[صفحه اصلی ]   [Archive]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
ارسال مقاله::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
سایتهای مرتبط::
صورتجلسات::
نشانی::
::
جستجو در پایگاه

جستجوی پیشرفته
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
آخرین مطالب بخش
:: راه‌اندازی پایگاه
:: جلد 12، شماره 1 - ( 3-1400 ) ::
جلد 12 شماره 1 صفحات 126-109 برگشت به فهرست نسخه ها
Implementation of clustering on a multi objective single machine batch scheduling problem (A case study in Iran)
Hamidreza Haddad*
university of Tehran ، hamidrhaddad@gmail.com
چکیده:   (4081 مشاهده)
Batch scheduling is among the important problems in industrial engineering and has been widely attendant in practical applications. Clustering is the set of observation assignment into some subsets so that the observations in the same cluster are similar in some sense and the similarity of generated clusters is very low. Clustering is considered as one of the approaches in unsupervised learning and a common technique for statistical data analysis which has been applied in many fields, including machine learning, data mining and etc. This paper studies a case study in Iran Puya company (as a home appliance maker company in Iran). In the production line of refrigerator of the current company, a cutting machine is identified as a bottleneck that can process several iron plates simultaneously. In this regard a good scheduling on this cutting machine improves the effectiveness of production line in terms of cost and time. The objective is to minimize the total tardiness and maximizing the job values when the deteriorated jobs are delivered to each customer in various size batches. Based on these assumptions a mathematical model is proposed and two hybrid algorithms based on simulation annealing and clustering methods are offered for solving it and the results are compared with the global optimum values generated by Lingo 10 software. Based on the effective factors of the problem, a number of sensitivity analyses are also implemented including number of jobs and rate of deterioration. Accordingly, the running time grows exponentially when the number of jobs increases. However the rate of deterioration could not affect the running time. Computational study demonstrates that using clustering methods leads an specified improvements in total costs of company between 15 to 41 percent.
متن کامل [PDF 1370 kb]   (10148 دریافت)    
نوع مطالعه: پژوهشی | موضوع مقاله: Mathematical Modeling and Applications of OR
دریافت: 1400/11/19 | پذیرش: 1400/3/22 | انتشار: 1400/3/22
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 12، شماره 1 - ( 3-1400 ) برگشت به فهرست نسخه ها
مجله انجمن ایرانی تحقیق در عملیات Iranian Journal of Operations Research
Persian site map - English site map - Created in 0.04 seconds with 38 queries by YEKTAWEB 4710