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An approximate method for solving optimal control
problems with Chebyshev cardinal wavelets

B. Salehi!, K. Nouri®>* and L. Torkzadeh?

In this paper, an efficient method is proposed for solving nonlinear quadratic optimal control problems
with inequality constraints. The method is based upon Chebyshev cardinal wavelets. The operational matrix
of integration is given for related procedures. This matrix is used to reduce the solution of the nonlinear
constrained optimal control to a nonlinear programming one to which existing well-developed algorithms
may be applied. Finally, the applicability and validity of method are shown by numerical results of some
examples. Moreover, the comparison with the existing results show the preference of this method.
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1. Introduction

Solving an optimal control problem is complicated. Due to the complexity of the majority of the
applications, optimal control problems are often solved numerically. Numerical methods for solving
optimal control problems date back to nearly seven decades, the 1950s with the work of Bellman et
al. [2, 3, 4]. Numerical methods for solving optimal control problems are divided into two major
classifications, direct methods and indirect methods. In an indirect method, the calculus of
variations [14, 19] is applied to determine the first-order optimality conditions of the original
optimal control problem. The indirect approach leads to a multiple-point boundary-value problem
that is solved to determine the candidate optimal trajectories called extremals. Each of the computed
extremals is then examined to see if it is a local minimum, maximum, or a saddle point. Among the
locally optimizing solutions, the specific extremal with the lowest price is selected. One of the
widely used methods to solve optimal control problems is the direct method. There is a large
number of studies that apply this method to solve optimal control problems (see for example [5, 6,
9, 16, 21, 22, 24] and the references therein). This method transforms the optimal control problem
into a mathematical programming problem by using either the discretization technique [5, 6] or the
parameterization technique [9, 21, 22, 24]. The discretization technique converts the optimal control
problem into a nonlinear programming problem with a large number of unknown parameters and a
large number of constraints [6]. On the other hand, parameterizing the control variables [9, 24]
needs the integration of the state equations. While the simultaneous parameterization of both the
state variables and the control variables [24], results in a nonlinear programming problem with a
large number of parameters and a large number of equality constraints. In the last several years,
various methods have been proposed to solve these problems. Yen and Nagurka [33] proposed a
method based on the state parameterization, using Fourier series, to solve the linear-quadratic
optimal control problem (with equal number of state variables and control variables) subject to state
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and control inequality constraints. Also, Razzaghi and Elnagar proposed a method to solve the
unconstrained linear-quadratic optimal control problem with equal number of state and control
variables [31]. Their approach is based on using the shifted Legendre polynomials in order to
parameterize the derivation of each of the state variables. In [16] Jaddu and Shimemura proposed a
method to solve the linear-quadratic and the nonlinear optimal control problems by using
Chebyshev polynomials to parameterize some of the state variables, then the remaining state
variables and the control variables are determined from the state equations. The approach proposed
in [24] is based on approximating the state variables and control variables with hybrid functions.
The aim of this paper is developing a computational approach for solving nonlinear constrained
quadratic optimal control problems by using Chebyshev cardinal wavelets. The method is based on
approximating the state variables and the control variables with Chebyshev cardinal wavelets [13].
We remind that the Chebyshev cardinal wavelets have advantages such as cardinality, orthogonality
and spectral accuracy. The key advantage of these new wavelets, in comparison with other popular
wavelets, such as the Chebyshev wavelets [12] and the Legendre wavelets [10], is their cardinality
property. The cardinality property saves us from computing some integrals that are often appeared
in evaluating the coefficients of the Chebyshev cardinal wavelets expansion of a function. In fact,
the intended coefficients are achieved by computing the values of the considered function at some
grid points which are also utilized in generating these wavelets. It must be noted that Chebyshev
cardinal wavelets contain both features of the wavelets and Chebyshev cardinal functions.

This paper considers the following sections: In Section 2 we describe the basic formulation of
the Chebyshev cardinal wavelets required for our subsequent development. Section 3 is devoted to
the formulation of optimal control problems. Section 4 summarizes the application of these methods
to the optimal control problems and we report our numerical findings and demonstrate the accuracy
of the proposed methods. Sections 5 completes this paper with a brief conclusion.

2. Properties of Chebyshev cardinal wavelets

The Chebyshev cardinal wavelets are reviewed in summary, and interested properties are presented
in this section.

