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A Wide Neighborhood Primal-dual Predictor-corrector
Interior-point Algorithm with New Corrector Directions
for Linear Optimization

H. Abedi'”, B. Kheirfam?

In this paper, we present a new primal-dual predictor-corrector interior-point algorithm for linear
optimization problems. In each iteration of this algorithm, we use the new wide neighborhood
proposed by Darvay and Takacs. Our algorithm computes the predictor direction, then the
predictor direction is used to obtain the corrector direction. We show that the duality gap reduces
in both predictor and corrector steps. Moreover, we conclude that the complexity bound of this
algorithm coincides with the best-known complexity bound obtained for small neighborhood
algorithms. Eventually, numerical results show the capability and efficiency of the proposed
algorithm.
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1. Introduction

Interior point methods (IPMs) have been very successful in solving linear optimization (LO)
problems. After the seminal paper of Karmarkar [7], various IPMs for solving LO problems have
been introduced by several researchers. To see the main results in this field, we refer the reader to
Roos et al. [11] and Wright [14]. The IPMs can be categorized in different ways such as primal-dual
path-following methods, affine-scaling, feasible and infeasible IPMs. Among the different types of
IPMs, the primal-dual predictor-corrector methods are the most effective methods for solving wide
classes of optimization problems. The predictor-corrector IPMs was proposed by Mizuno et al. [10].
The IPMs are also distinguished in terms of the step length. There is short- and large-update methods,
that work in small and wide neighborhoods of the central path, respectively. The large-update
methods are better in practice while the short-update methods give better theoretical results.

In 2005, Ai and Zhang [1] presented a new class of primal-dual path-following interior-point
algorithm for solving monotone linear complementarity problems (LCPs) based on new wide
neighborhood. Their algorithm decomposes the classical Newton direction into two orthogonal
directions, corresponding to the negative and positive parts of the right-hand side of the centering
equation. They proved that the algorithm has the same theoretical complexity as a small neighborhood
algorithm. The Ai-Zhang’s technique was later extended to semidefinite optimization (SDO) and
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second-order cone optimization (SOCO) by Li and Terlaky [9] and Feng [6], respectively. Liu et al.
[8] introduced the first primal-dual second-order corrector interior-point algorithm for LO problems
based on Ai-Zhang’s wide neighborhood. Recently, Darvay and Také&cs [5] proposed a new wide
neighborhood of the central path for LO based on an algebraic equivalent transformation of the
centering equation of the central path and presented a large-update algorithm. Moreover, they derived
0(v/nL) iteration complexity for the proposed algorithm, the same as the best theoretical complexity
for small neighborhood algorithms, where n is the number of variables and L is the input data length.

Motivated by the mentioned results, we propose a new predictor-corrector interior-point algorithm
for LO problems based on the wide neighborhood introduced by Darvay and Takécs [5]. At each
iteration, our algorithm applies the Darvay-Takacs directions and computes predictor direction and
new corrector directions. Moreover, we prove that the proposed algorithm has the same iteration
complexity as a small neighborhood algorithm. In this way, we overcome the problem of theoretical
inefficiency of the large-update interior-point algorithms. Numerical results show that the proposed
algorithm is efficient.

The rest of the paper is organized as follows. In Sect. 2, we introduce the LO problem and Ai-
Zhang’s method for Darvay’s direction, and then we describe Darvay-Takacs’s wide neighborhood.
In Sect. 3, we propose a new primal-dual predictor-corrector interior-point algorithm based on
Darvay-Takacs’s wide neighborhood. In Sect. 4, we prove the global convergence of the proposed
algorithm and derive the polynomial complexity bound of the algorithm. Numerical results are
presented in Sect. 5. At the end, some concluding remarks are given in Sect. 6.

