
Iranian Journal of Operations Research

Vol. 13, No. 1, 2022, pp. 48-60

Applying Branch and Cut Method to a Graph Based Reduction of UCTP

M. Khorramizadeh1,*

Here, we first associate a graph to a university course timetabling problem (UCTP) and use the components

of this graph and some customary and organizational rules to transform the original large scale problem into

some smaller problems. Then, we apply the branch and cut method to obtain the optimal solution of each

smaller problem. Our presented approach enables us to apply exact methods to obtain high quality solutions

for large scale UCTPs. Finally, we examine the numerical efficiency of the resulting algorithm.

Keywords: Integer Programming, University Course Timetabling, Branch and Cut Method, Binary

Variables, Scheduling Problem.

Manuscript was received on 04/15/2022, revised on 10/03/2022 and accepted for publication on 01/23/2023.

1. Introduction

The timetabling problem is common to academic institutions such as schools, colleges or

universities. Educational timetable generation is one of the major administrative requirements in

scientific institutions. It is a very hard combinatorial optimization problem which attracts the

interest of many researchers. University course timetabling problem falls in the category of NP-hard

problems having various constraints, objectives, and limited resources. Generating an optimized

timetable is challenging and time-consuming process.

The university course timetabling problem (UCTP) is to allocate time periods and rooms to courses,

such that the rules of the educational organization are satisfied. Two important types of this problem

are the curriculum-based and the enrollment-based university course timetabling. Courses which

can be taken, because they are needed to satisfy the degree rules of the given study, are called

curricula. An allocation of rooms and time periods to courses based on this, is called curriculum-

based course timetabling. In the enrollment-based case, courses are placed in the timetable such that

all students can attend the lectures on which they are enrolled [17, 18]. Here, we focus on the

curriculum-based university course timetabling. The curriculum based university course timetabling

problem consists in determining the best scheduling of university course lessons in a given time

interval, assigning the lessons of each course to classrooms and time periods, so that a series of

constraints is satisfied. These constraints are divided into two categories: hard constraints, necessary

so that the programming can actually be implemented, and soft constraints, which involve

qualitative measures [11].

The UCTP is a combinatorial problem. For the first time it was presented in [13]. The UCTP is

NP-hard problem [12], but it has a great practical relevance, for instance [15, 20]. In [3], an iterated

*
 Corresponding Author.

1 Assistant professor, Shiraz University of Technology, Iran, Email: m.khorrami@sutech.ac.ir.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 1 / 13

http://iors.ir/journal/article-1-774-en.html

Applying Branch and Cut Method to a Graph Based Reduction of UCTP

49

local search algorithm is proposed to find the feasible solution for the UCTP. Three key phases are

involved in the proposed algorithm framework: initialization, intensification and diversification.

Once a partial-feasible initial timetable is constructed, a simulated annealing based local search and

a diversification procedure that brings moderate perturbation or even improvement to the current

solution are performed in an iterative manner until a stop condition is met. Colajanni and Daniele

[11] deals with the study of the curriculum based university course timetabling problem. This paper

formulates a new and complete model that satisfies both the planning constraints and those on the

compactness of the curricula, the distribution of the lessons (in the examined time frame), the

teachers’ preferences, the minimum number of working days, maximum capacity and stability of

the classrooms (which aims to minimize the daily movements of students among classrooms) so

that the resulting timetable is of high quality. The formulated model, with appropriate adaptations,

has been applied to the real case study of the first year of the Mathematics Degree Course of the

University of Catania, Italy.

Since university timetabling is commonly classified as a combinatorial optimization problem,

researchers tend to use optimization approaches to reach the optimal timetable solution. Meta-

heuristic algorithms have been presented as effective solutions as proven on their leverage over the

last decade. However, a comprehensive systematic overview is missing. Evan et al. [12] aimed to

provide an organized view of the current state of the field and comprehensive awareness of the

meta-heuristic approaches, by conducting meta-heuristic for solving university timetabling

problems. In addition, the mapping study tried to highlight the intensity of publications over the last

years, spotting the current trends and directions in the field of solving university timetabling

problems, as well as having the work to provide guidance for future research by indicating the gaps.

