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Here, we first associate a graph to a university course timetabling problem (UCTP) and use the components 

of this graph and some customary and organizational rules to transform the original large scale problem into 

some smaller problems. Then, we apply the branch and cut method to obtain the optimal solution of each 

smaller problem. Our presented approach enables us to apply exact methods to obtain high quality solutions 

for large scale UCTPs. Finally, we examine the numerical efficiency of the resulting algorithm. 
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1. Introduction 

 

The timetabling problem is common to academic institutions such as schools, colleges or 

universities. Educational timetable generation is one of the major administrative requirements in 

scientific institutions. It is a very hard combinatorial optimization problem which attracts the 

interest of many researchers. University course timetabling problem falls in the category of NP-hard 

problems having various constraints, objectives, and limited resources. Generating an optimized 

timetable is challenging and time-consuming process. 

The university course timetabling problem (UCTP) is to allocate time periods and rooms to courses, 

such that the rules of the educational organization are satisfied. Two important types of this problem 

are the curriculum-based and the enrollment-based university course timetabling. Courses which 

can be taken, because they are needed to satisfy the degree rules of the given study, are called 

curricula. An allocation of rooms and time periods to courses based on this, is called curriculum-

based course timetabling. In the enrollment-based case, courses are placed in the timetable such that 

all students can attend the lectures on which they are enrolled [17, 18]. Here, we focus on the 

curriculum-based university course timetabling. The curriculum based university course timetabling 

problem consists in determining the best scheduling of university course lessons in a given time 

interval, assigning the lessons of each course to classrooms and time periods, so that a series of 

constraints is satisfied. These constraints are divided into two categories: hard constraints, necessary 

so that the programming can actually be implemented, and soft constraints, which involve 

qualitative measures [11]. 

The UCTP is a combinatorial problem. For the first time it was presented in [13]. The UCTP is 

NP-hard problem [12], but it has a great practical relevance, for instance [15, 20]. In [3], an iterated 
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local search algorithm is proposed to find the feasible solution for the UCTP. Three key phases are 

involved in the proposed algorithm framework: initialization, intensification and diversification. 

Once a partial-feasible initial timetable is constructed, a simulated annealing based local search and 

a diversification procedure that brings moderate perturbation or even improvement to the current 

solution are performed in an iterative manner until a stop condition is met. Colajanni and Daniele 

[11] deals with the study of the curriculum based university course timetabling problem. This paper 

formulates a new and complete model that satisfies both the planning constraints and those on the 

compactness of the curricula, the distribution of the lessons (in the examined time frame), the 

teachers’ preferences, the minimum number of working days, maximum capacity and stability of 

the classrooms (which aims to minimize the daily movements of students among classrooms) so 

that the resulting timetable is of high quality. The formulated model, with appropriate adaptations, 

has been applied to the real case study of the first year of the Mathematics Degree Course of the 

University of Catania, Italy. 

 

Since university timetabling is commonly classified as a combinatorial optimization problem, 

researchers tend to use optimization approaches to reach the optimal timetable solution. Meta-

heuristic algorithms have been presented as effective solutions as proven on their leverage over the 

last decade. However, a comprehensive systematic overview is missing. Evan et al. [12] aimed to 

provide an organized view of the current state of the field and comprehensive awareness of the 

meta-heuristic approaches, by conducting meta-heuristic for solving university timetabling 

problems. In addition, the mapping study tried to highlight the intensity of publications over the last 

years, spotting the current trends and directions in the field of solving university timetabling 

problems, as well as having the work to provide guidance for future research by indicating the gaps. 