The following notations are used throughout the paper. The Euclidean norm and the one-norm of
a vector are denoted by |I. || and II. ll,, respectively. For vectors u, v € R™, we denote the Hadamard
product of u and v by uv = (uyvy,..., u,v,)7. The positive and negative parts of u; € R are denoted
by ui = max{u;, 0} and u; := min{u;, 0}, for i = 1, ...,n. Thus, for any u = (uy, ..., u,)" € R,
we denote u* := (uf,...,u)T and u™ = (ug, ..., uy)’, such that u = u* + u~. Finally, we denote
the minimal component of any vector u € R™ by u,in-

2. Preliminaries

In this section, we outline some basic facts about IPMs, and then, we describe Darvay-Takacs’s
wide neighborhood. We consider the primal-dual pair of LO problems in standard form

(P) min {c"x: Ax=b, x>0},
(D) max {bTy: ATy +s=c, s=0},

where A € R™ ™ has full row rank, c,x,s € R™ and b,y € R™. The feasibility set of (P) and (D) is
defined as follows:

F={(x,y,s): Ax=0b, ATy +s=c, x>0, s >0},
and the strictly feasibility set of (P) and (D) is defined by

FO:={(x,y,5): Ax=b, ATy+s=¢, x>0 s>0}


http://iors.ir/journal/article-1-761-en.html

[ Downloaded from iors.ir on 2026-01-31 ]

132 Hadis Abedi and Behrouz Kheirfam

By applying the self-dual embedding model proposed by Ye et al. [15] and Terlaky [13], we can
assume that both (P) and (D) satisfy the interior-point condition (IPC), i.e., F° is nonempty. The
optimality conditions for (P) and (D) can be written as follows:

Ax = b, x =0,
ATy+s=c¢, 520,
xs = 0. @9

The basic approach of primal-dual IPMs is to replace the third equation in system (1) by the

T
parameterized equation xs = ue, where 0 < u = % and e is the all-one vector. Then, we consider
the following perturbed system:

Ax=b, x2=0,
ATy+s=c¢, s20,
XS = ue. 2

For each u > 0, system (2) has a unique solution, which is denoted by (x(u), y(u), s(p)). This
solution is called a u-center of the primal-dual pair (P) and (D). The set of u-centers with all u > 0
gives the central path of (P) and (D) which is denoted as follows:

€= {(6y,5) EF® : xs=pe,u> 0},

Therefore, as u goes to zero, (x(u), y(u),s(u)) converges to a pair of optimal solutions of (P)
and (D). Now, we apply the algebraic equivalent transformation introduced by Darvay [2]. Assume
that ¢: [0, 0) — [0, ) be a continuously differentiable function such that ¢'(t) > 0 for all t > 0.
Hence, we rewrite the system (2) in the following form:

Ax=b, x2=0,
ATy+s=c¢, s20,
¢ (%) = o), 3)
where T € (0,1) is the centering parameter and ¢ (.) is the vector-valued function induced by the real-
valued function ¢ (t) such that ¢(§) = (¢(’:—;))15i3n. Applying Newton’s method to (3) and using
¢(t) = /t leads to the system (4):

AAx =0,
ATAy + As =0,
sAx + xAs = 2(y/tuxs — xs). 4)

The main idea of Ai-Zhang’s method [1] is to decompose the Newton direction into negative and
positive parts corresponding to the negative and positive parts of the right-hand side of the third
equation of Newton search directions system. Based on this idea, Darvay and Takacs [5] obtained the
following two systems:

AAx_ =0,
ATAy_+As_ =0,
sAx_ + xAs_ = 2(\/tuxs — xs)7, (5)


http://iors.ir/journal/article-1-761-en.html

[ Downloaded from iors.ir on 2026-01-31 ]

A Wide Neighborhood Primal-dual Predictor-corrector Interior-point 133
Algorithm with New Corrector Directions for Linear Optimization

and
Abx, =0,
ATAy, + As, =0,
sAx, + xAs, = 2(y/tuxs — xs)™*. (6)

In the classical primal-dual IPM, all the iterates must remain in a certain neighborhood of the
central path. One of the popular neighborhoods is the so-called small neighborhood, defined as

Ny(0) ={(x,y,5) € FO : |l xs — pe < 6u},

where 6 € (0,1). Another popular neighborhood is the large neighborhood (negative infinity
neighborhood), defined as

No (1 —=p) ={(x,5) €F® : xs=ppe},
where p € (0,1). The wide neighborhood introduced by Ai and Zhang [1], defined as
N (T B) = {(x,y,5) €F° : Il (e — xs)* II< fru},

where §,t € (0,1). In this paper, we use the new wide neighborhood W(t, 8) presented by Darvay
and Takécs [5], which is defined as follows

W, B) = {(x,y,5) € F : || (Jrre —Vx5)* < JBTa),

where 8, t € (0,1). W(z, B) is a wide neighborhood, since V'(t, ) € W(z, B).

