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A nonmonotone extension of the line search method for
minimization of locally Lipschitz functions

Z. Akbari' ", Z. Saeidian®

In this paper, a nonmonotone line search strategy is presented for minimization of the locally
Lipschitz continuous function. First, the Armijo condition is generalized along a descent direction
at the current point. Then, a step length is selected along a descent direction satisfying the
generalized Armijo condition. We show that there exists at least one step length satisfying the
generalized Armijo condition. Next, the nonmonotone line search algorithm is proposed and its
global convergence is proved. Finally, the proposed algorithm is implemented in the MATLAB
environment and compared with some methods in the subject literature. It can be seen that the
proposed method not only computes the global optimum also reduces the humber of function
evaluations than the monotone line search method.
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1. Introduction
In this paper, we consider the following unconstrained nonsmooth optimization problem:

min f(x), (1)
where f:R™ — Ris a locally Lipschitz continuous function. There exist several iterative methods
for solving the problem (1) where they use the monotone iterative techniques [1-9]. If the sequence
{x;} be generated by a monotone iterative algorithm, then f(xy41 ) < f(x). These methods may
not converge to the global optimal point and converge to the local optimal point when the initial point
is selected near to that point. This is a disadvantage of monotone methods, while honmonotone
methods do not dependent on the initial point.

In this paper, we try to extend a nonmonotone method for solving (1). When f: R™ — R is a twice
continuously differentiable function, then one of the most important methods, for solving the problem
(1), is the line search method [10]. The basis of the line search method is finding a step length a;
along a descent direction dj. The line search method is divided into two classes: nonmonotone and
monotone. The Computing of the step length is done by the exact and inexact techniques.

In the exact search method, « is calculated from solving the following problem:

min f (x, + a dy).
As can be seen, the above problem is an optimization problem, and it has a high computational cost
in solving Large-scale problems. In the inexact line search method, a;, is the largest number satisfying
the Armijo condition:
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f o+ ardy) < f(x) + cra Vo f(x)" dy,
where ¢; € (0,1) and V f(x;) is the gradient of f at the point x;, [10]. The Armijo condition is also
called the sufficient reduction condition. a;, is usually calculated from the Backtracking method. For
the first time, the nonmonotone line search technique was introduced by Grippo et al. [11] for solving
the smooth one of the problem (1). In this method, d;, is the Newton descent direction and «;, € (0,1]
is the biggest nonnegative number such that

fxp + agedy) < OS%%(k)[f(xk—j)] +caiV f(x)id, (2)
where m(0) = 0, 0 < m(k) < min[m(k — 1) + 1, M], for k = 1,and M is a nonnegative integer.
Afterwards, many researchers studied the nonmonotone line search technique and its global
convergence [12,13]. Due to the good numerical results of the nonmonotone line search method, the
researchers combined this method with other popular methods in nonlinear optimization [14,15].
There is not any nonmonotone technique for minimizing the locally Lipschitz continuous function.
In this work, we get the nonmonotone idea and propose a new method for solving the nonsmooth
optimization problem (1). We review some preliminary concepts of the nonsmooth analysis in
Section 2. In Section 3, the NN line search is proposed for computing a step length along a given
descent direction. Then, the global convergence property of the presented minimization algorithm is
proved. The presented algorithm is generalized to find a descent direction and step length satisfying
the N Armijo condition. Next, the global convergence property of the presented algorithm is shown.
The numerical results are reported in Section 5. Section 6 states the conclusion and the future research.

2. Preliminaries

In this section, we state the basic concepts and definitions of the nonsmooth analysis [16]. The Clarke
generalized directional derivative of the locally Lipschitz function f at the point x in the direction d
is defined by:

£ d): = limsupy,, ¢y o 20T
The Clarke generalized subdifferential at point x is given

of () = € ER f°(x,d) 2¢"d  VdER",

where each vector ¢ € df (x) is called the subgradient of f at x. For € > 0, the Goldstein &-
subdifferential of f at the point x is the set

Oef (x): = clcon{f (y), llx = yll> < €},
where “cl con” is the closure convex hull of a set. Each vector & € d.f(x) is called an e-subgradient
of the function f at x [16]. It can be seen that f;"(x, d) = supgeq,f(x) &Td for all d € R™. If f be
differentiable at x, then Vf(x) € df (x). Furthermore, if f is continuously differentiable at x, then
df (x) = {V f(x)}. x* is called as an e-stationary point of f if 0 € d.f(x) or f7(x,d) = 0 for all
d € R™.