Komijan and Koupaei [15] describes the decision support system that was developed for the 

assignment of courses to teaching modalities and rooms for the Fall semester of 2020 at the 

University of Connecticut (UConn). With the adoption of safety/mitigation standards imposed by 

the COVID-19 pandemic, the seating capacities of rooms were reduced by more than 70%, thus 

making virtually every existing room assignment for Fall 2020 infeasible. In order to maximize 

opportunities for in-person instruction, UConn introduced a teaching modality in which class 

meetings are attended on campus by only 50% of the enrolled students. As decision makers were 

given partial flexibility to assign teaching modalities to classes, the complexity of the assignment 

problem increased considerably, especially because the real-world instances involved hundreds of 

rooms and thousands of classes and required a quick solution turnaround in practice. In this article, 

they introduce this flexible assignment problem and describe the two mixed-integer programming 

formulations that were used to solve the real-world instances of the problem. The examination 

timetabling problem can be described as a set of exams to be scheduled over an examination session 

while respecting numerous hard and soft constraints. Chen et al. [9] considers the spacing soft 

constraints that seek to prevent students sitting more than one exam per day. Kaur et al. [14] 

presents a study for a local search algorithm based on chromatic classes for the university course 

timetabling problem. Several models and approaches to resolving the problem are discussed. The 

main idea of the approach is through a heuristic algorithm to specify the chromatic classes of a 

graph in which the events of the timetable correspond to the graph vertices and the set of the edges 

represents the possible conflicts between events. Then the chromatic classes should be sorted 

according to specific sort criteria (a total weight or a total count of events in each class), and finally 

the local search algorithm starts. The aim of the experiments is to determine the best criterion to sort 

chromatic classes. The results showed that the algorithm generates better solutions when the 

chromatic classes are sorted in a total weight criterion. 
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Overviews [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20] examine the university course timetabling 

problem, focusing on mathematical models, one and multi-objective, exact and heuristic algorithms 

in the literature. 

Here, we present a graph based reduction approach for the university courses timetabling problem. 

We first associate a graph to the UCTP. Each node of this graph corresponds to a teacher of the 

university. If two teachers, teach some courses of the same group, then we define an edge between 

the corresponding nodes. Next, we use the components of this graph along with some customary 

and organizational rules to transform the original large scale problem into smaller ones and use the 

branch and cut method to solve each of them. Finally, we present some numerical results to 

examine the efficiency of our proposed approach. 

In section 2 we describe the characteristics of UCTP. In section 3 we study the integer 

programming formulation of UCTP. Section 4 is concerned with our proposed graph based 

reduction approach and finally, in section 5 we examine the numerical results. 

 

2. Integer Programming Formulation 
 

In this section, we describe the terminology, notations and the integer programming formulation of 

UCTP. Let },...,2,1{ cC  , },...,2,1{ rR  , },...,2,1{ tT  , },...,2,1{ dD  , },...,2,1{ dG  and 

},...,2,1{ sS   be the set of courses, rooms, time periods, days, groups and teachers, respectively. 

For any 𝑠 ∈ 𝑆, let 𝐶𝑠 ⊆ 𝐶 be the set of courses taught by teacher s . For any Gg  , let CCg  be 

the set of courses attended by group 𝑔. The course 𝑐 should be scheduled in cn time periods per 

week. If the course 𝑐 is scheduled for more than one days a week, then the number of time periods 

that are scheduled for that course in day 𝑑 should be between min

cn  and max

cn . Moreover, we let
d  

be the first time slot of day Dd . For simplicity in notation we assume that we do not consider 

any break between morning and evening sessions. This way, all time periods of the first day are in

 1 2,   and so on. 

Next, we define some binary variables. If the coursec C is scheduled at time t and in room r , 

then 
crtx  is one, otherwise 

crtx is zero. If in day Dd the course c C  is taught, then, 
cdu is one, 

otherwise 
cdu is zero. If in day Dd the teacher s S  teaches at least one course, then, 

cd  is 

one, otherwise 
cd  is zero. The university course timetabling problem must satisfy the following 

constraints. 

• For any course c C , 
cn time periods in a week must be scheduled. 

 1,     c C ,                                                                                               crt c

r R t T

x n
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• At time t T , any class g G  can attend at most one course. 

)2(,,,1
 


gCc Rr

crt TtGgx  

• At time t T , any teacher s can teach at most one course. 

