0 0


 
 
 
 
 
 
 
 
 m m

A B B B B

A B B B

B
P

A B B

A B

A

 (15) 

 

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

31
 ]

 

                             4 / 14

http://iors.ir/journal/article-1-719-en.html


24 B. Salehi, et al. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. ( , ) = (10 )u x t sin xt t  

 

Figure  2. Approximation of ( , )u x t  with = 3M , = 1k  
 

 

Figure  3. Approximation of ( , )u x t  with = 3M , = 2k  
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In Eq. (15), = [ ]ijA a  and = [ ]ijB b  are M M matrices which their elements are obtained by 

the following relations:  

1

1 11 1
=1, =1,

1 1
= ( )d , = ( )d .

2 2  
 

 

 
  

M M
j l l

ij ijk k
l l i l l ii l i l

a b
    

 
   

 (16) 

As an illustrative example for = 2, = 1M k  and = 3, = 1M k , we have  

4 4

1 1 1 3 1 1

8 8 4 416 2 16 2

1 3 1 1 1 1

8 8 4 416 2 16 2
= ,

1 1 1 3
0 0

8 816 2 16 2

1 3 1 1
0 0

8 816 2 16 2 

 
  

 
 

 
 
 
  
 
 
   
 

P  

  

and 

 

6 6

1 1 1 1 1 3 1 1 1

18 18 18 32 9 9 932 3 8 3

5 1 5 5 1 5 5 5

36 36 36 18 18 184 3 4 3

1 3 1 1 1 1 1 1 1

18 32 18 18 9 9 98 3 32 3
= .

1 1 1 1 1 3
0 0 0

18 18 18 3232 3 8 3

5 1 5 5 1
0 0 0

36 36 364 3 4 3

1 3 1 1 1 1
0 0 0

18 32 18 188 3 32 3 

 
   

 
 

  
 
 

   
 
 

   
 
 

  
 
 

   
 

P  

 

2.5. The integration of the cross product 

 The integration of the cross product of two Chebyshev cardinal wavelets vectors ( )t  is  

1

0

2 2

0 0

0 0
= ( ) ( ) d = ,

0 0


 
 
  
 
 
 


T

k kM M

L

L
D t t t

L

 (17) 

where L  is an M M  matrix. 
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3. Problem statement 
  

Consider the following class of nonlinear systems with inequality constraints,  

( ) = ( , ( ), ( ))x t F t x t u t  (18) 

( , ( ), ( )) 0, = 1,2, , , [0,1] jS t x t u t j w t  (19) 

0(0) =x x
 

(20) 

where ( )x t  and ( )u t  are 
1 1j   and 

2 1j   state and control vectors, respectively. The aim of this 

paper is finding the numerical approximation of optimal control u(t) and the corresponding state 

trajectory ( )x t , 0 1t   satisfying Eqs. (18)–(20) while minimizing (or maximizing) the quadratic 

performance index  

1

0

1 1
= (1) (1) ( ( ) ( ) ( ) ( ) ( ) ( ))d ,

2 2
 Z Q R

T T TJ x x x t t x t u t t u t t  (21) 

where Z  and ( )tQ are positive semi-definite matrices, and ( )tR is a positive definite matrix. 

 

4. Description of the proposed method via examples 
 

4.1. Example 1 

 This example is adapted from [17]. Find the control vector ( )u t  which minimizes  

1
2 2

1
0

1
= ( ( ) ( ))d ,

2
J x t u t t  (22) 

subject to  

1 1

2 2

( ) ( )0 1 0
= ( ),

( ) ( )0 1 1

x t x t
u t

x t x t

      
      

        

(23) 

1

2

(0) 0
= ,

(0) 10

   
   

  

x

x
 (24) 

and the following inequality control constraint  

| ( ) | 1.u t  (25) 

We solve this problem by choosing = 5M  and = 2k . Let  

1 1( ) = ( ),Tx t W t  (26) 