3. Nonsmooth nonmonotone line search technique and its convergence
In this section, we present a new method for the problem (1) and we show its global convergence
property. First of all, we define a descent direction by d.f(-), for a given € > 0. Next, by this
definition, we generalize the Armijo condition and show that it is well-defined. Then, we extend the
Nonmonoton (N) line search algorithm and demonstrate its convergence property. Let vy, is a vector
of d.f (x), with the least [,-norm:

v = argmin {[[¢]] [§ € 0.f(x)}- ()

If v,fd < 0, then d is a descent direction for f at x,. Now, for a decreasing direction, the
Nonmonotone Armijo condition is defined for the continuous locally Lipschitz functionas as follows:
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Definition 3.1. Suppose that dj, is a descent direction for the function f at x;.We say that the step
length @ > 0 satisfies the Nonmonotone Armijo condition, if the following inequality holds:

fOg + ardi ) — (i) < —cragvidy, (4)

where vy, is the solution of (3), ¢; € (0,1],m(0) = 0, f (X)) = MaXos j< m@e [ (Xe—j), fork =1,
0 <m(k) < min{m(k — 1) + 1, M} and M is a nonnegative integer.

Now, we show that there exists at least one step length for each descent direction such that the N
Armijo condition (4) holds.

Proposition 3.2. Suppose that € > 0 and v is the solution of the problem (3), then

&

f(xk + el dk) — () < — e llvell, (5)

where d;, = —vy.

Proof. Let t = ”;—“. Since f is a locally Lipschitz continuous function, then according to Mean-
k

Value Theorem, Theorem 3.18 in [16], there exists z € (x, x, + tdy), where [x, x + t dj] is
the line segment, such that

f (i + tdy) — f(xi) € Of (2)7 (tdy).
Therefore, there exits & € df (2)

f x4+ tdy) = f(xy) = t&7dy. (6)

Since ||z — xx|| < &, then & € 9.f (xy). As respects f (xy, di) = max{&Tdy | € 0.f(xx)}, we
have
fl +tdy) — fxg) = 8T dy <t £ (g, dy).

[l +tdy) < f(xg) + tfe (r, die).
On the other hand f (x;x)) = MaXo< j< meef (Xi—;)- Thus
f + tdy) < f(xp) + tfe (g, di) < f Q) + tfe (X, di).
Also ¢; € (0,1) and £’ (x, dg) < 0, SO

fOa +td) < fOauy) +t fe (G di) < fOapy) + et fe (e, di),
and the proof is complete.

Hence

Now, we are ready to present the new N line search method algorithmically as follows:

Algorithm 3.1 (Nonmonotone line search technique)
Step 1. Set¢,0,¢; € (0,1),x, € R™, k = 0, and a positive integer M.
Step 2. Consider vy, as a solution of the problem (3)

If ||lvkll < €, then stop, else set d;, = —v, and got to the Step 3.

Step 3 Set @ = ¢ and 6 = min{e, — }

lldkll
While f(xx + ady) > f(xg) — c1a |lvll* and a > 6
a =o*aq;
End(While)

Step 4 If a > g, then ay: = a, else ay:= 0. Set x,,1 = xp + ardy, k = k + 1 and go to Step 2.
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The following lemma shows that the generalized sequence {f(x;)}, by Algorithm 3.1, is
nonincreasing.

Lemma 3.3 Suppose that f is a locally Lipschitz function and the level set £L = {x |f(x) < f(x¢)}is
bounded. Then the following inequalities hold,

flr) < f(agesn) < f0am)s
where the sequence {f(x;x))} is generated by Algorithm 3.1. Also {f (x;ck))} has at least one limit
point.

Proof. According to the definition of m(k), we have m(k + 1) < m(k) + 1,
f(xl(k+1)) = 0< jgnrggc+1)f(xk+1—j)
< Osjgrlna()é)+1f(xk+1—j)
= max {f(xl(k))'f(xk+1)}
= f(uw).
Hence f(x) < f(x00) < f(x0), S0 {x;} © £ . On the other hand, £ is bounded, therefore {x;}

has at least one convergent subsequence. Since the function f is locally Lipschitz function, so the
sequence {f (x;x))} has at least a limit point.

Now, we are ready to prove the global convergence of Algorithm 3.1. In the following, theorem,
we show that 0 € df(x*), for each accumulation point x* of the generated sequence {x,} by
Algorithm 3.1.

Theorem 3.4 Let f: R™ — R be a locally Lipschitz function and the level set £ be bounded. If
Algorithm 3.1 does not terminate after finitely many iterations, then 0 € df (x*), where x* is a limit
point of {x;}.