3. Primal-dual predictor-corrector algorithm

In this section, we propose a new primal-dual predictor-corrector algorithm for LO. We assume
that the algorithm starts with an iterate (x,y,s) € W(x, g). We obtain the predictor directions by

substituting T = 0 in (5) and (6). Therefore, the predictor directions are computed by the following
system

AAx?® =0,
ATAy% + As® = 0,
sAx® + xAs? = (—2xs)”. @)

Since (—2xs)* = 0, the Newton direction corresponding to the positive part is zero, i.e., Ax$ =
Ay¢ = As¢ = 0. Then, we compute the largest step size &, € [0,1], such that

(x(aa),¥(@a), s(aa)) EW(T,B),  Vag €[0,a,]. (8)

The new iterate is defined as follows

(x(ag), y(ay), s(ag)) = (x,y,5) + ag(Ax%, Ay%, As%). 9)
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We use the directions Ax? and As? obtained from solving (7) to compute the negative part of the
corrector directions in the following system:

AAxE =0,
ATAyC + AsC = 0,
S(ag)AxE + x(ay)AsE = Z(Jty(aa)x(aa)s(aa) —x(ay)s(ay))” — a,Ax2AsS, (10)

and we obtain the positive part of the corrector directions by solving the following system

AAxS =0,
ATAyS + As§ =0,
s(@)Ax§ + x(ag)As§ = 2(ytulag)x(ag)s(ag) — x(ag)s(a)*. (11)

Finally, the step size @ = (a4, a,) € [0,1]? is computed such that (x(a), y(a), s(a)) € W(x, g),
and the new iterate is defined as follows

(x(@), y(@), s(@)) = (x(@a), ¥(@a), s(@a)) + a1 (BxE, AyS, AsE) + ap (AxS, AyS, AsE). (12)

Now we present our new primal-dual predictor-corrector algorithm as follows:

Primal-dual predictor-corrector algorithm

Input:
Accuracy parameter € > 0;

neighborhood parameters, 0 < 7 < % and0 < g < %;
a strictly feasible point (x°,y°,5%) € N (x, g) cW(r, g)_

Setk :=0;
If (x°)7s% < ¢, then stop; otherwise, go to the predictor step.

Predictor step
Compute the search direction (Ax®*, Ay®k, As@*) by (7);

Set ak == /E;
414 2n
Compute (x(af),y(af), s(ag)) by (9);
If x(aX¥)Ts(ak) < e, then stop; otherwise, go to the corrector step.

Corrector step
Compute the corrector directions (AxS¥, Ayck, AsS*) by (10) and (AxS*, AyS*, AsS*) by (11);

Set a¥ = 1 and compute the largest step size a¥ € [\/5_7 1], such that

—
(@), y(@),s@)) e w(z,5y;

Compute (x(a®), y(a®),s(a®)) by (12);

Set (xk+1, yk+1 sk+1y = (x(a¥), y(a®),s(a®)) and k == k + 1;
If x(a®)Ts(a¥) < e, then stop; otherwise, go to the predictor step.



http://iors.ir/journal/article-1-761-en.html

[ Downloaded from iors.ir on 2026-01-31 ]

A Wide Neighborhood Primal-dual Predictor-corrector Interior-point 135
Algorithm with New Corrector Directions for Linear Optimization

4. Analysis of the algorithm

Before starting the algorithm analysis, we define the following notations:

vAx? vAs?
v=+vxs, v(ag) =+/x(ay)s(ay), dx%= o ds® = .
¢ _ v(ag)AxE ¢ _ v(ag)AsE ¢ _ viag)Ax§ ¢ _ v(ag)As§
A= == BT T T T B T T (13)
7:={1,2,..,n}, It ={ie€ed: Jrulay) —v(ay); > 0},
I-={ied : Jrulay) —v(ay); < 0}. (14)

The following technical results are used to analyze the algorithm.

