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Efficient algorithms for uncapacitated facility location problem on 

uncertain environments 

 
A. Soltanpour1,*, B. Alizadeh 2,*, F. Baroughi3 

 

In an uncapacitated facility location problem, the aim is to find the best 

locations for facilities on a specific network in order to service the existing 

clients at the maximum total profit or minimum cost. In this paper, we 

investigate the uncapacitated facility location problem where the profits of the 

demands and the opening costs of the facilities are uncertain values. We first 

present the belief degree-constrained, expected value and tail value at risk 

programming models of the problem under investigation. Then, we apply the 

concepts of the uncertainty theory to transform these uncertain programs into 

the corresponding deterministic optimization models. The efficient algorithms 

are provided for deriving the optimal solutions of the problem under 

investigation. 
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1. Introduction 

 

   One of the well-known models in optimization is the uncapacitated facility location problem 

(UFLP) in which the task is to find the best locations for establishing facilities in order to serve the 

existing clients in an optimal way. This problem is well-known to be NP-hard, but the specific 

solvable cases have been studied by the researchers up to now. For more details the interested 

reader is referred to [3, 9, 10, 18, 24]. 

   In the real life, we are usually faced the situations where some input parameters of the UFLP 

problem are uncertain for example, the vertex weights, edge lengths, cost coefficients and profits of 

the problem may be uncertain. On the other hand, note that there exists various types of uncertainty 

in the literature. In particular, the uncertainty concept introduced by Liu [12] is a suitable tool to 
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deal with these parameters which is actually based on the belief degree. On the issue of the facility 

location in uncertain environment, some papers have been appeared up to now. In 2012, Gao [6] 

considered the single facility location problems with uncertain demands and proposed a solution 

approach for it. Later, Wen et al. [28] investigated the capacitated facility location-allocation 

problem with uncertain demands. In 2016, Nguyen and Chi [19] studied the inverse 1-median 

location problem on a tree network with uncertain costs and showed that the inverse distribution 

function of the minimum cost can be found at O�n� log n� time.  Soltanpour et al. [22] proposed 

linear time algorithms for finding the 1-center and 2-center of uncertain unweighted trees. The same 

authors [23] considered the inverse median location problem with uncertain vertex weights and 

modification costs. They presented a solution method with O(nlogn) time complexity for the 

problem with tail value at risk objective. Recently, Etemad et al. [5] developed a combinatorial 

algorithm for inverse median location problem in uncertain environment on block graphs. Further, 

for a survey on uncertain location problems, we refer the interested reader to [7, 8, 16, 21, 25, 30].  

   We know that the uncertainty leads to a risk. Hence, Liu [15] introduced the risk concept in the 

uncertain environment efficiently. On the other hand, risk measurement is one of the important 

steps in the decision making process and the risk metrics contain techniques and data sets used to 

calculate the risk value of the problem under investigation.  Among them, Tail value at risk (TVaR) 

metric [20] is one of the measures of risk which is widely reliable for industry segments and market 

participants.  For a survey on the risk management in the location problems with uncertain random 

and fuzzy variables, the reader is referred to [1, 2, 26, 27, 29]. 

    In this paper, we investigate the UFLP model with uncertain profits of the demands and the 

uncertain setup costs. We propose efficient solution methods for solving the problem. The 

organization of this paper is as follows: In the next section, we first introduce the basic concepts 

from uncertainty theory and the TVaR metric in an uncertain environment. Moreover, we discuss 

about the optimization models in the uncertain environment. In Section 3, the mathematical 

formulation of the deterministic UFLP problem and an applicable solution algorithm for it are 

presented. Section 4,  states the UFLP problem in the uncertain environment based on the belief 

degree of Liu and the efficient procedures are provided to find the α-optimal locations set (	-OLS), 

the expected-Optimal location set (E-OLS) and the TVaR-optimal location set (TVaR-OLS) for the 

problem under investigation in an uncertain network. The conclusion of the paper is resented in 

Section 5.  