2.1. The Chebyshev cardinal wavelets

By using the process of building polynomial wavelets which has been defined in [11, 13], we can
define the Chebyshev cardinal wavelets over [0,1] as follows:

2M K n-1 n
. 2 22C (2%t -2n+1 <t<—,
ORI )7 2" )
0 otherwise,

where t is an independent variable defined on [0,1], kis an arbitrary non-negative integer,
n=1,2,...,2%and C,, is the Chebyshev cardinal function of order m. Note that the coefficient

,/M is used for normality. The set {¥_ (t)|n=1,2...,2,m=12,....M, M e}
T
generates an orthonormal basis for stn [0,1] (the subscript indicates weighted orthogonality), i.e.

(n,m)=(n",m’),

. ) . R |1
<l//nm (t)!!//n’m’(t )>Wn - .[0 an (t )l//n’m’(t )Wn(t )dt - {0 (n’ m) ” (n,, m,)’ (2)

where
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-1 n
w (2t —2n +1 <t <—,

w, ()= ( ) 2k 2k (3)
0 otherwise.

By the usage of some simplifications, Eq. (1) can be rephrased in the following form

k™ _ _
X ’Zﬂzz H (ﬁ) nklﬁt<lk,
lr//nm (t)= T 1=1,1#m nm _§n| 2 2 (4)

0 otherwise,

1
where §nm=w(7ym+2n—l) for n=1,2,...,2 and m=1,2,...,M, and the values

((Zm—

1
1, = —C0s T)ﬂ) are the zeros of the Chebyshev polynomial [7] of order M defined over

the interval [-1,1] for m=1,2,...,M .
For constructing a wavelet basis with the interpolation property, we assume a revised form of
Eqg. (4) as follows:

M — J—
I1 (ﬁ) n_klst <£k’
¥om (t): I=Ll=m  Snm _gnl 2 2 (5)
0 otherwise.
We remind that the set {w, (t)|n=1,2...,2, m=1,2,...,.M,M €]} forms an

orthogonal basis with respect to the weight function w, (t) for stn [0,1] and

72. —_— ’ 1A
Vo O Oy = [V OV Ow, Ot = {mrzes MZM )
0 (n,m)=(n",m").

2.2. Function of a variable approximation
Any function u(t) € Livn [0,1] can be approximated by the Chebyshev cardinal wavelets as

follows:
K M
U); DD Conon(t) = CT(Y), @
n=1m=1
where
C =[C11.CrpreesCom [Co1sConrevnsCom |- 1C 4 1€y v T 8)

PE) = [y ®) W @) i O [ ),y O]y O,y O 9)

and

— — k —
Con =U(&,,), N=1,2,...,2°, m=12..M. (10)
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It has to be considered that ¢ are the items of the vector C.

2.3. Function of two variables approximation
Let u(t,s) be a function of two variables defined for t €[0,1] ands €[0,1]. Then u(t,s) can
be expanded as following,

u(t,s) =¥ U ¥(s). (11)

The following explanation clarifies the above statement:
Remark 2.3.1. Eq. (7) can be expressed in a more simple form as follows

TSI TAOEARTO) @)

where M =2“M , v. =v_and ,(t) =, fortheindex i = (N—1)M +m.
Remark 2.3.2. The Chebyshev cardinal wavelets can be used to expand any function

uely (0.11x[01])
u(x,t) s DD UK, t)w, (), (1) = T (HUP(s), (13)

p=1lg=1
where U =[u ] and its elements are computed as U, = U(X,t,).

For example, we have compared the graph of the function u(x,t) = sin(10xt) —t (Fig. 1) with
Fig. 2 and Fig. 3, forM =3,k =1 and M =3,k = 2, respectively.

2.4. The operational matrix of integration
The operational matrix of integration of the Chebyshev cardinal wavelets have been derived in
[13]. The integration of the vector W (t) defined in Eq. (9) can be approximated as

[RIGLELET0} (14)

where P is called the operational matrix of integration for Chebyshev cardinal wavelets which is
an m order square matrix and has the following form

A B B B B

0 A B B .. B
P= (.) (.) o B (15)

A B B

0 0 0 A B

0 0 O 0 A
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. 0.0
Figure 1. u(x,t) = sin(10xt) —t

Figure 2. Approximation of u(x,t) with M =3, k =1

1.0

Figure 3. Approximation of u(x,t) with M =3, k=2

B. Salehi, et al.


http://iors.ir/journal/article-1-719-en.html

[ Downloaded from iors.ir on 2026-01-31 ]

An approximate method for solving optimal control problems with 25
Chebyshev cardinal wavelets

InEq. (15), A=[a;] and B =[b;] are M x M matrices which their elements are obtained by
the following relations:

