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Computing maximum proportion and most violated sets
M. Ghiyasvand'”

In Fisher's and Arrow-Debreu's market equilibrium models with linear utilities, a set B of buyers
and a set G of divisible goods, suppose that there are some buyers with surplus money w.r.t current
prices of goods. If there does not exists an equilibrium, then, there are some buyers with surplus
money w.r.t the given prices. A set of buyers with surplus money called a violated set. Computing
this set helps to find the set of buyers with maximum surplus money w.r.t the given prices. In
this paper, two new kinds of violated sets are defined, which called maximum proportion and most
violated sets. We present an algorithm to compute a maximum proportion set, which runs in at most

| B| maximum flow computations. Also, we show that the set of all buyers B is a most violated set.
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1. Introduction

Fisher's and Arrow-Debreu's market equilibrium models are the two fundamental models within
mathematical economics. In the both model, the purpose is to compute an equilibrium. In 1954,
Arrow and Debreu [1] proved that the market equilibrium always exists if the utility functions are
concave. The result is prominently mentioned in their Nobel prize laudation and the market is usually
referred to as the Arrow-Debreu market, which considers a more general model in which each buyer

i starts with an initial endowment {e;;, ;,..., &} of goods, wheree; is the initial proportion of good
J possessed by buyer i. If P is a vector of prices for the goods, then the value of the goods forbuyer

iis e (P)= Zeij p;. The first polynomial time algorithm for the linear Arrow-Debreu mode is given
jeG

by Jain [15], it is based on solving a convex program using the ellipsoid algorithm. Another

polynomial-time algorithm was given by Ye [19], it is based on solving a convex program using the

interior-point method. The algorithm in [19] runs in O(n*L) time, where n :|B|+|G| and L is the
bit-length of the input data u;; (which uj is the utility of buyer i purchasing all of good j).

Jain, Mahdian and Saberi [16] considered approximate utility maximization and gave a
combinatorial method to compute an & -approximate solution, which runs in O(1/ &) calls of the

algorithm in [4]. Devanur and Vazirani[6] improved the running time to O((n’/&)logn/¢). This

running time avoids dependence on the size of the integers in the problem instance. Garg and Kapoor
[9] relaxed the definition of approximation by permitting purchases to violate their optimality
conditions by ¢. Under this revised notion of approximation, they developed an

O((n*/&)logn/ &) time algorithm. Ghiyasvand and Orlin [13] developed an approximation
algorithm that runsin O(n*/ &) time using a new definition of approximation. Duan and Mulhern[7]
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presented the first combinatorial polynomial time algorithm for computing the equilibrium of the
Arrow-Debreu market model with linear utilities. Devanur et al. [5] presented a rational convex
program for linear Arrow-Debreu markets. Finally, Garg and Vazirani [11] obtained a linear
complementarity problem formulation that captures exactly the set of equilibria for Arrow-Debreu
markets with SPLC utilities and SPLC production, and gave a complementary pivot algorithm for
finding an equilibrium. Some new results of the market problems presented by [2,4,8,10,14].

In Fisher'model [3], all initial endowments are in dollars: each buyeri has a fixed amount of

money €; and it does not change by increasing or decreasing the prices. Devanur et al. [5] gave the
first polynomial time algorithm for computing an equilibrium, using
O(n*(logn+nlogyU, . +logM)) max-flow computations, where M depends on the

endowments and U . is the maximum utility. Finally, Orlin [17] developed the first strongly

polynomial time algorithm for finding the market equilibrium, which runs in O(n* log n) time.
Consider a market consisting a set B of buyers and a set G of divisible goods. We are given for
each buyer i the amount €, of money she possesses and for each good j one unit of good. Let Uj;

denote the utility derived by i on obtaining a unitamountof good j. Let P =(p,, p,,..., Pg ) denote

a vector of prices. If at these prices’ buyer i is given good |, she derives U;; / p; amount of utility

per unit amount of money spent. Define
Uj;
jeG pj
Clearly buyer i will be happiest with goods that maximize u; / p; . This motivates defining a bipartite
graph D = (G, B), which for each i e Band j € G, edge (i, j)isin Diff o; =uj; / p;. Direct edge
of D from G to B and assign a capacity of infinity to all these edges. Introduce source vertex s, sink
vertex t,a directed edge from s to each vertex j € G, with a capacity of p ;» and a directed edge from

each vertex i € B to t with a capacity of €. This network is clearly a function of the current prices
P and defined by N(P). An equilibrium is obtained w.r.t. the prices P iff ({s})and ({s} G U B)
are two min-cuts in N(P). On the other hand, an equilibrium is obtained w.r.t prices P iff the
following conditions are satisfied.