 

2. Preliminaries 

 

  In this section, we first present basic concepts from the uncertainty theory and the TVaR metric in 

an uncertain environment. Then, we discuss the uncertain optimization model and present a new 

model with TVaR objective and expected value constraints. 

2.1. The uncertainty theory 

 

  Assume that Γ is a nonempty set and Θ is a �-algebra over Γ. A set function ℳ: Θ → �0, 1�  is said 

to be an uncertain measure if satisfies in normality, duality and subadditivity axioms. The triple �Γ, Θ, ℳ� is named an uncertainty space. 

 

Definition 2.1. (Liu [13]). Let �Γ, Θ, ℳ� be an uncertainty space. A measurable function � from �Γ, Θ, ℳ� to the set of real numbers is called an uncertain variable. 
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Definition 2.2. (Liu [13]). Let Θ be an uncertain variable. For any real number, say �, the function Υ��� = ℳ{� ≤ �} is called an uncertainty distribution of �. 

 

Definition 2.3. (Liu [13]). Let  ��, � = 1, … , �, be the uncertain variables. We say  ��, � = 1, … , �, is 

independent if for any Borel sets � , ��, … , �! of real numbers, the following equality is satisfied: 

 

ℳ{"{�� ∈ ��
!

�$ }} = & ℳ{!
�$ �� ∈ ��}. 

 

 

Definition 2.4. (Liu [12]). The expected value of the uncertain variable � is defined by 

 (��� = ) ℳ{� ≥ +},-
. /+ − ) ℳ{� ≤ +}/+.

1- , 
 

provided that at least one of the two integrals is finite. 

 

Theorem 2.5. (Liu [13]). Let ��, � = 1, … , �, be the independent uncertain variables and Υ�1  , � =1, … , � , be the inverse uncertainty distributions of ��, � = 1, … , �,  respectively. Further, let it be a 

strictly increasing function with respect to ��, � = 1, … , 3, and a strictly decreasing function with 

respect to ��, � = 3 + 1, … , �. Then the uncertain variable 5 = 6�� , ��, … , �!� has the following 

inverse uncertainty distribution 

 Υ1 �α� = 68Υ 1 �α�, … , Υ91 �α�, Υ9, 1 �1 − α�, … , Υ:1 �1 − α�;, 
 

and has an expected value 

 E�ν� = ) 68Υ 1 �α�, … , Υ91 �α�, Υ9, 1 �1 − α�, … , Υ:1 �1 − α�;dα 
. . 

 

2.2. The TVaR metric in an uncertain environment 

 

  The Risk demonstrates a situation, in which there is a chance of loss or danger. The quantification 

of risk is a key step towards the management and mitigation of risk. In this section, we present the 

definition of the TVaR metric to account the probability of loss and the severity of the loss in an 

uncertain environment [20].  In order to define the TVaR metric, we need to know the definition of 

loss function. 

 

Definition 2.6. (Liu [15]). Consider ��, � = 1, … , �, as the uncertain factors of a system. A function 6 is said to be a loss function if some specified loss occurs if and only if 

 6�� , ��, … , �!� > 0. 

 

In the uncertain environment, the TVaR of loss function is defined as follows: 

 

Definition 2.7. (Peng [20]). Let ��, � = 1, … , �, be the uncertain factors and 6 be the loss function 

of a system. Then the TVaR  of  6 is defined as 
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 @ABCD = 1E ) FGH {I ∣ ℳ{6�� , ��, … , �!� ≥ I}  ≥ K}/K,D
.  

 

for any given risk confidence level E ∈ �0,1�. 
 

Theorem 2.8. (Peng [20]). Let  ��, � = 1, … , �, be the uncertain factors of a system and  ΥL1 , � =1, 2, … , �,  be the inverse uncertainty distributions of  ��, � = 1, … , � respectively. Also let  the loss 

function 6�� , ��, … , �!� be a strictly increasing function with respect to  ��, � = 1, … , 3, and a 

strictly decreasing function with respect to  �� , � = m + 1, … , � Then, for each risk confidence level 

 0,1 .   We have 

@ABCD = 1E ) 68O 1 �1 − K�, … , OP1 �1 − K�, OP, 1 �K�, … , O!1 �K�;/KD
. . 