Proposition 1. (Proposition 3.1 in Ai and Zhang [1]) For any u, v € R™ and p > 1, we have
I @w+v) I, <lhutll, +lvT i, I@+v) I, <lu I, +lv" I,

Lemma 1. (Lemma 3.5 in Ai and Zhang [1]) Let u, v € R™ be such that u"v > 0, and let r = u +
v. Then, we have || (uv)™ ll; < Il wv)* lly < i I 112,

Lemma 2. (Lemma 5.3 in Wright [14]) Let u, v € R™ be such that u”v > 0, then

3
luv IS27Z lu+v >

Lemma 3. (Lemma 3.4 in Liu et al. [8]) suppose (x,y,s) € F° and z + 2xs < 0. Let (4x, Ay, As)
be the solution of

AAx =0,
ATAy + As =0,

SAx + xAs = z.

If (x + toAx)(s + tyAs) > 0 forsome 0 < t, < 1, then (x + tAx,s + tAs) > 0 forall 0 <t < t,.

4.1. Analysis of the predictor step
Using (9) and the third equation of the system (7), we have
x(ag)s(ag) = (x + agAx?)(s + azAs?) = (1 — 2a,)xs + a2(Ax2AsD). (15)

Since (Ax%)TAs® = 0, we obtain

T
pag) =202 = (1 —20,)p (16)
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Lemma 4. Suppose that (x,y,s) € N (z, g) c W(r, g), then the largest possible value of step size
1

2n’
1+ ’HE

a, satisfying (8) is given by @, =

Proof. We have

(u(@a)e — x(@a)s (@))*
1 Jru(age +fx(ag)s(@q)
< —— | (tu(aa)e — x(az)s(@a))* |

B VTu(ag)

=L~ 2a0) (e — x5) — a2(Ax8ds8) |

\/1‘[[1(0(‘1)
< W((l — 2a,)|l(tue — xs)*|| + aZ||(—4x2AsH)*|),

where the second equality is obtained from (15) and (16) and the second inequality is derived from
proposition 1 and the fact that # < 1. Now, from system (7) and Lemma 1, for u :== x~1/2s/2Ax2,
v = xY2571/2As8, r == —2(xs)Y/? , we have

|(Jralag)e — Jx(ag)s(@)*|| =

_ 1 2
1(Ax2As®)~|l; < [|(Ax2AsD) ||, < Z||2(xs)1/2|| = ny.

According to what was mentioned and the fact that (x,y,s) € N (z, g) c W(x, g), we conclude
that

1
|fru(aq)e = x(ag)s(@a) || < T ((1 - 2a,) gw + aénu).

To obtain the iterate in the neighborhood W (z, 8), the following relation must be established,

1

T (1= 2a0) S+ agnir) < Fru(ag) = /(1 = 2a)Br an

It can be easily proved that the largest a, satisfying (17) is the positive root of the quadratic
. Bt . . 1 1
function g(a,) = na2 + pra, — =, which is . Thus, for all 0 < a, < ——, we have
9l ¢ “ 2 1+ [1422 T [1422
BT Bt

g(ag) < 0. Therefore, the proof of the lemma is completed. L]

4.2. Analysis of the corrector step
We define

dx(a) = a;dx¢ + a,dx§, ds(a) = a,dst + a,ds§, (18)


http://iors.ir/journal/article-1-761-en.html

[ Downloaded from iors.ir on 2026-01-31 ]

A Wide Neighborhood Primal-dual Predictor-corrector Interior-point 137
Algorithm with New Corrector Directions for Linear Optimization

and

h(@) = v(aa)* + 2v(ag) (a1 (Yru(ag)e — v(ay))™ + ax(Yru(ag)e — v(aq))*)
—a a,dx%ds2. (19)

Therefore, we have

x(@)s(a) = h(a) + dx(a)ds(a). (20)

Remark 1. If a, < A< ﬂ\/E, then a, < 1 Therefore, from Lemma 4 we conclude that
4 4 Nz2n 1+ /1+%

(x(aq), y(aq) s(ag)) € W(z,B).

Corollary 1. If (x(ay),v(as),s(ay)) € W(z, B), then

Vmin(aq) = (1 — \/E)V Tu(ag).