Condition-1: There exists a maximum flow xfrom node sto node tsuch that x; = p,,for each
ieG.
Condition-2: There exists a maximum flow xfrom node sto node tsuch that x; =e;,for each
jeB.

Supposing that Condition-1 is satisfied, but Condition-2 is not. Thus, there are some buyers with
surplus money w.r.t the current prices P. For satisfying Condition-2, we should increase the prices.
Ghiyasvand [12] called a set of buyers with surplus money as a violated set and defined a kind of
violated sets called maximum mean, then computed a maximum mean violated set in
O(mnlog(n?/m)), where m s the number of pairs (i, j)such that buyer i has some utility for
purchasing good j.

This paper defines two new kinds of violated sets, which are maximum proportion and most
violated sets. Then, an algorithm to compute a maximum proportion set is presented, which runs in
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at most|B| maximum flow computations. Finally, we show that the set of all buyers B is a most

violated set. Computing a maximum mean, most violated, or maximum proportion set help to know
the set of buyers with maximum surplus money w.r.t the current prices P.
This paper consists of four sections in addition to Introduction section. Section 2 defines the most

violated and maximum proportion sets. In Section 3, a maximum proportion set is computed in |B|
maximum flow computations. Section 4 shows that the set of all buyers B is a most violated set.

2. Violated sets

A directed graph D is a pair D = (N, A) where N is a set of nodes and A is a set of ordered pairs of
nodes, called arcs. We denote an arc from node i to node j by (i, j) and also associate with each arc

a capacity c; that denotes the maximum amount that can flow on the arc. If two sets S and S form

a nontrivial partition of N then, we define cut(S) = {(i, J)eAliesS,j¢ S}, where S=N -,
We refertoacutas s—tcutif SeS and t ¢ S. The capacity of cut(S) is defined as:

K(S) = zcij' (1)

(i,)e(S58)
An s —1 cut whose capacity is minimum among all s —1 cuts is called a minimum cut.

Theorem 2.1 (Max-flow min-cut theorem). The maximum value of the flow from a source node S to
a sink node t in a capacitated network equals the minimum capacity among all s—t cuts. W

For each T < B, define its money m(T) = Zej. Also, w.r.t prices P, define m(S) = Z p;, for

jeT ieS

each ScG. For T cBand S <G, define its neighborhood in N(P) by

QM) ={ieG|3FjeT,(i, j) eN(P)},
and
1(S)={jeB|3ieS, (i, j) e N(P)}

Lemma 2.1 (Ghiyasvand[12]). For given prices P in N (P), there exists a maximum flow X from node
Sto node t such that x; =e;, for each j € B ifand only if

foreach T<B: m(Q(T))>m(T). N

For given prices P and each set T < B, we define the value of set T by

VF(T) =m(T) —m(cx(T)).
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If Condition-1 is satisfied, then, by Lemma 2.1, an equilibrium is obtained w.r.t. prices P if and only
if foreveryset T — B:

VP <o0.

A set T < B is called a violated set if V7 (T) > 0. If Condition-1 is satisfied but an equilibrium is
not obtained w.r.t prices P, then Lemma 2.1 says that there are some violated sets in N (P), w.r.t.
the current prices P. The mean value of set T is defined by

A,
vim =+,
M=

and a maximum mean set is computed by

T = MaxV (T).

TeB

This paper defines two new kinds of violated sets. We call the proportion of aset T by

ymy =m0 _
m(Q(T))’

and a maximum proportion set Z is defined by

Y(Z) = Max Y (T).

Also, T < B is a most violated set w.r.t prices P if
VP(T7) = Maxv " (T).

By Lemma 2.1, if the Condition-1 is satisfied, an equilibrium is obtained w.r.t. prices P if and only
if

(1) Foreveryset T — B: \7P(I')§O, or
(2) Foreveryset T < B:VF(T)<O0, or

(3) Foreveryset T < B: Y(T)<1.

Example 2.1. In Figure 1, consider two sets T, ={1,2,3} and T, ={3,4}. We have Q(T,) ={a,b},
m(T,) =100 + 60 + 20 =180, and m(€(T,)) =60, so

m(Tl) B m(Q(Tl)) = 40.
I T, |

Vi) =
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Figure 1. A network N(P) with G={a,b,c,d}, p, =20, p, =40, p, =10, p, =30,
B={1,2,34}, e =100, e, =60, e, =20, and e, =140.