2.3.    Uncertain optimization 

 

  Let � = �� , ��, … , �!� be a decision vector, and be an � = �� , ��, … , �!� uncertain vector. 

Consider the following optimization model. 

    3��     Q+   3B�                        6��, ��                          F. R.                                ST��� ≤ 0,   U = 1, … , 3,                                � ≥ 0, 
 

 

 

 

(1) 

 

where 6 is an uncertain function and ST , U = 1, … , 3, are the crisp functions. 

 

2.3.1. The belief degree-constrained programming model 

 

  Let a system contain independent uncertain variables � , ��, … , �! with regular uncertainty 

distributions, say O , O�, … , O!. Let 6�� , ��, … , �!� be a strictly increasing function with respect to � , ��, … , �P and strictly decreasing with respect to �P, , ��, … , �!. To find a solution with 

minimum 6��, �� in the sense of an uncertain measure subject to a set of expected constraints, for 

each α ∈ �0,1� we can write the following optimization model 

 

 

Using Theorem 2.5 and the inverse uncertainty distributions, we can rewrite the model (2) as      

             min   Q+   max          6 8Υ 1 �	�, … , ΥP1 �	�, ΥP, 1 �1 − 	�, … , Υ!1 �1 − 	�;  F. R.                              ST��� ≤ 0  U = 1, … , 3,   � ≥ 0.  
  

   

 

      

   (3) 

 

 

     

3�n     o+   3B�           @                                                     F. R.           ℳ{6��, �� ≤ @} ≥ 	                                                                         ST��� ≤ 0,       U = 1, … , 3,                                   � ≥ 0. 
     

  

 

                            

                            (2) 
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 2.3.2. The expected value programming model 

 

  Consider the optimization model (1). To find a solution with minimum expected objective value 

subject to a set of expected constraints, we can equivalently write the following optimization model  

            min   Q+   max                     (� 6��, ���                                                 F. R.                    ST��� ≤ 0  = 1, … , 3,          � ≥ 0. 
 

 

 

(4) 

 

Using Theorem 2.5 and the inverse uncertainty distributions, we can reformulate the model (2) as 

         min   Q+   max      ) 6 
. 8Υ 1 �	�, … , ΥP1 �	�, ΥP, 1 �1 − 	�, … , Υ!1 �1 − 	�;/	   F. R.             ST��� ≤ 0  U = 1, … , 3,                    � ≥ 0.  

 

 

 

 

      (5) 

 

2.3.3. The TVaR programming model 

 

  Since the objective function of the model (1) involves uncertainty, we apply the TvaR criterion as 

the objective metric of the problem under investigation. Thus, the model (1), for any risk confidence 

level β ∈ �0,1�, is transformed into the following form: 

                3��          @ABCD��� = 1E ) {FGHD
. {I|ℳ6��, �� ≥ I} ≥ K}/K F. R.                                   ST��� ≤ 0,   U = 1, … , 3,     � ≥ 0.  

 

 

 

 

   (6) 

    According to Theorem 2.8, we can rewrite the model (6) as 

        min               1E ) 6 
. 8x, Υ 1 �1 − K�, … , ΥP1 �1 − K�, ΥP, 1 �1 − K�, … , Υ!1 �1 − K�;/K  F. R.                                             ST��� ≤ 0,   U = 1, … , 3,                                              

                                                     � ≥ 0.   
 

 

 

  (7)  

3. The UFLP problem 

  In this section, we present the mathematical formulation of the UFLP problem and a well-known 

greedy heuristic algorithm for it. Define [ = {1, … , 3 } as the index set of location clients and \ ={1, … , � } as the index set of location facilities. The profit of the demand of client � from facility ] is ^�_. Establishing a facility at location ] involves a fixed cost 6_. Define `�_  to be the binary variable 

which is equal to 1 if demand point � is served by opened facility at location  ], and define �_ to be 

one if facility at location ] is closed, and zero; otherwise. The UFLP problem is mathematically 

defined as the following integer linear programming model [11]: 
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3B�     − a 6_�__∈b + a a ^�__∈b�∈c `�_ 

F. R.           a `�__∈b = 1,                            � ∈ [, 
                                      `�_ ≤ �_          � ∈ [,   ] ∈ \,                             �_  ∈ {0, 1 }       ] ∈ \,                                                           `�_ ≥ 0                 � ∈ [,   ] ∈ \. 