Proof. Since (x(a,),y(ay),s(ay)) € W(z,B) , we have

[(Vtulaa)e — Vx(a)s(@a)* || < VBu(ay).

For i € 7%, we have Yies+ (VTi(an) — yx(@a)s(@a)i) < Bru(aq) and since /tu(ag) —
Vx(ay)is(ag); > 0, we conclude that

\/T.u(aa) - \/x(aa)is(aa)i < \/.[))T:u(aa)-

Therefore, /x(ay)is(ag); = (1 — \/E),/w(aa). Also, for i € 37, we have \/x(ay)is(ag); =
JTu(ag) = (1 - \/E)W/T,u(aa). Thus, for all i € 7, we have /x(a,);s(ag); = (1 — \/E)w/w(aa).

Therefore, we obtain

Umin(@a) = (1 = /B)yTu(ay).
This completes the proof. Ol
Proposition 2. We have dx2"ds® = dx¢"ds¢ = dx$"dsC = 0, and dx(a)Tds(a) = 0.

Proof. From the first two equations of systems (7), (10) and (11) and the notations given in (13), we
conclude the proof directly.

Lemma 5. Suppose that (x,y,s) € F° and (4x%, Ay%, As%) be the solutions of (7). Then, for each
1<i<n,

(dx%);(ds%); < vi.

Proof. From the third equation of system (7), we have
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(dx%); + (ds%); = (—2v;)~ < 0. (21)

((dxD)i+(dsD)y?

Then, (dxf)i(dsf)i < p

= v?. Thus, the proof of the lemma is completed. ]
Remark 2. From Lemma 5 and (15), we have (dx%); + (ds%); = —2v; < —2v(a,);. Therefore, we

obtain (dx%);(ds%); < v(ay)?.

Lemma 6. Suppose (x(a,), ¥(e4),5(@)) € W(z,f)and 0 < @ < 2 <22 \/g. Then

12\/B
V21 - /B)

Proof. From systems (7), (10), (11) and proposition 2, we have

1 2
I (dx(a)ds (@) 1lx < lI(dx(a)ds(a))"ll; < Z(\/g + > a3 fru(ag)

dx(a) + ds(a) = 2a,(Jtu(aa)e — v(a))™ + 2ax(YTu(ag)e — v(ag))”

—ayav(ay) tdx®ds?.

Then, using Lemma 1, we have

I(dx(@)ds(@)Il; < ll(dx(@)ds(@)* |, < %udx(a) + ds ()2
= %IIZal(Jw(aa e = v(ag))” + 20y (JTu(ag)e — v(@a))* - alaav(aa)—ldxfdsfnz
1
< Z(||2a1<\/w(aa>e —v(ag))” + 20 (Ju(ag)e — v(@))’t || + ———

Using lemma assumptions, we conclude that

200 rtagde - v(@n) + 20, (Jealagde — via)* |
= 4a? || (frulage — (@) ||+ 4a? || (frutage - (@)

<ta} ) (Joulag) - v(@n))? + dadfru(ay)

iel~

2
||dxadsa||)

mln( a)

<4a} ) vlag)? +4adfrilag)

iel~
= 4afnu(ag) + 4a3Bru(ay)
< 6ajBru(ay). (22)

We obtain the following result from Proposition 2, Lemma 2 and system (7),
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3 3
Il dx@ds® I< 272 || dx® +ds® |I?= 272 || (—2v)~ II*>=2nu. (23)

Using (22), (23) and Corollary 1, we have

. l 2 \/Ealaan.u >2
l(dx(@)ds(a))"Il; < 4<\/3\/m+ 1— JBytuaw)

\/Ealaan\/ .u(aa) )2
(1 =BV - 2a,)

. b )
< 4<\/€W+ 4\/5(1 - \/E)(l —2a,)

1 12,8
=3 (@ @ -B)

Where the first equality is obtained from (16) and the second and third inequalities are derived

=%(% o Bru(ag) +

2
) a3 Bru(aq).

from the fact that o, < 2 < &2 \/ﬁz O
4 4 2n

x(a)Ts(a)
Lemma 7. Suppose (x(ag),y(a,),s(ag)) € W(t,B), @ = (a1, a3) and u(a) = — Then