Also, by Q(T,) ={b,c,d}, m(T,) = 20+140 =160, and m(CX(T,)) = 40+10+30 =80, we get

\7P T,) = m(T,) |_Tm(|Q(T2)) — 40

Hence,

\7P(T1) :\7P(T2)a

which means sets T,and T, have no difference with respect to the definition of the mean value for
violated sets. The proportion of sets T, and T, are

m(T,) 180

Y(Tl) = = =3,
m(Q(T,)) 60
And
. m(T,) 160
Y=o,y T80

Thus, the sets T, and T, are different with respect to the definition of the proportion for violated sets.
By definitions, m(Q(T )) is the maximum amount of money spent by the buyers of T with respect

to the current prices P. Hence, Y (T,) =3 means that the maximum amount of money spent by the
buyers of T, is 1/3 of their money;, i.e.

m(Q(T,)) = m(T,)

Also, by Y (T,) =3, the maximum amount of money spent by the buyers of T, is 1/3of their money,
which means

m(QT,)) =2 m(T,).
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3. Computing a maximum proportion set

In this section, an algorithm to compute a maximum proportion set is presented. If Y(Z) <1 then, by
Lemma 2.1, {s} G U B isaminimum cutin N(P). Supposing that we multiply prices of all goods
in G by ¢ > 0, then the network N (P) changes to N (¢P).

Lemma3.1. If ¢>Y(Z), then, for every maximum flow X from node s to nodet in network N (¢gP),
we have x; =e,, foreach j € B. Also, for ¢ <Y (Z), such a maximum flow does not exist.

Proof. By the definition of a maximum proportion set Z, we get

¢ <Y(Z) if and only if ¢<me—((rT))),

for each set T. Hence, by Lemma 2.1, we conclude the claims. W

Definition 3.1. Supposing that, for each maximum flow X from node S to node tin N(g#P), there
exists at least one node j € Bsuch that x; =e;. Let Z=ZnB,H=0Z)NG,and
Z=2-27, where {s}U G, U B, isamin-cutin N(¢P). Figure 2 shows the sets Z, H, Z, B,
B,, G, and G,, where G, =G -G, and B, =B—B,.

Figure 2. The sets 2, H, Z~, B,, B,, G, and G,.
The following lemma presents two properties of these sets.

Lemma 3.2. Supposing that, for each maximum flow X from node Sto node tin N(¢P), there
exists at least one node j € Bsuch that x; #e;. Let {S} G, LU B, be aminimum cutin N(¢P). If

A

Z is not empty, then
(@) m(Z)<gxm(H).
() Z=+Z.

Proof.

(a) By Figure 2,
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K{s}Ho (G, —H) L (B, ~2)) =¢xm(G,) +¢xm(H) +m(B,) -m(Z), @
and
K{s}uG, UB,)=¢xm(G,) +m(B,). 3)
If m(Z)>¢xm(H), then, by (2) and (3),
K{s} (G —H) U (B -2)) < K{s}UG UB),
which is a contradiction with the minimality of cut {s} U G, U B,.

(b) By Lemma 3.1 and the assumption of this lemma, we get ¢ < Y(Z). On the other hand, by
H cQ(Z), we have

Y(Z)xm(H) <Y(Z)xm(Q(Z)) =m(2).
Hence ¢xm(H)<m(Z), which means by (a), Z # Z. n

Lemma 3.3. If, for each maximum flow X from node Sto node tin N(¢P), there exists at least
one node j € Bsuch that x; #¢;, then Z < B,.

Proof. Supposing that for the sake of contradiction, the setZ does not belong to the set B,, which

means, by Figure 2, the set Z isnot empty. Thus, by Lemma 3.2(b), we have Z = Z, so, the set Z
is not empty. By Lemma 3.1 and the assumption, we have ¢ <Y (Z), so, by Lemma 3.2(a),

m(Z) < Y(Z)xm(H). 4)

By Definition 3.1, we get Z = Z N B, and Z=2-7.Also, {s}UG, UB;,isamin-cutin N(¢P),
which means sets Z and Z are in different sides of the minimum cut {s}u G, UB,. Hence, we get
Q(Z~) N H = ¢. Consequently, by the definitions, we have Q(Z~) U H < Q(Z), which means

m(Q(Z)) +m(H) < m(Q(2)). (5)

On the other hand, by Figure 2 and the definition of Y(Z), we have

-~ mZ)+m(Z)
MQAZ)) == R
Thus, by (5),
Y(Z)xm(Q(Z)) + Y(Z) xm(H) <m(Z) +m(2),

which means, by (4),
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Y(Z)xm(Q(Z)) <m(Z),
contradicting the definition of Y(Z). W

Lemma 3.4. Supposing that, for each maximum flow x from node s to nodetin N(#P), there exists

m(B)

at least one node j € B such that x; #e;, where ¢= . Then, for each minimum cut

{s}uUG, UB, in N(¢P), we have

@ K{sh) =K{s}wG uB,).
(b) B=B,.
Proof.
(a) By (1) and Figure 2, we get
K{s}) =¢>xm(G),
and

K({s}uG uB)=m(B).
Thus, by ¢ =%, Claim (@) is true.