 

 

 

 

 

 

 

(8) 

 

or 3��     a 6_�__∈b − a a ^�__∈b�∈c `�_  

a `�__∈b = 1,                       � ∈ [, 
                                      `�_ ≤ �_          � ∈ [,   ] ∈ \,                                      �_  ∈ {0, 1 }       ] ∈ \,                                                           `�_ ≥ 0          � ∈ [,   ] ∈ \. 

 

 

 

 

 

 

 

(9) 

 

   The objective function maximizes the total profit or minimizes the total set up cost. The first set 

of constraints state that all of the demand of client at location � must be assigned to a facility for all ]. The second set of constraints state that each client at location � is serviced just by one established 

facility ]. Finally, the two sets of the last constraints stand to the integrality and non-negativity of 

decision variables, respectively. 

 

   Note that the UFLP problem is NP-hard in general case as proved by Krarup and Pruzan [9]. But, 

some special cases of the problem are polynomially solvable.   

 

 The greedy heuristic algorithm 

 

Here, we recall the greedy heuristic algorithm for the UFLP problem [3] as proceeds in the 

following: 

 

I. The greedy heuristic algorithm starts with no facilities open. 

II. Given a set S of open facilities, this algorithm adds to set S the facility location 

j S such that e_�f� = g�f ∪ {] }� −  g�f�, 
 

            is as large as possible and positive that 

 g�f� = a max_∈i ^�_�∈c − a 6__∈i . 
 

III. If there is no such j ∉ S,  (i.e.  if ρ_�f� ≤ 0, ∀] ∉ f) then algorithm stops with f as 

location   of facilities. 

 

Based on the above statements, the greedy heuristic methods for the UFLP model, is 

summarized in Algorithm 1:  
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Algorithm 1. Solves UFLP 

Begin 

1: Set f. = ∅,  e_�∅� = ∑ ^�_�∈c − 6_,   ∀] ∈ \. 
2: Set R = 1. 
3: Derive  jq = argmax{ρs�Sq1 � j ∉ Sq1 }. 

4: If e_t�fu1 � ≤ 0,, then stop; fu1 is the location facilities with the corresponding objective   

value Zw = Z�Sq1 �,  if 1t  . If 1t  , then set S = {j }. 
5: If ρsx�Sq1 � > 0, , then set Sq = Sq1 ∪ {jq}  set R = R + 1 and return to 3. 

End 

 

 

Remark 3.1. The time complexity of Algorithm 1 is bounded by O�n�m� (see [3]). 

 

  Observe that Algorithm 1 will be applied in proper form for solving the UFLP problem in 

uncertain environment. 

4. The UFLP model in uncertain environment 

In this section, we investigate the uncertain UFLP problem on networks and provide the efficient 

procedures to find the 	-OLS, E-OLS and TVaR-OLS in an uncertain network. Now, consider 

the following assumptions: 

 

1. The cost for establishing facility ] is a positive uncertain variable y_. 

2. The profit of the demand of client � from facility ] is a positive uncertain variable ��_. 

3. All the uncertain variables y_ and ��_  are independent. 

Furthermore, we will assume that y_  and ��_  have regular uncertainty distribution Φs  and ΥLs, 
respectively. Now, define η = {η_|] ∈ \} and θ = {��_ |  i ∈ I , j ∈ J }. We denote the uncertain 

network as N = �[, \, y, ��. Obviously, the objective function of the problem is an uncertain 

variable. 

 

Definition 4.1. Let f ⊆ \ and 

 `�_ = �1,           if client � is served by facility  ] ∈ f,0,         �UF�.    