Proof. Suppose that ¢ > 0 and Algorithm 3.1 does not terminate after finitely many iterations. From
(5), we have

() = f(aago-n) < = atigy-a|lvgo-l’,  for k>M (7)

Lemma 3.2 shows that the sequence {f (x;x))} is convergent, then taking limit, k — oo, (7) implies

lim al(k)_luvl(k)_luz = 0. (8)

k—co
Since dj, = —vy and i, < g, (8) implies
lim a1 digo-[ = 0.
Let [(k) = I(k + M + 2), we prove by induction that
Jim - jlldigo-5l| =0 ©)

fork> j—1andj > 1.If j = 1,)8) implies (9). Now, we assume that (9) holds for a given j, and
we prove (9) for j + 1. Consider (5) at k = [(k) — (j + 1) as follows:
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2
f(xigo-1) < f (xl(i(k)—(j+1))) ~ A®it)-G+1) ||”i(k)—(j+1)|| :

Using the same technique in converting the equation (7) to (8), we have
M @j)-je1) ldigo-genl| =0

Then (9) is correct forall k = j — 1 and j = 1. Thus |[x;) — Xjk)—(j+1)|| = 0 and since f is
locally Lipschitz, we have

Hm f(Xg00-¢j+)) = Hmf(x00-) = lim f(xq00), Vi 1. (10)
On the other hand, we have
I(k)-k-1
X1 = Xl Z axz(k)—jd"i(k)—j ’
j—1
then
lim [ 1241 = 25| = 0.

Since f is locally Lipschitz and by (10), then we have
lim f (xee1) = lim £ (xg0) = lim £ (xigo)-

We have the N Armijo condition (5) as follows:
fes1) < f(xi(k)) — cragllvell.
Taking limits for k —» oo
Nim a lviell? = 0,

and since a;, < ¢ is bounded, we have
Jim [[v || = 0. (16)

Since df (+) is upper semicontinuous, so we have 0 € df (x*), where x* is an accumulation point of
the sequence {x,} and proof is complete.

4. Numerical results
In this section, the numerical results are reported to show the performance of the N line search
technique. The proposed algorithm is compared with the steepest descent approximation algorithm in
[18] on the nonsmooth optimization problems in [16,19,20]. The algorithms are implemented in the
MATLAB 2019b environment. When we compute the function value, a subgradient is computed.
Thus the number of function and subgradient evaluations are equal. So, we just report the number of
function evaluations for comparing these two algorithms.
Table 1 contains the test problems with their optimal values in n = 10,n = 100 and n = 1000,
where n indicates the dimension of the problem. Problems 8 and 10 are nonconvex and the rest of the
problems are convex.
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Table 1. The test problems with their optimum values

No. Problems n =10 n =100 n = 1000

1 MAXQ 0 0 0

2 MAXHILB 0 0 0

3 LQ -1.272792e+01 -1.400071e+02  —1.41279e+003
4 CBa3l 18 198 1998

5 CBall 18 198 1998

6 problem 2 from TEST29 0 0 0

7 problem 5 from TEST29 0 0 0

8 problem 6 from TEST29 0 0 0

9 problemllfrom TEST29  1.019614e+02 1.186324e+03 1.20312e+004

10 problem 13 from TEST29 4.537978e+00 5.559023e+01 5.66131e+002

Since the problem (3) is not practical in many cases, instead of vy, the approximate solution for the
problem (3) is used, i.e. wy. wy, is the approximated solution to the problem (3) which is obtained
from the reference [18]. The N Armijo condition is also replaced by the following condition:

f O + ardi) — f(xi0) < —cragllwgll?,
where d;, = —wy.
By using the above condition instead of the condition (5), as shown in the proof of Theorem 1, we
can show:

Jim o lwilI? = 0.

Since ||v |12 < |lwll?, so we have

lim vl = 0
The alternative condition results in the correctness of Algorithm 3.1. We investigate the efficiency of
the proposed algorithm in solving the test problems for M = 1,2,5,10. In the case M =1, the
proposed algorithm is converted to the steepest descent approximation algorithm in [18]. Nonsmooth
nonmonotone line search algorithm and steepest descent approximation algorithm are shown with
NLS and MY, respectively. We consider the abbreviations ny; ¢ and n,y for the number of function
evaluations of the NLS algorithm and the MY algorithm, respectively. The parameters are initialized
similar to MY algorithm in [18] as follows:

g =1073,8, =10"%¢c, =107%,0 = 5.

In references [19,20], the starting points are chosen so that a test algorithm may fall in the local
minimum, hence we set the starting point as the one selected in the references. We say that an
algorithm solves a test problem if the following inequality holds:

If* =1l <y,

) fI+1

where y, f*, and f are the number of digits means of the optimal solution, the optimal value, and
the computed optimal value, respectively. Now, we report how many problems are solved by the
proposed algorithm for different M and y in Table 2.