2 2( ) = ( ),Tx t W t  (27) 
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2( ) = ( ),Tu t U t  (28) 

where 
1W , 

2W  and 
2U  can obtained similarly to Eq. (8) and ( )t  is given in Eq. (9). By 

expanding 
2 (0)x  in terms of Chebyshev cardinal wavelets, we get 

2 2(0) = [10,10, ,10] ( ) = ( ). T Tx t E t  (29) 

Integrating of Eqs. (26) and (27) from 0  to t , we obtain 

1 1( ) = ( ),Tx t W P t
 

(30) 

2 2 2( ) = ( ) ( ),T Tx t W P t E t  
 

(31) 

where P is the operational matrix of integration given in Eq. (14). By substituting Eqs. (26)–(31) in 

Eqs. (23) and (25), we have  

1 2 2( ) ( ) = 0,T T TW W P E t  
 

(32) 

2 2 2 2( ) ( ) = 0,T T T TW W P E U t   
 

(33) 

2| ( ) | 1 0.  TU t  (34) 

We collocate Eqs. (32)–(34) at , = 1,2, ,2k

i i M given in Eq. (4), so  

1 2 2( ) ( ) = 0,T T T

iW W P E   
 

(35) 

2 2 2 2( ) ( ) = 0,T T T T

iW W P E U    
 

(36) 

2| ( ) | 1 0.  T

iU   (37) 

By substituting Eqs. (28) and (30) in Eq. (22), we have 

1 1 1 2 1 2

1
= ( ),

2
T T TJ W PD P W U D U  (38) 

where 
1D  can be calculated similarly to Eq. (17). The problem has now been reduced to a 

parameter optimization problem as follows. Find vectors 
1W ,

2W  and U satisfying Eqs. (35)–(37) 

while minimizing Eq. (38). This problem can be solved by using package of Mathematica 7 . In 

Table 1, the minimum of J  using the rationalized Haar functions [29], hybrid of block-pulse and 

Legendre polynomials [21], hybrid of block-pulse and Bernoulli polynomials [24], linear B-spline 

functions [8], presented method together with the exact solution are listed. Also, Fig. 4 shows the 

behavior of state variables and control function obtained with = 5M  and = 2k . 
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4.2. Example 2 

 This example is adapted from [18] and also studied by using generalized gradient method [25], 

classical Chebyshev [32], Fourier-based state parametrization [34], rationalized Haar approach [29], 

hybrid of block-pulse and Legendre polynomials [21], hybrid of block-pulse and Bernoulli 

polynomials [24], interpolating scaling functions [9] and Linear B-spline functions [8]. Find the 

control vector ( )u t  which minimizes  

1
2 2 2

1 2
0

1
= ( ( ) ( ) 0.005 ( ))d ,

2
J x t x t u t t   (39) 

subject to 

1 1

2 2

( ) ( )0 1 0
= ( ),

( ) ( )0 1 1

x t x t
u t

x t x t

      
      

        

(40) 

1

2

(0) 0
= ,

(0) 1

   
     

x

x
 (41) 

 

Table 1. Estimated values of J  for Example 1 

Method J 

Rationalized Haar functions [29] 

= 4K  8.07473 

= 5K  8.07065 

Hybrid of block-pulse and Legendre [21] 

1= 4, = 3N M
 

8.07059 

1= 4, = 4N M  8.07056 

Hybrid of block-pulse and Bernoulli [24] 

= 4, = 2N M  8.07058 

= 4, = 3N M
 8.07055 

Linear B-spline functions [8] 

= 8M  8.07055438812380 

Presented Method 

= 5, = 2M k
 8.070554085321948 

Exact 8.07054 
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Figure 4. State variable 
1( )x t ,

2 ( )x t  and ( )u t  obtained for = 5M  and = 2k  in Example 1 

 

and the following state variable inequality constraint  

2( ) ( ),x t r t  (42) 

where  

2( ) = 8( 0.5) 0.5, 0 1.   r t t t  (43) 