Komijan and Koupaei [15] describes the decision support system that was developed for the

assignment of courses to teaching modalities and rooms for the Fall semester of 2020 at the

University of Connecticut (UConn). With the adoption of safety/mitigation standards imposed by

the COVID-19 pandemic, the seating capacities of rooms were reduced by more than 70%, thus

making virtually every existing room assignment for Fall 2020 infeasible. In order to maximize

opportunities for in-person instruction, UConn introduced a teaching modality in which class

meetings are attended on campus by only 50% of the enrolled students. As decision makers were

given partial flexibility to assign teaching modalities to classes, the complexity of the assignment

problem increased considerably, especially because the real-world instances involved hundreds of

rooms and thousands of classes and required a quick solution turnaround in practice. In this article,

they introduce this flexible assignment problem and describe the two mixed-integer programming

formulations that were used to solve the real-world instances of the problem. The examination

timetabling problem can be described as a set of exams to be scheduled over an examination session

while respecting numerous hard and soft constraints. Chen et al. [9] considers the spacing soft

constraints that seek to prevent students sitting more than one exam per day. Kaur et al. [14]

presents a study for a local search algorithm based on chromatic classes for the university course

timetabling problem. Several models and approaches to resolving the problem are discussed. The

main idea of the approach is through a heuristic algorithm to specify the chromatic classes of a

graph in which the events of the timetable correspond to the graph vertices and the set of the edges

represents the possible conflicts between events. Then the chromatic classes should be sorted

according to specific sort criteria (a total weight or a total count of events in each class), and finally

the local search algorithm starts. The aim of the experiments is to determine the best criterion to sort

chromatic classes. The results showed that the algorithm generates better solutions when the

chromatic classes are sorted in a total weight criterion.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 2 / 13

http://iors.ir/journal/article-1-774-en.html

50 Mostafa Khorramizadeh

Overviews [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20] examine the university course timetabling

problem, focusing on mathematical models, one and multi-objective, exact and heuristic algorithms

in the literature.

Here, we present a graph based reduction approach for the university courses timetabling problem.

We first associate a graph to the UCTP. Each node of this graph corresponds to a teacher of the

university. If two teachers, teach some courses of the same group, then we define an edge between

the corresponding nodes. Next, we use the components of this graph along with some customary

and organizational rules to transform the original large scale problem into smaller ones and use the

branch and cut method to solve each of them. Finally, we present some numerical results to

examine the efficiency of our proposed approach.

In section 2 we describe the characteristics of UCTP. In section 3 we study the integer

programming formulation of UCTP. Section 4 is concerned with our proposed graph based

reduction approach and finally, in section 5 we examine the numerical results.

2. Integer Programming Formulation

In this section, we describe the terminology, notations and the integer programming formulation of

UCTP. Let },...,2,1{ cC , },...,2,1{ rR , },...,2,1{ tT , },...,2,1{ dD , },...,2,1{ dG and

},...,2,1{ sS be the set of courses, rooms, time periods, days, groups and teachers, respectively.

For any 𝑠 ∈ 𝑆, let 𝐶𝑠 ⊆ 𝐶 be the set of courses taught by teacher s . For any Gg , let CCg be

the set of courses attended by group 𝑔. The course 𝑐 should be scheduled in cn time periods per

week. If the course 𝑐 is scheduled for more than one days a week, then the number of time periods

that are scheduled for that course in day 𝑑 should be between min

cn and max

cn . Moreover, we let
d

be the first time slot of day Dd . For simplicity in notation we assume that we do not consider

any break between morning and evening sessions. This way, all time periods of the first day are in

 1 2, and so on.

Next, we define some binary variables. If the coursec C is scheduled at time t and in room r ,

then
crtx is one, otherwise

crtx is zero. If in day Dd the course c C is taught, then,
cdu is one,

otherwise
cdu is zero. If in day Dd the teacher s S teaches at least one course, then,

cd is

one, otherwise
cd is zero. The university course timetabling problem must satisfy the following

constraints.