 1 3,     , ,                                                                                          
s

crt

c C r R

x s St T
 

    

• At time t T , the room r R can host at most one course. 

 1 4,     , ,                                                                                              crt

c C

x r R t T


    

• If course c C is taught in day Dd , then the teaching hours of course c C must be between 

min

cn  and max

cn . 

 
1

5max ,     c C , D,                                                                       
d d

c

crt cd

r R t

x n u d
    

     

 
1

6min ,     c C , D,                                                                       
d d

c

crt cd

r R t

x n u d
    

     

• If two time periods are scheduled for the same course in day Dd , then they have to be 

assigned to adjacent time periods. 

   
1 2 3 1 2 3 11 7,    c C , D, ,                               crt crt crt d d

r R

x x x d t t t  



          

• At most one room can be assigned to the time periods of each course in every day. 

)8(,1,,,,1 211212211
rrrttDdCcxx ddtcrtcr    

• If a room or a teacher is unavailable we set the corresponding variable  0crtx  . 

Next, we study the objective function of the problem. Clearly, the objective function is the 

minimization of the measure of the sum of undesirabilities. To define the measure of the sum of 

undesirabilities we consider two approaches. In the first approach we let 
crtp be the measure of the 

undesirability of the assignment of course c C  to room r in time period t . In this approach, the 

objective function is the minimization of the sum of penalties i.e. 

 9min                                                                                                    crt cr t

c C r R t T

p x
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In the second approach, each desirability is represented by a constraint in such a way that if the 

constraint is satisfied, then the corresponding desirability is satisfied. These constraints are called 

soft constraints. The amount of violation of a soft constraint, reflects the amount of the 

corresponding undesirability. Therefore, we try to minimize the measure of the sum of 

undesirabilities, by minimizing the sum of violation of these constraints. In our presented approach, 

we consider the following soft constraints. 

• For each group g G , empty time periods between any two courses are not allowed. 

   
1 2 3 1 2 3 11 10,     g  , D, ,                        

g

cr t cr t cr t d d

c C r R

x x x G d t t t  

 

          

• Each class attend at most 
maxl teaching time periods in a day. 

 
  


g ddCc Rr t

crt DdGglx )11(,,,max

1

 

• A teacher s S works at most 
sk days a week. 

 12,     d ,                                                                                                    sd s

s S

k D


   

It is clear that all kind of desirabilities, cannot be represented by using constraints. For example, 

assume that a teacher would not like his courses to be scheduled in rooms, far from his office. 

Clearly, it is difficult to find a constraint to represent this desirability. On way to deal with this 

difficulty is to use a combination of the first and second approaches to define the objective function. 

The resulting objective function is as follows. 

   

 

1 2 3

1 2 3 1 1

1 max

D

d

 

min

                                                           

d d g s d d

cr t cr t cr t cr t

g G d t t t c C r R c C r R t

sd s cr t c

s S D

x x x x l

k p x

  



            

 

       
        
       

 
   
 

    



 13

 r t

c C r R t T  

 
 
 
 
 
 
 



 

Next, we list some valid inequalities relating to the integer programming formulation of the UCTP 

described in the previous section. These valid inequalities are used to improve the efficiency of the 

branch and cut method and are introduced by Avella and Vasilev [2]. The validity and effectiveness 

of these inequalities can be found in [2]. 

• Min (Max) Busy Days inequalities: 

 14
min

,    c C                                                                                              c
cd c

d D

n
u

n
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 15
max

,    c C                                                                                              c
cd c

d D

n
u

n

 
  
 

  

• Adjacency inequalities: 

 
11 1 1 2 16-x  +x -x 0,     t ,                                                                  

dcrt crt crt d 
  

      

 1 17x -x 0,     t= ,  d D                                                                                     crt crt d    

 1 1 18-x x 0,     t= -1,  d D                                                                            crt crt d     

Where,  2min: cC c C n   . 