 

and �_ = �1,           �6   ] ∈ f is selected to open facility,0,         �UF�.    

 

Then, f is called facilities location set (OLS) for UFLP if 

 

�   a `�__∈b = 1 ,                    ∀� ∈ [,                   
`�_ ≤ �_,                        ∀� ∈ [, ∀] ∈ \.  
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Note that �_,  `�_ ∈ {0, 1} for all  � ∈ [, ] ∈ \. 

 

Let S ⊆ J be a facilities location set. We define 

 U�S� = a a θLss∈�L∈� yLs − a ηsxss∈� . 
 

4.1. Chance-constrained UFL model 

 

Definition 4.2. In the network  N = �[, \, y, ��, let f⋆  be a facilities location. Then f⋆ is called the 	-OLS if for any facilities location f ⊆ \ the following inequality holds: 

 3B� {� ∣ ℳ {��f⋆�  ≥ � } ≥ 	} ≥ 3B� {� ∣ ℳ{��f�  ≥ � } ≥ 	}. 
 

  Based on Definition 4.2, in order to find α-OLS, we propose the following optimization model: 

 

 

 

                           3B�          �  

F. R.          ℳ �a a ��__∈b�∈c `�_ − a y__∈b �_ ≥ � ≥ 	�, 
a �̀__∈b = 1,                          � ∈ [,        

                  `�_ ≤ �_        � ∈ [,   ] ∈ \,                   �_  ∈ {0, 1 }         ] ∈ \,                   `�_ ≥ 0         � ∈ [,   ] ∈ \, 

 

 

 

 

 

 

 

 

(10) 

 

where   is a predetermined confidence level provided by the decision-maker. 

According to Theorem 2.5, the model (10) can be equivalently reformulated as the 

following deterministic optimization model:   

 3B�           a a Υ�_1 �1 − 	� �̀__∈b�∈c − a Φ_1 �	��__∈b                      
              F. R.           a `�__∈b = 1,                           � ∈ [,                                                

                �̀_ ≤ �_             � ∈ [,   ] ∈ \,                    �_  ∈ {0, 1 }         ] ∈ \,  `�_ ≥ 0                � ∈ [,   ] ∈ \. 
 

 

 

 

 

 

 

 

 

 

(11) 

  
    In fact, the solution to the latest model is just UFLP of the deterministic network, and the profit 

of the demand of client at location � from facility at location ] is ΥLs1 �1 − α� and the cost for 

establishing facility at location ] is �_1 �	�. Based on this explanations, we conclude the  

following result: 
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Theorem 4.3. Let in the uncertain network N, the independent uncertain variables θLs and ηL have 

the regular uncertainty distributions ΥLs, and ��. Then, the 	-OLS solution of uncertain network is 

the same optimal location set of UFLP on the corresponding deterministic network, where Υ�_1 �1 − 	� is the  profit of the demand of client �  from facility ] and ,  �_1 �	� is the cost for 

establishing the facility  ]. 

 

   Altogether, for finding the 	-OLS of the uncertain UFLP problem, our proposed solution 

approach is summarized as the following algorithm: 

 

Algorithm 2. obtains 	-OLS of UFLP on uncertain networks 

Begin 

1: Assign a predetermined confidence level 	. 

2: Calculate Υ�_1 �1 − 	� and �_1 �	�. 

3: Construct the corresponding deterministic network.  

4: Using Algorithm 1 find the 	-OLS.  

End 

 

 
 

Now, let us consider the following example to illustrate the efficiency of our solution approach. 