• For any course c C ,
cn time periods in a week must be scheduled.

 1, c C , crt c

r R t T

x n

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 3 / 13

http://iors.ir/journal/article-1-774-en.html

Applying Branch and Cut Method to a Graph Based Reduction of UCTP

51

• At time t T , any class g G can attend at most one course.

)2(,,,1

gCc Rr

crt TtGgx

• At time t T , any teacher s can teach at most one course.

 1 3, , ,
s

crt

c C r R

x s St T

• At time t T , the room r R can host at most one course.

 1 4, , , crt

c C

x r R t T

• If course c C is taught in day Dd , then the teaching hours of course c C must be between

min

cn and max

cn .

1

5max , c C , D,
d d

c

crt cd

r R t

x n u d

1

6min , c C , D,
d d

c

crt cd

r R t

x n u d

• If two time periods are scheduled for the same course in day Dd , then they have to be

assigned to adjacent time periods.

1 2 3 1 2 3 11 7, c C , D, , crt crt crt d d

r R

x x x d t t t

• At most one room can be assigned to the time periods of each course in every day.

)8(,1,,,,1 211212211
rrrttDdCcxx ddtcrtcr

• If a room or a teacher is unavailable we set the corresponding variable 0crtx .

Next, we study the objective function of the problem. Clearly, the objective function is the

minimization of the measure of the sum of undesirabilities. To define the measure of the sum of

undesirabilities we consider two approaches. In the first approach we let
crtp be the measure of the

undesirability of the assignment of course c C to room r in time period t . In this approach, the

objective function is the minimization of the sum of penalties i.e.

 9min crt cr t

c C r R t T

p x

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 4 / 13

http://iors.ir/journal/article-1-774-en.html

52 Mostafa Khorramizadeh

In the second approach, each desirability is represented by a constraint in such a way that if the

constraint is satisfied, then the corresponding desirability is satisfied. These constraints are called

soft constraints. The amount of violation of a soft constraint, reflects the amount of the

corresponding undesirability. Therefore, we try to minimize the measure of the sum of

undesirabilities, by minimizing the sum of violation of these constraints. In our presented approach,

we consider the following soft constraints.

• For each group g G , empty time periods between any two courses are not allowed.

1 2 3 1 2 3 11 10, g , D, ,

g

cr t cr t cr t d d

c C r R

x x x G d t t t

• Each class attend at most
maxl teaching time periods in a day.

g ddCc Rr t

crt DdGglx)11(,,,max

1

• A teacher s S works at most
sk days a week.

 12, d , sd s

s S

k D

It is clear that all kind of desirabilities, cannot be represented by using constraints. For example,

assume that a teacher would not like his courses to be scheduled in rooms, far from his office.

Clearly, it is difficult to find a constraint to represent this desirability. On way to deal with this

difficulty is to use a combination of the first and second approaches to define the objective function.

The resulting objective function is as follows.

1 2 3

1 2 3 1 1

1 max

D

d

min

d d g s d d

cr t cr t cr t cr t

g G d t t t c C r R c C r R t

sd s cr t c

s S D

x x x x l

k p x

 13

 r t

c C r R t T

Next, we list some valid inequalities relating to the integer programming formulation of the UCTP

described in the previous section. These valid inequalities are used to improve the efficiency of the

branch and cut method and are introduced by Avella and Vasilev [2]. The validity and effectiveness

of these inequalities can be found in [2].

• Min (Max) Busy Days inequalities:

 14
min

, c C c
cd c

d D

n
u

n

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 5 / 13

http://iors.ir/journal/article-1-774-en.html

Applying Branch and Cut Method to a Graph Based Reduction of UCTP

53

 15
max

, c C c
cd c

d D

n
u

n

• Adjacency inequalities:

11 1 1 2 16-x +x -x 0, t ,

dcrt crt crt d

 1 17x -x 0, t= , d D crt crt d

 1 1 18-x x 0, t= -1, d D crt crt d

Where, 2min: cC c C n .