Dula) =2 (1 - 2aq)u(agy).
2) u(@) < (1 —2a,(1 1)

1—

S+ 220 B o)

Proof. Using (20) and proposition 2, similar to the proof of lemma 5 in Darvay et al. [4], the proof is
completed. O

Using (19) and Remark 2, if i € 7%, we have

h(@); = v(aa)? + 2v(a); (o (rulag) — v(@)) ™ + az(JTulag) — v(aa))")

—aq(dx2);(ds2);
2 17(05(1)1'2 + Zazv(aa)i(\/ T#(aa) - v(aa)i) - alaav(aa)L2
= (1 — q1a)v(ag)f + 2a,v(aq);(yri(as) — v(aq):) > 0. (24)

On the other hand, if i € 73—, we have

h(@); = v(@)} + 2v(a); (a1 (Ju(as) — v(ea))™ + as(Ju(aa) — v(aa))*)

—a1q(dx2);(ds2);
= v(“a)z2 + zalv(aa)i(\/ T.“(aa) - v(aa)i) - alaav(aa)iz
=1-2a - ala'a)v(a'a)L2 + 2aq\Tpv(ag);. (25)
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Using Lemma 3 for t, = 1 and (20), we deduce
(x + Ax(a))(s + As(a)) = x(a)s(a) = h(a) + dx(a)ds(a). (26)

We prove the strict feasibility of the new iterates in the following lemma.
Lemma 8. Suppose (x(ap),v(ag),s(ag)) € W(t,B),T < 1—16 and g < %. fag="2=72 %
a, =1, thenx(a) > 0 and s(a) > 0.

Proof. By applying the definition of (Ax(@), Ay(a), As(a)) and systems (10) and (11), we can write
the following system

AAx(a) =0
ATAy(a) + As(a) =0
s(@a)Ax(a) + x(ag)As(a) = 2a; (y1p(aa)x(2a)s () — X(a)s(2a))”
+2a, (Vru(ag)x(ag)s(ag) — x(ag)s(@g))t — ayag Ax?As®.

According to the system of Lemma 3, we get

z=2a (\/T.u(aa)x(aa)s(aa) —x(ag)s(aq))” + 2a; (\/T.u(aa)x(aa)s(aa) — x(ag)s(ag))*
—a,a Ax2As?

= 2aqv(ay)(Ytu(ag)e — v(ay))™ + 2a,v(a) (Ytu(ay)e — v(ay))t — a;adx?ds?.

1 aq a, |Bt

—, aa —_— — = = —_—
18 4 4 2n
imply that 1 — 2a; — @, a, > 0. Therefore, using (24) and (25), we conclude that h(a); > 0 for all
i € 3. Now, due to the definition of h(a), we have

. 1 1 1
Sincea, = 1,7 < E'ﬁ < ,and n > 1, we have a; < 22’ %a < vt These

z + 2x(ag)s(ay) = v(ay)? + h(a) > 0. (27)
By applying (20), Lemma 6, (24) and Corollary 1, we obtain fori € 7*:

x(@);s(a); = h(a); + dx(a);ds(a); = h(a); — [|(dx(a@)ds(a))~|lx

1208\

2 (1 - a’laa)v(a'a)z2 _%<\/g + > azz.[))rﬂ(aa)

4721 = /B)
Bt 1 12\/B ?
B _ 2 — NP
>(1 8n)(l VB tu(ag) 4(\/6+47 20— \/E)> pru(a,)

2303 3v2—-1_, 1 12 2
| === 2 —(V6+ ) tu(ay) > 0.
<2304( 3V2 ) 72( 47V2(3vV2 - 1) #(@a)
Moreover, for i € 37, the inequality x(a);s(a); > 0 can be proved similarly by using (20),

Lemma 6, (25) and Corollary 1. Thus, we conclude that x(a)s(a) > 0. Due to relation (27), we use
Lemma 3 and deduce that x(a@) > 0, s(a) > 0, which completes the proof. [
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Lemma 9. Assuming that the assumptions of Lemma 8 hold, then we have

7(14 — 9V2)