• Inequalities 

 

1 2

1

2 19

max

max

,     c ,d , ,

                                                                                                          

cdt cdt

c

crt cr t cd d d

r R t T r R t T

c

d d

x x u C D t n

t n

 

 

   

      

  

   
 

Where, 

 

  

  
1

2

1

1 1

0

0

min max

max

max

:  

T : ,  

T : ,  

c c

c

cdt d d

c

cdt d d

C c C n n

t t kn k t

t t kn k t

 

  

  

      

      

 

• Inequalities 

 
1 1 2 2 1 2

1 2 1

1

20

x  +x - ,   c C, 1 r

                                  d D,                                                                

cdcr t cr t

d d

u r r

t t  

    

   
 

Where, 1 ,    c C, d Dcd cdu u    . 

3. Graph based reduction of UCTP 
 

In this section we describe our presented approach for graph based reduction of UCTP. Real world 

instances of university course timetabling are usually considered as large scale and NP-hard 

problems. Some exact algorithms for solving integer programming problems (such as the cutting 

planes and branch and cut) in the early development were not able to solve large scale problems. 

Therefore, many researchers apply heuristic or metaheuristic algorithms such as Tabu search, 

Genetic algorithm to solve this problem. Recent significant advances in both software and hardware 

computer technologies, make it possible for us to apply exact algorithms (such as branch and cut) 

for solving relatively large scale problems. However, there are many large scale problems that can 

not be solved by using exact algorithms yet. If it is possible to transform the original large scale 
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problem into some smaller problems, then we may be able to apply these exact methods and solve 

the problem efficiently. 

In the following, if the scheduling of a part of the UCTP do not influence on other parts of the 

UCTP, then we call it an independent part. The basic idea of our presented approach is to first 

remove the rooms from the problem and identify independent parts of the UCTP. Then, we 

associate a priority for each independent part of the UCTP and consider the part with highest 

priority. In the next step, we heuristically estimate the number of required rooms for the selected 

part of UCTP. For example, if we have three courses and two teachers in the selected independent 

part, then we may heuristically estimate that two rooms are enough for scheduling these courses and 

teachers. Then, we apply the branch and cut algorithm to the scheduling problem consisting of the 

selected part and selected rooms and find its optimal solution. Next, we remove this part from the 

UCTP and consider the next independent part with highest priority. At this stage, there may exist 

some time periods of the selected rooms of the previous independent part, which have already 

scheduled for. We remove these time periods from the problem and in the remainder of the problem 

we assume that the corresponding rooms are not available on these time periods. We then estimate 

the required number of rooms for the new selected part and proceed as before. To identify the 

independent parts of the UCTP, we associate a graph to the UCTP as follows. Each node of this 

graph corresponds to a teacher of the university. If two teachers, teach some courses of the same 

group, then we define an edge between the corresponding nodes. Clearly, if we do not consider the 

rooms of the problem, then every component of this graph corresponds to an independent part of the 

UCTP. 

Outline of the graph based reduction algorithm 

Step 1: Define a node for each teacher. 

Step 2: If two teachers teach some courses of the same group, then define an edge between the 

corresponding nodes. 

Step 3: Find the components of the resulting graph. 

Step 4: Assign a priority to each component of the graph. 

Step 5: If the set of the components of the graph is empty, then stop. Otherwise, select the 

component of the graph with highest priority. 

Step 6: Estimate the required number of rooms for scheduling the courses of the selected part and 

assign the estimated number of rooms to the selected part. 

Step 7: Apply the branch and cut algorithm to the selected part and selected rooms to find the 

optimal solution. 

Step 8: Assume that the selected rooms of the previous parts, are not available on the time periods 

that have already been scheduled for and go to Step 5. 
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In the following we characterize some features of our presented graph based reduction approach. 

The first feature of our presented approach is that it is possible to apply some traditional 

conventions and organizational rules to obtain smaller problems. For example, in many universities 

courses are usually scheduled for either even days (Saturday, Monday and Wednesday) or odd days 

(Sunday and Tuesday). In this case we can provide a list for courses requesting to be scheduled for 

even days and another list for courses requesting to be scheduled for odd days, and treat each list 

separately. The second feature of our presented approach is that it enables the managers of the 

university to know how they assign courses to teachers, so that the number of components of the 

associated graph to the UCTP is as large as possible and the resulting problems are smaller. For 

example, managers can assign a certain number of teachers to support the courses of each group. 