• Inequalities

1 2

1

2 19

max

max

, c ,d , ,

cdt cdt

c

crt cr t cd d d

r R t T r R t T

c

d d

x x u C D t n

t n

Where,

1

2

1

1 1

0

0

min max

max

max

:

T : ,

T : ,

c c

c

cdt d d

c

cdt d d

C c C n n

t t kn k t

t t kn k t

• Inequalities

1 1 2 2 1 2

1 2 1

1

20

x +x - , c C, 1 r

 d D,

cdcr t cr t

d d

u r r

t t

Where, 1 , c C, d Dcd cdu u .

3. Graph based reduction of UCTP

In this section we describe our presented approach for graph based reduction of UCTP. Real world

instances of university course timetabling are usually considered as large scale and NP-hard

problems. Some exact algorithms for solving integer programming problems (such as the cutting

planes and branch and cut) in the early development were not able to solve large scale problems.

Therefore, many researchers apply heuristic or metaheuristic algorithms such as Tabu search,

Genetic algorithm to solve this problem. Recent significant advances in both software and hardware

computer technologies, make it possible for us to apply exact algorithms (such as branch and cut)

for solving relatively large scale problems. However, there are many large scale problems that can

not be solved by using exact algorithms yet. If it is possible to transform the original large scale

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 6 / 13

http://iors.ir/journal/article-1-774-en.html

54 Mostafa Khorramizadeh

problem into some smaller problems, then we may be able to apply these exact methods and solve

the problem efficiently.

In the following, if the scheduling of a part of the UCTP do not influence on other parts of the

UCTP, then we call it an independent part. The basic idea of our presented approach is to first

remove the rooms from the problem and identify independent parts of the UCTP. Then, we

associate a priority for each independent part of the UCTP and consider the part with highest

priority. In the next step, we heuristically estimate the number of required rooms for the selected

part of UCTP. For example, if we have three courses and two teachers in the selected independent

part, then we may heuristically estimate that two rooms are enough for scheduling these courses and

teachers. Then, we apply the branch and cut algorithm to the scheduling problem consisting of the

selected part and selected rooms and find its optimal solution. Next, we remove this part from the

UCTP and consider the next independent part with highest priority. At this stage, there may exist

some time periods of the selected rooms of the previous independent part, which have already

scheduled for. We remove these time periods from the problem and in the remainder of the problem

we assume that the corresponding rooms are not available on these time periods. We then estimate

the required number of rooms for the new selected part and proceed as before. To identify the

independent parts of the UCTP, we associate a graph to the UCTP as follows. Each node of this

graph corresponds to a teacher of the university. If two teachers, teach some courses of the same

group, then we define an edge between the corresponding nodes. Clearly, if we do not consider the

rooms of the problem, then every component of this graph corresponds to an independent part of the

UCTP.

Outline of the graph based reduction algorithm

Step 1: Define a node for each teacher.

Step 2: If two teachers teach some courses of the same group, then define an edge between the

corresponding nodes.

Step 3: Find the components of the resulting graph.

Step 4: Assign a priority to each component of the graph.

Step 5: If the set of the components of the graph is empty, then stop. Otherwise, select the

component of the graph with highest priority.

Step 6: Estimate the required number of rooms for scheduling the courses of the selected part and

assign the estimated number of rooms to the selected part.

Step 7: Apply the branch and cut algorithm to the selected part and selected rooms to find the

optimal solution.

Step 8: Assume that the selected rooms of the previous parts, are not available on the time periods

that have already been scheduled for and go to Step 5.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 7 / 13

http://iors.ir/journal/article-1-774-en.html

Applying Branch and Cut Method to a Graph Based Reduction of UCTP

55

In the following we characterize some features of our presented graph based reduction approach.

The first feature of our presented approach is that it is possible to apply some traditional

conventions and organizational rules to obtain smaller problems. For example, in many universities

courses are usually scheduled for either even days (Saturday, Monday and Wednesday) or odd days

(Sunday and Tuesday). In this case we can provide a list for courses requesting to be scheduled for

even days and another list for courses requesting to be scheduled for odd days, and treat each list

separately. The second feature of our presented approach is that it enables the managers of the

university to know how they assign courses to teachers, so that the number of components of the

associated graph to the UCTP is as large as possible and the resulting problems are smaller. For

example, managers can assign a certain number of teachers to support the courses of each group.