We solve this problem by choosing = 5M  and = 2k . Let  

1 3( ) = ( ),Tx t W t  (44) 

2 4( ) = ( ),Tx t W t  (45) 

3( ) = ( ),Tu t U t  (46) 

where 
3W , 

4W  and 
3U  can obtained similarly to Eq. (8). By expanding ( )r t  and 

2 (0)x  in terms of 

Chebyshev cardinal wavelets, we get  

( ) = ( ),Tr t R t  (47) 

2 3(0) = [ 1, 1, , 1, 1] ( ) = ( )Tx t E t     
 

(48) 

Integrating, Eqs. (44) and (45) from 0 to t , we have 

1 3( ) = ( ),Tx t W P t
 

(49) 

2 4 3( ) = ( ) ( ),T Tx t W P t E t  
 

(50) 

where P  is the operational matrix of integration given in Eq. (14). By substituting Eqs. (44)–(50) in 

Eqs. (40) and (42), and collocate the resulting equations at 
i  given in Eq. (4), we obtain  
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3 4 3( ) ( ) = 0,T T T

iW W P E   
 

(51) 

4 2 3 3( ) ( ) = 0,T T T T

iW W P E U    
 

(52) 

4 3( ) ( ) 0.   T T

iW P E R   (53) 

By substituting Eqs. (46), (49) and (50) in Eq. (39), we have  

3 2 3 4 3 2 4 3 3 2 3= ( ( ) ( ) 0.005 ),   T T T T T TJ W PD P W W P E D P W E U D U  (54) 

where 
2D  can be calculated similarly to Eq. (17). The problem has now been reduced to a 

parameter optimization problem as follows. Find vectors 
3W , 

4W  and 
3U  satisfying Eqs. (51)–(53) 

while minimizing Eq. (54). This problem can be solved by using package of Mathematica 7 . In 

Table 2, we compare the minimum of J  using the proposed method with other solutions in the 

literature. The computational result for 
2 ( )x t  for = 5M  and = 2k  together with ( )r t  are given 

in Fig. 5. 

 

Table  2. Estimated values of J  for Example 2 

Method J 

Generalized gradient [25] 0.17800000 

Classical Chebyshev [32] 

2 1= 6, =12M K
 

0.19600000 

2 1=11, = 22M K
 

0.17880000 

2 1=13, = 26M K
 

0.17358000 

Fourier-based [34] 

3 = 5M
 

0.17115 

3 = 7M
 

0.17096 

3 = 9M
 

0.17013 

Rationalized Haar functions [29] 

= 64, = 100K w
 0.170115 

= 128, = 100K w
 0:170103 

Hybrid of block-pulse and Legendre [21] 

1= 4, = 3N M
 

0.17013645 

1= 4, = 4N M
 

0.17013640 

Hybrid of block-pulse and Bernoulli [24] 

= 4, = 3N M
 0.1700305 

= 4, = 4N M
 0.1700301 
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Interpolating scaling functions [9] 

= 4, = 5n r
 0.16982646 

= 5, = 5n r  0.16982636 

Linear B-spline functions [8] 

= 8M  0.169811048165412 

Present Method 

= 5, = 2M k
 0.169677247546684 

 

 

 

 
Figure  5: State variable 

2 ( )x t  and ( )r t  obtained for = 5M  and = 2k  in Example 2 

 

 

5. Conclusion 
  

In the presented study, the Chebyshev cardinal wavelets are used to solve nonlinear constrained 

optimal control problems. The problem has been reduced to a problem of solving a nonlinear 

programming one to which existing well-developed algorithms may be applied. The matrices P , 

and D  in Eqs. (14) and (17) have large numbers of zero elements and they are sparse, hence the 

proposed method is very attractive and reduces the computer memory. Illustrative examples are 

given to demonstrate the validity and applicability of the proposed techniques. 
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