Table 2. The number of problems solved by the proposed algorithm for difference M and y.

n=10 n =100 n = 1000
M y=10"* y =105 y=10"* y=10"° y=10"* y=10"°
1 9 7 6 4 5 5
2 9 8 8 5 7 6
5 7 7 6 5 6 6
10 9 7 7 4 7 6
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According to Table 2, the case M = 2 is the best choice because the proposed algorithm solves more
problems in this case than in other cases. The performance of the algorithms is roughly similar for
n = 10. When the dimension increases, more problems are solved for m > 2. This demonstrates that
the proposed method is more efficient than MY method for large-scale problems. Also, the most test
problems are solved by the proposed algorithm in the case M = 2. In Table 3, we report the optimal
value of problems where obtained by NLS method in the cases M = 1,2,5,10.

Since better results were obtained for the case M=2, then we report the ratio of the number of function
evaluations by the MY method to the number of function evaluations by NLS method for M=2, i.e.

:ﬂ. This ratio indicates how increasing inaccuracy is related to the increase in the number of
NLS

function evaluations. In Table 4, the symbols ~"+" and ~-" are used to show NLS algorithm solves a
problem successfully or unsuccessfully, respectively. In the case M=2 and the large scale dimensions,
the optimal solution of some problems is calculated with the much lower number of function
evaluations. In other problems, there is no significant difference between cases, but this is negligible
given that the proposed method can solve more problems.

5. Conclusion

In this paper, we presented the nonsmooth nonmonotone line search technique for solving
nonsmooth optimization problems for the first time. We generalized the Armijo condition for
the locally Lipschitz function, where called the N Armijo condition. Then, we showed that
there exists at least one step length for each descent direction satisfying the N Armijo
condition. The minimization algorithm was proposed and its global convergence was proved.
Afterward, the proposed algorithm and the steepest descent approximation method were
implemented and compared. The reported numerical results showed that the proposed
algorithm has better implementation than the steepest descent approximation method. In
future work, we want to combine the nonsmooth trust region method with the nonmonotone
line search technique. We guess, if the trust region method is combined with the N line search
technique, then we will get better numerical results.
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Table 3 The obtained optimal values for M =1,2,5,10 for sizes n = 10,100,1000 .

n=10 n =100 n =100
No. M=1 M=2 M=5 M =10 M=1 M=2 M=5 M =10 M=1 M=2 M=5 M =10
1 2.93e-13 2.93e-13 2.93e-13 2.93e-13 3.18e-13 3.18e-13 3.18e-13 3.18e-13 4.97E-13 4.97e-13 4.97e-13 4.97e-13
2 3.25e-06 2.08e-06 3.34e-06 2.79e-06 8.80e-06 9.27e-06 7.75¢-06 3.93e-05 0.000953301  0.000828806  0.000352293  0.000135647
3 -12.7277 -12.7279 -12.7279 -12.7279 -140.0048 -140.005 -140.0042 -140.0047 -1412.798 1412.798 -1412.798 -1412.799
4 18.00001 18.00001 18.00001 18.00001 198.0209 198 198 198 1999.577 1998.002 1998.001 1998.005
5 18.00001 18.00006 18.00536 18.00055 198.0161 198.0107 198.0211 198.0215 1998.721 1998.035 1998.231 1998.062
6 5.66e-07 5.64e-07 5.72e-07 5.72e-07 3.40e-07 5.28e-07 4.96e-07 4.96e-07 4.92e-07 4.78e-07 4.79¢-07 4.81e-07
7 1.97¢-05 1.06e-05 8.49¢-06 1.15e-05 0.000124626  6.05¢-05 0.000221875  0.000157379 0.0213502 0.000722257  0.000624773  0.002145679
8 3.35e-06 5.80e-07 9.03e-07 8.32e-07 3.35e-06 5.80e-07 8.32e-07 5.80e-07 3.35e-06 5.80e-07 9.03e-07 8.32e-07
9 106.0591 106.0593 106.0591 106.0593 1187.64 1187.643 1186.985 1186.422 12031.34 12031.32 12031.32 12031.25
10 4.538056  4.538013 4.540724 4.538025 55.67039 55.65863 55.67198 55.66436 566.3342 566.2807 566.3198 566.3238

[ 08-T0-920¢ Uo Jr'siol woly papeojumo(q ]
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Table 4. Success and failure in solving problems
n=10 n =100 n
= 1000
No. MY NLS Nyy MY  NLS NMyy MY NLS Mwmy
Nyis Nyis Nyis
1+ + 1.34 + + 1.01 + + 1
2 4 + 1.62 + + 2.78 - - -
3+ + 1.86 + + 0.77 + + 0.86
4 + + 0.55 - + - - + -
5 + + 2.99 + + 1.36 - + -
6 + + 2.57 + + 1.15 + + 1.44
7+ 4+ 1.27 - + - - - -
8 + + 0.079 + + 0.079 + + 0.07
9 - - - - - - + - 1.64
10 + + 0.001 - - - - - -
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