Some courses are common between students of several fields, the mangers can assign optimal time

periods and rooms to these courses and remove the associated rooms, time periods and courses from

the problem, to increase the number of components. One of the important parts of our proposed

approach is the estimation of the required number of rooms for scheduling the courses of the

selected part. The smaller the number of rooms, the faster the branch and cut algorithm. The

minimal number of rooms can be easily determined by trial and error. For example, we can start by

one room. If the branch and cut algorithm, informs us that the problem is infeasible, then we can try

two rooms and proceed. In our presented approach, managers can determine the teachers that

present common courses between several components of the graph and assign optimal times and

rooms to them. This will increase the number of components and reduce the size of larger

components of the graph.

4. Numerical Results

In this section we study the numerical results. We used the Shiraz University of Technology

(Sutech) course timetabling problem to examine the numerical efficiency of our proposed graph

based reduction approach. At first we noted that in Sutech five days of the week are considered as

the time horizon. These, five days are Saturday, Sunday, Monday, Tuesday and Wednesday. In the

following, we call Saturday, Monday, Wednesday, even days and Sunday, Tuesday odd days. For

each day we considered two sessions, namely morning and evening. In Sutech courses that should

be scheduled for more than one working days, are usually scheduled for even days or odd days. For

example, if a course is scheduled for Saturday evening, then its next session (if there exists any) is

scheduled for Monday evening or Wednesday evening. Similarly, if a course is scheduled for

Sunday morning, then its next session (if there exists any) is scheduled for Tuesday morning. For

most courses, morning sessions of each working day have more desirability than evening sessions.

Therefore, we will deal with the mornings of even days, mornings of odd days, evenings of even

days and evenings of odd days separately, and call each of them a partition of the time horizon.

Indeed, we first considered the morning of even days and provide the list of courses for which there

is a request for scheduling in this partition. Then, we tried to schedule courses of the list in this

partition. Then, we considered the morning of even days, the evening of even days and the evening

of odd days, respectively, and repeated this procedure for them. Here, note that to examine the

numerical efficiency of our proposed approach, it is enough to consider the largest partition of the

time horizon (morning of even days). The timetabling of other partitions can be performed

similarly.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 8 / 13

http://iors.ir/journal/article-1-774-en.html

56 Mostafa Khorramizadeh

Next, we study the properties of the partition of the time horizon corresponding to the morning of

even days. In Sutech, morning session usually starts at 7:30 am and ends at 12:30 am. We assign to

every thirty minutes a time period. Therefore, 7:30 am to 8:00 am is the first time period, 8:00 am to

8:30 am is the second time period and so on. This way, time periods number 1 to 10 determine

Saturday morning, time periods number 11 to 20 determine Monday morning and time periods

number 21 to 30 determine Wednesday morning. For example, if a course is scheduled for time

periods number 12, 13 and 14, this means the course is scheduled for Monday morning 8:00 am to

9:30 am. Note that for morning of even days we have 30 time periods. Similarly, for the partition of

the time horizon corresponding to morning of odd days we have 20 time periods and time periods 1

to 10 determine the Sunday morning and time periods 11 to 20 determine Tuesday morning.

In the next step of our proposed approach, we select a partition of the time horizon and provide a

list of courses for scheduling in this partition. Each course is added to the list, if the teacher of the

course selects this partition for teaching. If it is not possible to schedule all courses of the list in this

partition, then we delete some courses with lower priority. A deleted course will be considered for

scheduling in the partition corresponding to the next priority of the teacher of the course. In our

proposed approach we give the highest priority to the Phd courses. The next priorities belong to the

MSc and BSc courses, respectively. Among BSc courses, we give the highest priority to the courses

of the last year and the next priorities belong to the course of the third year, second year and the

first year, respectively. Here, we note that, courses may belong to different fields. We define

priorities according to the population of fields. That means if field A has more population that field

B, then it has higher priority. Therefore, MSc courses of field A has higher priority than MSc courses

of field B. However, note that MSc courses of field B has higher priority than BSc courses of field A.