Some courses are common between students of several fields, the mangers can assign optimal time 

periods and rooms to these courses and remove the associated rooms, time periods and courses from 

the problem, to increase the number of components. One of the important parts of our proposed 

approach is the estimation of the required number of rooms for scheduling the courses of the 

selected part. The smaller the number of rooms, the faster the branch and cut algorithm. The 

minimal number of rooms can be easily determined by trial and error. For example, we can start by 

one room. If the branch and cut algorithm, informs us that the problem is infeasible, then we can try 

two rooms and proceed. In our presented approach, managers can determine the teachers that 

present common courses between several components of the graph and assign optimal times and 

rooms to them. This will increase the number of components and reduce the size of larger 

components of the graph. 

 

4. Numerical Results 

 

In this section we study the numerical results. We used the Shiraz University of Technology 

(Sutech) course timetabling problem to examine the numerical efficiency of our proposed graph 

based reduction approach. At first we noted that in Sutech five days of the week are considered as 

the time horizon. These, five days are Saturday, Sunday, Monday, Tuesday and Wednesday. In the 

following, we call Saturday, Monday, Wednesday, even days and Sunday, Tuesday odd days. For 

each day we considered two sessions, namely morning and evening. In Sutech courses that should 

be scheduled for more than one working days, are usually scheduled for even days or odd days. For 

example, if a course is scheduled for Saturday evening, then its next session (if there exists any) is 

scheduled for Monday evening or Wednesday evening. Similarly, if a course is scheduled for 

Sunday morning, then its next session (if there exists any) is scheduled for Tuesday morning. For 

most courses, morning sessions of each working day have more desirability than evening sessions. 

Therefore, we will deal with the mornings of even days, mornings of odd days, evenings of even 

days and evenings of odd days separately, and call each of them a partition of the time horizon. 

Indeed, we first considered the morning of even days and provide the list of courses for which there 

is a request for scheduling in this partition. Then, we tried to schedule courses of the list in this 

partition. Then, we considered the morning of even days, the evening of even days and the evening 

of odd days, respectively, and repeated this procedure for them. Here, note that to examine the 

numerical efficiency of our proposed approach, it is enough to consider the largest partition of the 

time horizon (morning of even days). The timetabling of other partitions can be performed 

similarly. 
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Next, we study the properties of the partition of the time horizon corresponding to the morning of 

even days. In Sutech, morning session usually starts at 7:30 am and ends at 12:30 am. We assign to 

every thirty minutes a time period. Therefore, 7:30 am to 8:00 am is the first time period, 8:00 am to 

8:30 am is the second time period and so on. This way, time periods number 1 to 10 determine 

Saturday morning, time periods number 11 to 20 determine Monday morning and time periods 

number 21 to 30 determine Wednesday morning. For example, if a course is scheduled for time 

periods number 12, 13 and 14, this means the course is scheduled for Monday morning 8:00 am to 

9:30 am. Note that for morning of even days we have 30 time periods. Similarly, for the partition of 

the time horizon corresponding to morning of odd days we have 20 time periods and time periods 1 

to 10 determine the Sunday morning and time periods 11 to 20 determine Tuesday morning. 

In the next step of our proposed approach, we select a partition of the time horizon and provide a 

list of courses for scheduling in this partition. Each course is added to the list, if the teacher of the 

course selects this partition for teaching. If it is not possible to schedule all courses of the list in this 

partition, then we delete some courses with lower priority. A deleted course will be considered for 

scheduling in the partition corresponding to the next priority of the teacher of the course. In our 

proposed approach we give the highest priority to the Phd courses. The next priorities belong to the 

MSc and BSc courses, respectively. Among BSc courses, we give the highest priority to the courses 

of the last year and the next priorities belong to the course of the third year, second year and the 

first year, respectively. Here, we note that, courses may belong to different fields. We define 

priorities according to the population of fields. That means if field A has more population that field 

B, then it has higher priority. Therefore, MSc courses of field A has higher priority than MSc courses 

of field B. However, note that MSc courses of field B has higher priority than BSc courses of field A. 