TR a1)ﬁw(aa)-

| (zu(@)e — h(@)* |l < <1 -

Proof. For i € 7%, we use the second part of Lemma 7 and (24) and conclude that

w(a)—h(a)im(l—zu _f J_ )u(aa)

_(1 - alaa)v(aa)lz - Zazv(aa) (\/ T.u(aa v(aa)i)
< T<1 —a;,2(1 —r) \/‘/:— 2\/_\/—)> (arg)
-(1- alaa)v(aa)iz - ZaZU(aa)l(V u(ag) —v(ag);)
7(14-9V2) 1 2 _ | _ _
8(12—v2) ay)p(ag) — (1 — ayag)v(ag)i — 2v(ag): (Y tu(aq) — v(aq):)
_ _ 32 2 _ M >
= (Vtu(ag) —v(ag))® +ay (aav(aa)l 8(12 —v2) Tu(ag)
1 7(14 — 92
< (i) — (e + o (vt - e D ) )

8(12 —/2)
~ L2 74— 92) B 2
< (Wru(ag) —v(ag)y) B(12-v2) a; (tp(aq) — v(@q)i)

7(14 — 9V2) ~ 2
812D a)(u(ag) — v(ag))?.

<t(1l-

<(1-

The last inequality is derived from the fact that Tu(a,) — v(ag)? = (Vtu(ag) — v(ay);)? for
any i € 7*. On the other hand, we have 1 — 2a; — a;a, > 0. Applying the second part of Lemma 7
and (25), we obtain fori € 7~

p(ag)

_\/ )
tu(a) —h(a); <t <1 -2(1—-1) a2
—

_(1 - 20‘1 alaa)v(aa)l - 2a‘l\/ T:u(aa)v(aa)l
6V2 —
ST<1 vz 1 (1— a; + f“z)#(aa)
—(1 = 2ay — ayag)tp(ag) — 2a;tu(ag)
6v2 — 2
<— v — (1 — )+ 2V2VT + aa> atu(ay)
- 15(6\/_ 2)

_< 16(6\/——1)+\/_+96

)alry(aa) <0.

Thus, we obtain
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7(14 — 9V2
Il(w(a)e—h(a))ﬂIS( % )”((\/T#(% —v(ay))")?

3 <1M) (et — via)*||

8(12 —2)
7(14 — 9V2)
< (1 - m%)ﬁw(%),

where the last inequality is obtained from (x(a,),y(a,),s(ay)) € W(z, ). This completes the
proof of the lemma. O

The following lemma shows that the new iterates of the algorithm lie in the wide neighborhood
W(x, g).

Lemma 10. Assuming that the assumptions of Lemma 8 is true, then (x(«), y(a@), s(a)) € W(z, g).

Proof. Applying (20), Lemma 6, Lemma 9 and Proposition 1, we conclude that
(tu(@)e — x(a)s(a)*
\/ tu(a)e + \/x(a)s(a)
| (zu(@)e — x(a)s (@)™l

|Jru(a)e - \/x(a)s(a))+|| _

\/w( a)

1
= | (tu(@)e — h(a) — dx(a)ds(a))* |l

\/w( a)
m(ll(fﬂ(a)e —h(@) |l + [[(—dx(a)ds(@))*]))

= m (I(Tu(a)e — h(@) ™|l + lI(dx(a)ds(a)~II)

2
N (TR Y PAPRSYR T . awa@)

IA

Jtu(a) 8(12 —2) 47v2(1 = /B)

1 12,/8 2
_—m(a)< H(Vo + ) > Bru(ay). (28)

Now, we use the first part of Lemma 7, a; = \/f::l and n > 1, therefore, we obtain

p(a) =2 (1 = 2a)u(aq) = (1 —2p1)u(aq), (29)

which yields

ulae) < TH (30)

We substitute (30) into (28) and deduce
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2
|(Srn@e — Jxl@s@)?*|| < 1+§<¢3+ L ) Bru(@)

1
VTu(a)

47V2(1 =B/ | (1 = /287)
1 12\/B ’ J2B B
=l1+=(V6+ )
< 47v2(1 ~ {B) RN

1 12 )\ 4 ,ﬁ
s(1+1(\/€+47ﬁ(3ﬁ_1)) )ﬁ 7@

< 0.934\/%‘[#(0{) < \]gru(a).