As we noted earlier, a group is a set of students attending the same courses. There are two semesters

in every year. In each semester, students who are in the first year usually take the same courses,

students who are in the second year usually take the same courses and so on. Therefore, in each

semester, for each BSc field we have four groups, for each MSc field we have two groups and for

each Phd field we have two groups. Clearly, it may not possible, to schedule all courses of a group,

in one partition of the time horizon. Therefore, we can consider at most three courses of a group for

scheduling for the morning partitions and at most two courses of a group for scheduling for the

evening partitions.

In university course timetabling, some courses may be common between several groups. For

example, in the first semester of the year, BSc students of the Electrical engineering, Information

Technology and Industrial engineering who are in the first year of their education must take the

course Calculus I. In these situations, we have to provide more than one section of Calculus I for

them. These different sections of the same course, may or may not be taught by the same teacher.

However, it is usually known that how many sections of the course should be taught by which

teacher. Therefore, in our presented approach, we deal with different sections of a course as

different courses. For example, if we have two sections of Calculus I, then we assume that we have

two courses namely, Calculus I-section I and Calculus I-section II. This way, without loss of

generality we can assume that each course is taught by exactly one teacher. Since, it may not be

possible to schedule all courses of a teacher, in one partition, we heuristically consider at most three

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 9 / 13

http://iors.ir/journal/article-1-774-en.html

Applying Branch and Cut Method to a Graph Based Reduction of UCTP

57

courses of a teacher for scheduling for the morning partitions and at most two courses of a teacher

for scheduling for the evening partitions.

After providing a list of courses for the selected partition of the time horizon, we associated a graph

to the problem as described before. As we noted earlier, the key idea to our approach, is that if we

associate different sets of rooms to the components of the graph, then the timetablings of different

components are independent from each other. On the other hand, if we solve the timetablings of

different components separately, then there might be some time periods that rooms associated to a

component are free while for other components we conclude that the rooms are not enough for

scheduling all courses. Another drawback with this strategy is that we may use a large number of

rooms for timetabling, while the timetabling can be performed by using smaller number of rooms.

Therefore, we first consider the smallest component of the graph and solve the timetabling problem

for this component. Then, we consider the next smallest component, add some constraints to

remove the time periods and rooms associated to the timetabling of the previous component and

solve the timetabling problem for the current component. The timetabling of this partition of the

time horizon, can be performed by repeating this procedure until all components of the graph are

considered. Here, note that to examine the numerical efficiency of our proposed approach it is

enough to consider the largest component of the graph associated to the morning of even days.

Other, components can be dealt with similarly.

We considered 4 integer programming formulation for solving the timetabling problem,

corresponding to the largest component. The first formulation consists of the objective function (9)

and constraints (1-8) and is denoted UCTP. The second one consists of the objective function (9)

and constraints (1-8) and valid inequalities (14-20) and is denoted UCTPV. The third one consists of

the objective function (13) and constraints (1-8) and is denoted by UCTPS. The fourth one consists

of the objective function (13) and constraints (1-8) and valid inequalities (14-20) and is denoted by

UCTPSV. We compared these formulations according to the objective function value (opt),

computing time (in seconds) (time), number of constraints (cons), number of variables (vars),

number of nonzero entries (nnz), number of nodes processed by the branch and cut method (nodes),

the required time to reach the first integer feasible solution (ffs) and the number of iterations (iter).

The numerical results are recorded in Table 1. For the implementation we used the CPLEX software

installed on Windows 10 operating system using a corei5 CPU with 2.5GHz speed and 8G of RAM.

We first tried to solve the whole problem by using the CPLEX [22] but since the problem was large

scale, we encountered the out of memory error. Then, we used our proposed graph based reduction

to the problem as described before and the CPLEX becomes able to solve the largest component of

the largest partition of the time horizon. Therefore, we believe that our proposed approach enables

us to provide a (hopefully high quality) feasible solution to real world large scale university course

timetabling problems.