- UJ T— 77I d b T— 77I d
2 =57 .11.‘77. ) vyl .11.(77. )dz. (16)
As an illustrative example for M = 2, k=1land M =3,k =1, we have
11 1 3 1 1
8 1642 8 1642 4 4
1.3 1.1 1 1
5|8 16V2 8 16V2 4 4
1 1 1 3 ’
0 0 ~— ~4
8 162 8 1642
1 3 1 1
0 0 g “4
8 16v2 8 1642 ),

and

1 1 1 1 1 3

18 3243 18 8J/3 18 32

S 1 5 5. 1

36 443 36 36 443
1 3 1 1 1

_+—
18 32 18 83 18 323

ol Sluo ol
olr Slu ol
ol Slu ol

1 1 1. 1 1 48

0 0 0 I
18 3243 18 8J/3 18 32

0 0 0 5 1 > 5.1
36 443 36 36 443

0 0 0 1 43 1 1 1 1

= 4 -
18 32 18 83 18 323),.

2.5. The integration of the cross product
The integration of the cross product of two Chebyshev cardinal wavelets vectors W(t) is

L 0 ... 0
O L ... 0

D:J:‘P(U‘P(tfdt: S ; (17)
0 0 o Ly i,

where L isan M xM matrix.
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3. Problem statement

Consider the following class of nonlinear systems with inequality constraints,

%(t) = F(t, x(t),u(t)) (18)
S,tx®)u)<0,  j=12..w, te[0]] (19)
x(0) = X, (20)

where X(t) and u(t) are j,x1 and j,x1 state and control vectors, respectively. The aim of this

paper is finding the numerical approximation of optimal control u(t) and the corresponding state
trajectory X(t), 0 <t <1 satisfying Egs. (18)—(20) while minimizing (or maximizing) the quadratic
performance index

= %XT (1)Zx (1) + %I:(XT Q)X (t) +u” (t)R(t)u(t))dt, (21)

where Z and Q(t) are positive semi-definite matrices, and R(t) is a positive definite matrix.

4. Description of the proposed method via examples

4.1. Example 1
This example is adapted from [17]. Find the control vector u(t) which minimizes
1t 5 2
1= [ @ +u*@)et, (22)
subject to
X () _[0 1 jx®| (0
o) Lo el )
x,(0)|_| O
{x 2(0)} - [10}’ (24)

and the following inequality control constraint
lut) |<1. (25)
We solve this problem by choosing M =5 andk = 2. Let

Xy (t) =W, ¥ (t), (26)

X, () =W, P(t), (27)
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u(t)=u; ¥, (28)

where W,, W, and U, can obtained similarly to Eq. (8) and ¥ (t) is given in Eg. (9). By
expanding X, (0) in terms of Chebyshev cardinal wavelets, we get

x,(0) =[10,10,...,10] W¥(t) = E] ¥(t). (29)
Integrating of Egs. (26) and (27) from O to t, we obtain

X, (t) =W, P¥(t), (30)

X, (t) =W, PW(t) + E; (1), (31)

where P is the operational matrix of integration given in Eq. (14). By substituting Egs. (26)—(31) in
Egs. (23) and (25), we have

(\NlT _WzT P- EzT )P (t) =0, (32)
(W,” +W,P+E, —U])¥(t) =0, (33)
U ¥(t)|-1<0. (34)
We collocate Egs. (32)—(34) at & ,i =1,2,...,2 M given in Eq. (4), so
(VVlT _WzT P- EzT )Y (&5) =0, (35)
W, +W, P +E; —~U;)¥(5) =0, (36)
U, ¥(&)[-1<0. (37)

By substituting Egs. (28) and (30) in Eq. (22), we have
:%@Nf PD,P'W, +U]DU,), (39)

where D, can be calculated similarly to Eq. (17). The problem has now been reduced to a

parameter optimization problem as follows. Find vectors W, ,W, and U satisfying Egs. (35)—(37)

while minimizing Eq. (38). This problem can be solved by using package of Mathematica7 . In
Table 1, the minimum of J using the rationalized Haar functions [29], hybrid of block-pulse and
Legendre polynomials [21], hybrid of block-pulse and Bernoulli polynomials [24], linear B-spline
functions [8], presented method together with the exact solution are listed. Also, Fig. 4 shows the
behavior of state variables and control function obtained with M =5 and k = 2.
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4.2. Example 2