As we noted earlier, a group is a set of students attending the same courses. There are two semesters 

in every year. In each semester, students who are in the first year usually take the same courses, 

students who are in the second year usually take the same courses and so on. Therefore, in each 

semester, for each BSc field we have four groups, for each MSc field we have two groups and for 

each Phd field we have two groups. Clearly, it may not possible, to schedule all courses of a group, 

in one partition of the time horizon. Therefore, we can consider at most three courses of a group for 

scheduling for the morning partitions and at most two courses of a group for scheduling for the 

evening partitions. 

In university course timetabling, some courses may be common between several groups. For 

example, in the first semester of the year, BSc students of the Electrical engineering, Information 

Technology and Industrial engineering who are in the first year of their education must take the 

course Calculus I. In these situations, we have to provide more than one section of Calculus I for 

them. These different sections of the same course, may or may not be taught by the same teacher. 

However, it is usually known that how many sections of the course should be taught by which 

teacher. Therefore, in our presented approach, we deal with different sections of a course as 

different courses. For example, if we have two sections of Calculus I, then we assume that we have 

two courses namely, Calculus I-section I and Calculus I-section II. This way, without loss of 

generality we can assume that each course is taught by exactly one teacher. Since, it may not be 

possible to schedule all courses of a teacher, in one partition, we heuristically consider at most three 
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courses of a teacher for scheduling for the morning partitions and at most two courses of a teacher 

for scheduling for the evening partitions. 

After providing a list of courses for the selected partition of the time horizon, we associated a graph 

to the problem as described before. As we noted earlier, the key idea to our approach, is that if we 

associate different sets of rooms to the components of the graph, then the timetablings of different 

components are independent from each other. On the other hand, if we solve the timetablings of 

different components separately, then there might be some time periods that rooms associated to a 

component are free while for other components we conclude that the rooms are not enough for 

scheduling all courses. Another drawback with this strategy is that we may use a large number of 

rooms for timetabling, while the timetabling can be performed by using smaller number of rooms. 

Therefore, we first consider the smallest component of the graph and solve the timetabling problem 

for this component. Then, we consider the next smallest component, add some constraints to 

remove the time periods and rooms associated to the timetabling of the previous component and 

solve the timetabling problem for the current component. The timetabling of this partition of the 

time horizon, can be performed by repeating this procedure until all components of the graph are 

considered. Here, note that to examine the numerical efficiency of our proposed approach it is 

enough to consider the largest component of the graph associated to the morning of even days. 

Other, components can be dealt with similarly. 

We considered 4 integer programming formulation for solving the timetabling problem, 

corresponding to the largest component. The first formulation consists of the objective function (9) 

and constraints (1-8) and is denoted UCTP. The second one consists of the objective function (9) 

and constraints (1-8) and valid inequalities (14-20) and is denoted UCTPV. The third one consists of 

the objective function (13) and constraints (1-8) and is denoted by UCTPS. The fourth one consists 

of the objective function (13) and constraints (1-8) and valid inequalities (14-20) and is denoted by 

UCTPSV. We compared these formulations according to the objective function value (opt), 

computing time (in seconds) (time), number of constraints (cons), number of variables (vars), 

number of nonzero entries (nnz), number of nodes processed by the branch and cut method (nodes), 

the required time to reach the first integer feasible solution (ffs) and the number of iterations (iter). 

The numerical results are recorded in Table 1. For the implementation we used the CPLEX software 

installed on Windows 10 operating system using a corei5 CPU with 2.5GHz speed and 8G of RAM. 