The numerical results of Table 1 shows that UCTP have the same objective function value as

UCTPV and UCTPS have the same objective function value as UCTPVS. Note that we cannot

compare the objective function of UCTP and UCTPV with the objective function of UCTPS and

UCTPVS. Moreover, adding valid inequalities to the formulation does not have any effect to the

objective function value. However, we observed that the solutions obtained by the UCTPS and

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 10 / 13

http://iors.ir/journal/article-1-774-en.html

58 Mostafa Khorramizadeh

UCTPSV are more desirable that those of the UCTP and UCTPV. UCTP and UCTPV need less

computing time than the UCTPS and UCTPVS. Adding valid inequalities to the UCTP increased the

computing time, while adding valid inequalities to the UCTPS reduced the computing time. UCTP

and UCTPV need less number of iterations than the UCTPS and UCTPVS. In both cases, adding

valid inequalities reduced the number of iterations. UCTP and UCTPV need less number of nodes

than the UCTPS and UCTPVS. In both cases, adding valid inequalities reduced the number of

nodes. In both cases, adding valid inequalities increased the number of constraints and nonzero

entries. In both cases, adding valid inequalities does not have any influence on the number of

variables. In some cases, it is enough for us to have a feasible solution of the problem. In these

cases, UCTPS needs least computing time. After UCTPS, UCTP needs less computing time than

UCTPV and UCTPSV. Finally, between the models with valid inequalities UCTPSV need less

computing time than the UCTPV. In both cases, adding valid inequalities increased the computing

time for finding the first feasible solution.

Table 1. Time Periods of morning of even days
day 7:30

8:00
8:00
8:30

8:30
9:00

9:00
9:30

9:30
10:00

10:00
10:30

10:30
11:00

11:00
11:30

11:30
12:00

12:00
12:30

Sat 1 2 3 4 5 6 7 8 9 10

Mon 11 12 13 14 15 16 17 18 19 20

Wed 21 22 23 24 25 26 27 28 29 30

Table 2. Time Periods of evening of even days
day 14:00

14:30
14:30
15:00

15:00
15:30

15:30
16:00

16:00
16:30

16:30
17:00

17:00
17:30

17:30
18:00

Sat 1 2 3 4 5 6 7 8

Mon 9 10 11 12 13 14 15 16

Wed 17 18 19 20 21 22 23 24

Table 3. Time Periods of morning of odd days
day 7:30

8:00
8:00
8:30

8:30
9:00

9:00
9:30

9:30
10:00

10:00
10:30

10:30
11:00

11:00
11:30

11:30
12:00

12:00
12:30

Sun 1 2 3 4 5 6 7 8 9 10

Tue 11 12 13 14 15 16 17 18 19 20

Table 4. Time Periods of evening of even days
day 14:00

14:30
14:30
15:00

15:00
15:30

15:30
16:00

16:00
16:30

16:30
17:00

17:00
17:30

17:30
18:00

Sun 1 2 3 4 5 6 7 8

Tue 9 10 11 12 13 14 15 16

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 11 / 13

http://iors.ir/journal/article-1-774-en.html

Applying Branch and Cut Method to a Graph Based Reduction of UCTP

59

Table 5. Number of courses, teachers and groups

Degree #Courses #Teachers #Groups

BSc 101 69 16

MSc 48 57 27

PhD 19 24 13

Table 6. Comparison of four models on the largest component

model cons vars nodes iter nnz opt time ffs

UCTP 279191 6820 240 36688 821268 6 87 45

UCTPV 280587 6820 101 21771 1093836 6 378 260

UCTPS 279191 6862 87221 1604192 821268 246 1425 40

UCTPSV 280587 6862 3208 89441 1093836 246 456 210

Acknowledgments

The author would like to thank the council of Shiraz university of technology for supporting this

work.

References

[1] Arbaoui, T., Boufflet, J.P. and Moukrim, A. (2019), Lower bounds and compact mathematical

formulations for spacing soft constraints for university examination timetabling problems, Comput.

Oper. Res., 106, 133–142.