(b) If B=B,, then B, is empty, which means, by B, =T'(G,), the set G, is empty. Thus,
{s} UG, UB, ={s}is a minimum cut in N(¢P). Hence, by Part (a), {s} G U B is a minimum
cut, so, there exists a maximum flow x from node sto node tin N(#P)such that x; =e;, for each

J € B, which is a contradiction. H

Algorithm 3.1 computes a maximum proportion set. The next theorem proves this claim and computes
its running time.

Theorem 3.1.

(a) At the end of Algorithm 3.1, a maximum proportion set is computed.

(b) The complexity of Algorithm 3.1 is at most |B| maximum flow computations.

Proof. By Lemma 3.3 and Lemma 3.4, after at most|B| iterations, we have a maximum flow X from

node sto node tin N(gP)such that x;, =e;, for each j € B. On the other hand, in each iteration,
we have

_m(8,)

7= nG,)

<Y(2).
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Thus, by Lemma 3.1 after at most |B| iterations, we get ¢ =Y (Z). In each iteration, the algorithm

computes a maximum flow. W

Algorithm 3.1.
Input: A bipartite graph D = (G, B).
Output: A maximum proportion set Z.
Begin
Form network N (¢P), where ¢ =m(B)/m(G);
Compute a maximum flow X from node Sto node tin N(4P);
While there existsa j € B such that x;, #e; do
Begin
Compute a minimum cut {s} UG, U B, in N(¢P);
Let B, =B-B,and G, =G -G;;
Let B=B,,G=G,and ¢ =m(B,)/ m(G,);
Compute a maximum flow X from node Sto node tin N(g4P);
End;
End.

Algorithm 3.1. Computing a maximum proportion set.

Orlin [18] presented an algorithm to solve the maximum flow problem, which runs in O(mn)
time. Consequently, by Theorem 3.1, a maximum proportion set is computed in O(|B|mn) time

using Orlin's algorithm in each iteration of Algorithm 3.1.

4. Computing a most violated set

In this section, we show if Condition-1 is satisfied, then, the set B is a most violated set. For it, we
define the network H (P) in a similar way of the definition of N(P). Direct edges from B toG and

assign a capacity of infinity to all these edges. Introduce source vertex s and a directed edge from s
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to each i € Bwith a capacity of ;. Introduce sink node tand a directed edge from each vertex
j € G to twith a capacity of p; (Figure 3 shows the network H(P)).

Figure 3. The network H (P).

Lemma4.l. If {s}UT UQ(T)isans—tminimumcutin H(P), then, the set T is a most violated
setin N(P).

Proof. All nodes of Q(T) are in the s side of the S—t min cut, because each edge from B to G has
a capacity of infinity. Be the definitions, we have

K{s}oT wQ(T)) =m(B-T)+m(X(T)),
or
K{s}oT wQ(T)) =m(B) - (m(T) —m((T))).
Thus, minimizing the capacity of the cut {s}uT wQ(T) is equivalent to maximizing
m(T)-m(x(T)). W
Theorem 4.1. If Condition-1 is satisfied, then, the set B is a most violated set.

Proof. Assume set T is a most violated set such that set T is a strict subset of B. Condition-1 is
satisfied, so

m(B-T) > m(G —m(T)). (6)
In the network H (P), the capacity of cut {s}U B UQ(G) is:
K{s}wBUwG) =m(G) =m(B)—(m(B) —-m(G))
=m(B) —(m(T) —m(x(T)) + m(B-T) —-m(G - Q(G))).
Hence, by (6), we get
K{s}wBWG) <m(B) - (m(T) —m(Q(T)) = K{s}T w(T)).
which means, by Lemma 4.1, the set B is a most violated set. W

5. Conclusion
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Given Fisher's and Arrow-Debreu's market equilibrium models with linear utilities, a set of buyers
and a set of divisible goods, suppose that there are some buyers with surplus money w.r.t current
prices of goods. Ghiyasvand (2012) called a set of buyers with surplus money as a violated set and
computed a kind of violated set called maximum mean set. This paper presented two new kinds of
violated sets, which called maximum proportion and most violated sets. An algorithm to compute a

maximum proportion set was presented, which runs in at most |B| maximum flow computations. Also,
we showed that the set of all buyers B is a most violated set computation.
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