We first tried to solve the whole problem by using the CPLEX [22] but since the problem was large 

scale, we encountered the out of memory error. Then, we used our proposed graph based reduction 

to the problem as described before and the CPLEX becomes able to solve the largest component of 

the largest partition of the time horizon. Therefore, we believe that our proposed approach enables 

us to provide a (hopefully high quality) feasible solution to real world large scale university course 

timetabling problems. 

The numerical results of Table 1 shows that UCTP have the same objective function value as 

UCTPV and UCTPS have the same objective function value as UCTPVS. Note that we cannot 

compare the objective function of UCTP and UCTPV with the objective function of UCTPS and 

UCTPVS. Moreover, adding valid inequalities to the formulation does not have any effect to the 

objective function value. However, we observed that the solutions obtained by the UCTPS and 
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UCTPSV are more desirable that those of the UCTP and UCTPV. UCTP and UCTPV need less 

computing time than the UCTPS and UCTPVS. Adding valid inequalities to the UCTP increased the 

computing time, while adding valid inequalities to the UCTPS reduced the computing time. UCTP 

and UCTPV need less number of iterations than the UCTPS and UCTPVS. In both cases, adding 

valid inequalities reduced the number of iterations. UCTP and UCTPV need less number of nodes 

than the UCTPS and UCTPVS. In both cases, adding valid inequalities reduced the number of 

nodes. In both cases, adding valid inequalities increased the number of constraints and nonzero 

entries. In both cases, adding valid inequalities does not have any influence on the number of 

variables. In some cases, it is enough for us to have a feasible solution of the problem. In these 

cases, UCTPS needs least computing time. After UCTPS, UCTP needs less computing time than 

UCTPV and UCTPSV. Finally, between the models with valid inequalities UCTPSV need less 

computing time than the UCTPV. In both cases, adding valid inequalities increased the computing 

time for finding the first feasible solution. 

 

Table 1. Time Periods of morning of even days 
day 7:30 

8:00 
8:00 
8:30 

8:30 
9:00 

9:00 
9:30 

9:30 
10:00 

10:00 
10:30 

10:30 
11:00 

11:00 
11:30 

11:30 
12:00 

12:00 
12:30 

Sat 1 2 3 4 5 6 7 8 9 10 

Mon 11 12 13 14 15 16 17 18 19 20 

Wed 21 22 23 24 25 26 27 28 29 30 

 

Table 2. Time Periods of evening of even days 
day 14:00 

14:30 
14:30 
15:00 

15:00 
15:30 

15:30 
16:00 

16:00 
16:30 

16:30 
17:00 

17:00 
17:30 

17:30 
18:00 

Sat 1 2 3 4 5 6 7 8 

Mon 9 10 11 12 13 14 15 16 

Wed 17 18 19 20 21 22 23 24 

 

 

Table 3. Time Periods of morning of odd days 
day 7:30 

8:00 
8:00 
8:30 

8:30 
9:00 

9:00 
9:30 

9:30 
10:00 

10:00 
10:30 

10:30 
11:00 

11:00 
11:30 

11:30 
12:00 

12:00 
12:30 

Sun 1 2 3 4 5 6 7 8 9 10 

Tue 11 12 13 14 15 16 17 18 19 20 

 

Table 4. Time Periods of evening of even days 
day 14:00 

14:30 
14:30 
15:00 

15:00 
15:30 

15:30 
16:00 

16:00 
16:30 

16:30 
17:00 

17:00 
17:30 

17:30 
18:00 

Sun 1 2 3 4 5 6 7 8 

Tue 9 10 11 12 13 14 15 16 
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Table 5. Number of courses, teachers and groups 

Degree  #Courses #Teachers #Groups 

BSc 101 69 16 

MSc 48 57 27 

PhD 19 24 13 

 

Table 6. Comparison of four models on the largest component 

model cons vars nodes iter nnz opt time ffs 

UCTP 279191 6820 240 36688 821268 6 87 45 

UCTPV 280587 6820 101 21771 1093836 6 378 260 

UCTPS 279191 6862 87221 1604192 821268 246 1425 40 

UCTPSV 280587 6862 3208 89441 1093836 246 456 210 
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