[2] Avella, P., Vasiliev, I. (2005), A Computational Study of a Cutting Plane Algorithm for University

Course Timetabling, Journal of Scheduling, 8(6), 497-514.

[3] Bashab, A., Ibrahim, A.O., AbedElgabar, E.E., Ismail, M.A., Elsafi, A., Ahmed, A. and Abraham,

A. (2020), A systematic mapping study on solving university timetabling problems using meta-

heuristic algorithms, Neural Comput. Appl., 32(23), 17397–17432.

[4] Bettinelli, A., Cacchiani, V., Roberti, R. and Toth, P. (2015), An overview of curriculum-based

course timetabling, Top, 23(2), 313–349.

[5] Burke, E.K. and Petrovic, S. (2002), Recent research directions in automated timetabling, Eur. J.

Oper. Res., 140(2), 266–280.

[6] Cardonha, A.C., Bergman, D. and Day, R. (2022), Maximizing student opportunities for in-person

classes under pandemic capacity reductions, Decis. Support Syst., 154, 113697.

[7] Carter, M.W. (1986), A survey of practical applications of examination timetabling algorithm,

Operations Research, 34(2) 193-202.

[8] Ceschia, S. Di Gaspero, L. and Schaerf, A. (2022), Educational Timetabling: Problems,

Benchmarks, and State-of-the-Art Results, doi: 10.1016/j.ejor.2022.07.011.

[9] Chen, R.M. and Shih, H.F. (2013), Solving university course timetabling problems using

constriction particle swarm optimization with local search, Algorithms, 6(2), 227–244.

[10] Chen, M.C., Goh, S.L., Sabar, N.R. and Kendall, G. (2021), A survey of university course

timetabling problem: perspectives, trends and opportunities, IEEE Access, 9, 106515–106529.

[11] Colajanni, G. and Daniele, P. (2021), A new model for curriculum-based university course

timetabling, Optimization Letters, 15(5), 1601–1616.

[12] Even S., Itai A. and Shamir A. (1975), On the complexity of time table and multi-commodity flow

problems, 16th annual symposium on foundations of computer science (sfcs 1975), pp. 184–193.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

 12 / 13

https://doi.org/10.1016/j.ejor.2022.07.011
http://iors.ir/journal/article-1-774-en.html

60 Mostafa Khorramizadeh

[13] Gotlieb, C.C. (1963), The construction of class-teacher timetables. In Even, S., Itai, A. and Shamir,

A. (ED), IFIP congress, vol. 62, pp. 73–77.

[14] Kaur, M. and Saini, S. (2021), A review of metaheuristic techniques for solving university course

timetabling problem, Adv. Inf. Commun. Technol. Comput., 19–25.

[15] Komijan, A.R. and Koupaei, M.N. (2015), A mathematical model for university course scheduling:

a case study, Int. J. Tech. Res. Appl., 3(19), 20–25, 2015.

[16] V. Kralev, V. and Kraleva, R. (2017), A local search algorithm based on chromatic classes for

university course timetabling problem, Int. J. Adv. Comput. Res., 7(28), 1-7.

[17] Murray, K., Muller, T. and Rudova, H. (2007), Modeling and solution of a complex university

course timetabling problem. In Burke, E. and Rudova, H. (ED), Practice and Theory of Automated

Timetabling, volume 3867 of Lecture Notes in Computer Science, Springer Heidelberg: Berlin, pp.

189-209.

[18] Qualizza, A. and Paolo, S. (2005), A column generation scheme for faculty timetabling. In Burke,

E. and Trick, M. (ED), Practice and Theory of Automated Timetabling, volume 3616 of Lecture

Notes in Computer Science, Springer Heidelberg: Berlin, pp. 161-173.

[19] Schaerf, A. (1999), A survey of automated timetabling, Artificial Intelligence Review, 13, 87-127.

[20] de Werra, D. (1985), An introducing to timetabling, European Journal of Operational Research,

19,151-162.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
5-

25
]

Powered by TCPDF (www.tcpdf.org)

 13 / 13

http://iors.ir/journal/article-1-774-en.html
http://www.tcpdf.org