Hence (x (@), y(a),s(a)) € W(x, g), which completes the proof. O

Theorem 1. Suppose T < i , B < 18 a, =1, a; = EJE and a; = \/E Then, the algorithm will

terminate in 0(\/_log ) iterations with the solution such that x”s < e.

Proof. From Remark 1 and Lemma 10, we have

(x(aq), y(aq), s(aq)) € W(t,B), (x(a),y(a), s(a)) € W(z, g)-
Using the second part of Lemma 7, we obtain

B, 210,
u(a) < (1 —2(1- w(aq)
{/—_
7(14 — 9/2)
< (1 - 8(12 _\/7) al)/"(aa)
(7014 - N2) BT
B (1 8VZ(12 - ﬁ)ﬁ)” ()

By Theorem 3.2 in Wright [14], the desired result is obtained. O

5. Numerical results

In this section, we compare the proposed primal-dual predictor-corrector algorithm in this paper
(algorithm a) with the second-order corrector algorithm presented in Liu et al. [8] (algorithm b) and
the primal-dual predictor-corrector algorithm proposed in Sayadi Shahraki et al. [12] (algorithm c).
The test problems are taken from Netlib test collection and implemented in MATLAB R2016a on an
Intel Core i5 (2.5GHz) under Windows 10. We use the self-dual embedding technique presented by
Terlaky [13] to obtain the strictly feasible vectors x° = ones(n,1),y° = ones(m,1),s° =
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ones(n, 1), as starting points of the algorithm. We set § = 2—10 andt = % for all three algorithms. We
T
stop the iteration of algorithms if the relative duality gap satisfies 0 Al

x9)Ts0+1
1
2n’ 1]
1+ ’1+E

determine the greatest a, such that (x(a,), y(a,),s(ag)) € W(z, ). Moreover, we repeat bisection

procedure ten times in closed interval [ \/g,l] to obtain the greatest a; such that

< 1078, For “algorithm

a”, we use bisection in closed interval [ and repeat this procedure at most ten times to

(x(a),y(a),s(a)) € W(z, g). For “algorithm b” and “algorithm c”, we also use bisection procedure

in closed interval [\/g, 1] to determine the greatest @; such that (x(a), y(«),s(a)) € N (z, g). The

number of iterations (It) and CPU times (Time) are presented in Table 1. The numerical results show
that the presented algorithm in this paper is efficient and reliable.

Table 1. Numerical results

Algorithm (a) Algorithm (b) Algorithm (c)

Problem It. Time It. Time It. Time
adlittle 13 0.2496 20 0.3028 20 0.5426
afiro 8 0.0758 17 0.1049 17 0.2018
bandm 20 3.4097 31 3.8159 31 4.4606
beaconfd 10 0.9487 18 1.3390 18 1.6518
blend 9 0.2019 17 0.3076 17 0.3666
capri 19 2.8912 35 3.7838 35 4.7748
€226 20 2.5650 31 3.0646 31 3.7748
kb2 9 0.1330 13 0.1640 13 0.1955
lotfi 15 1.4553 29 3.1054 29 2.5571
scagr7 12 0.4422 20 0.6754 20 0.7678
scagr2b 15 5.4726 25 6.7255 25 8.1264
scsdl 11 1.7705 17 2.0271 17 2.2994
scsd6 14 7.2206 21 8.9914 21 11.6456
sch0a 10 0.1045 15 0.1280 15 0.1749
sc50b 8 0.0918 13 0.1229 13 0.1509
sc105 10 0.2858 14 0.3139 14 0.3897
sc205 11 0.7369 16 0.7653 16 0.9337
vtp-base 18 1.4524 34 2.2141 34 2.4858

6. Conclusions

In this paper, we presented a new primal-dual predictor-corrector interior-point algorithm for LO
problems based on Darvay-Takacs’s wide neighborhood. We proved that the complexity bound of
=0T

this algorithm is 0 (v/nlog TSO), which coincides with the best-known complexity bound obtained

for short-update algorithms. Moreover, we provided some numerical results, which show the
efficiency and accuracy of our algorithm for solving LO problems. Finally, for future research, the
proposed algorithm can be extended to SDO and SOCO.
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