This example is adapted from [18] and also studied by using generalized gradient method [25],
classical Chebyshev [32], Fourier-based state parametrization [34], rationalized Haar approach [29],
hybrid of block-pulse and Legendre polynomials [21], hybrid of block-pulse and Bernoulli
polynomials [24], interpolating scaling functions [9] and Linear B-spline functions [8]. Find the
control vector u(t) which minimizes

J= % L) + X2 (t) + 0.005u2 (), (39)

x®) | [0 1 (x®]| |0

{xa(t)Ho —JLN)HJ““ “0
x,00{ |0
LZ«DH—J’ “

Table 1. Estimated values of J for Example 1

subject to

Method J
Rationalized Haar functions [29]
K=4 8.07473
K=5 8.07065
Hybrid of block-pulse and Legendre [21]
N=4M,=3 8.07059
N =4,M,=4 8.07056
Hybrid of block-pulse and Bernoulli [24]
N =4M =2 8.07058
N=4M=3 8.07055
Linear B-spline functions [8]
M =8 8.07055438812380
Presented Method
M=5k=2 8.070554085321948
Exact 8.07054
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-2

Figure 4. State variable X, (t), X,(t) and u(t) obtained for M =5 and k = 2 in Example 1
and the following state variable inequality constraint
X, () <r(t), (42)
where
rit)=8(t —-0.5°-05  0<t<l. (43)

We solve this problem by choosing M =5 andk = 2. Let

X, () =W, ¥ (), (44)
X,(t) =W, P(t), (45)
ut)=U;¥), (46)

where W,, W, and U, can obtained similarly to Eq. (8). By expanding r(t) and x,(0) in terms of
Chebyshev cardinal wavelets, we get

rt)=R"W(t), (47)

X,(0) =[-1,-1,...,—1,-1]¥(t) = E] ¥(t) (48)
Integrating, Egs. (44) and (45) from O to t, we have

X, (t) =W, PY(t), (49)

X, (t) =W, PW(t) + E] W (), (50)

where P is the operational matrix of integration given in Eq. (14). By substituting Eqgs. (44)—(50) in
Egs. (40) and (42), and collocate the resulting equations at £ given in Eq. (4), we obtain
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(\NaT _W4T P-— EsT )‘{I(gl) =0, (51)
(W, +W, P+E; -U;)¥(§) =0, (52)
W,P+E] -RT)¥(&)<0. (53)

By substituting Egs. (46), (49) and (50) in Eq. (39), we have
J=W,PD,PW,+W,P+E])D,(P'W,+E,)+0.003U;DU.,), (54)

where D, can be calculated similarly to Eq. (17). The problem has now been reduced to a

parameter optimization problem as follows. Find vectors W,, W, and U, satisfying Egs. (51)—(53)

while minimizing Eq. (54). This problem can be solved by using package of Mathematica 7. In
Table 2, we compare the minimum of J using the proposed method with other solutions in the
literature. The computational result for X,(t) for M =5 and k = 2 together with r(t) are given

in Fig. 5.

Table 2. Estimated values of J for Example 2

Method J
Generalized gradient [25] 0.17800000
Classical Chebyshev [32]

M, =6,K, =12 0.19600000
M, =11,K, =22 0.17880000
M, =13,K, =26 0.17358000

Fourier-based [34]
M, =5 0.17115
M,=7 0.17096
M, =9 0.17013
Rationalized Haar functions [29]

K =64,w=100 0.170115

K =128,w =100 0:170103
Hybrid of block-pulse and Legendre [21]
N=4M,=3 0.17013645
N=4M,=4 0.17013640
Hybrid of block-pulse and Bernoulli [24]

N=4M=3 0.1700305
N=4M=4 0.1700301
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Interpolating scaling functions [9]
n=4,r=5 0.16982646
n=5r=5 0.16982636
Linear B-spline functions [8]
M=8 | 0.169811048165412
Present Method
M =5k=2 | 0.169677247546684
1.5
1.0
— ()
05¢
— x2(1)
0.2 0.4 0.6 0.8 1.0
0.5

Figure 5: State variable X, (t) and r(t) obtained for M =5 and k =2 in Example 2

5. Conclusion

In the presented study, the Chebyshev cardinal wavelets are used to solve nonlinear constrained
optimal control problems. The problem has been reduced to a problem of solving a nonlinear
programming one to which existing well-developed algorithms may be applied. The matrices P,
and D in Egs. (14) and (17) have large numbers of zero elements and they are sparse, hence the
proposed method is very attractive and reduces the computer memory. Illustrative examples are
given to demonstrate the validity and applicability of the proposed techniques.
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