 

Example 4.4. Let 3 = 4 and � = 6. Furthermore, let  

 �η , … , η�� = ���2, 3, 4�, ��1, 2, 3�, ��1, 2, 3�, ��1, 2, 3�, ��2, 3, 4�, ��2, 3, 4��, 
 

be the cost vector for establishing the facilities. Moreover, let the matrix of profit be given as 

follow: 

 

� ��_� = ⎣⎢⎢
⎡ ��5, 6, 7� ��5, 6, 7� ��7, 8, 9� ��5, 6, 7� 0   ��5, 6, 7� ��5, 6, 7� ��7, 8, 9� ��5, 6, 7� 0    ��5, 6, 7�   ��5, 6, 7���4, 5, 6� 0 ��2, 3, 4� ��5, 6, 7� ��2, 3, 4� 0��1, 2, 3� ��2, 3, 4� 0 ��1,2,3� ��3, 4, 5� ��3, 4, 5�  ⎦⎥⎥

⎤
. 

 

For any α ∈ �0, 1�, the inverse uncertainty distribution of a zigzag uncertain variable ��a, b, c� is as 

 ϕ1 �α� = � �1 − 2α�a + 2αb,               if  α < 0.5,�2 − 2α�b + �2α − 1�c,  �6  α ≥ 0.5. 
 

Applying the above input data, we are going to construct the deterministic network when α = 0.8, 
 8Φ 1 �α�, … , Φ�1 �α�; = �3.6, 2.6, 2.6, 2.6, 3.6, 3.6�, 

 

and 

©Υ�]−1�1 − 	�1 ª = «5.4 5.4 7.4 5.4 0 5.45.4 7.4 5.4 0 5.4 5.44.4 0 2.4 5.4 2.4 01.4 2.4 0 1.4 3.4 3.4¬ . 

 

 

The execution of Algorithm 2 yields the following results in all iterations: 
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Iteration 1: �e �∅�, e��∅�, … , e��∅�� = �13, 12.6, 12.6, 8.6, 7.6, 10.6�. 
 

Since  ] = B+­3B�_∉∅e_�∅� = 1 and e_®�∅� > 0 then f = {1}. 
Iteration 2: 

�e��f �, e¯�f �, … , e��f �� = �0.4, −0.6, −1.6, −1.6, −1.6�,]� = arg max_∉i®e_�f � = 2,e_°�f � > 0,f� = {1, 2 }.
 

Iteration 3: �e¯�f��, e±�f��, … , e��f��� = �−0.6, −1.6, −2.6, −2.6�,]¯ = arg max_∉i°e_�f�� = 3.  

   Since ρs²�S�� = − 0.6, then the algorithm stops with  f� = {1, 2} as location of facilities. 

 

4.2. The expected value of UFLP 

 

Definition 4.5. In network N = �[, \, η, θ�, let f∗ be a subset of \. Then f∗ is called E-OLS if for S ⊆ J the following inequality (���f∗�� ≥ (���f�� 

is satisfied. 

 

   Therefore, for obtaining the solution of the model (8) in the sense of expected value, we can 

consider the following optimization model: 

3B�      ( ´a a ��__∈b�∈c `�_ − a y__∈b �_µ 

F. R.          a `�__∈b = 1,              � ∈ [,            
                             `�_ ≤ �_             � ∈ [,   ] ∈ \,                              �_  ∈ {0, 1 }   ] ∈ \,                                                           `�_ ≥ 0      � ∈ [,   ] ∈ \. 

 

 

 

 

 

 

 

 

 

(12) 

Finally, based on Theorem 2.5, we get. 

                       3B�               a a ¶) Υ�_1 �	�/	 
. ·_∈b�∈c �̀_ − a ¶) Φ_1 �1 − 	�/	 

. ·_∈b �_  

F. R.              a �̀__∈b = 1,                          � ∈ [,                       
                                                     �̀_ ≤ �_ ,         � ∈ [,   ] ∈ \,                                 �_  ∈ {0, 1 }         ] ∈ \, 
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                         �̀_ ≥ 0             � ∈ [,   ] ∈ \.     
 

  (13) 

 

   Now, according to the above discussions, we can get the following result: 

 

Theorem 4.6. Let in the uncertain network N, the independent uncertain variables θLs and ηL have 

the regular uncertainty distributions  Υ�_   and ΦL, respectively. Then, the E-OLS solution of 

uncertain network is the same optimal location set of the corresponding deterministic network, 

where ¸ Υ�_1 �	�/	 .  is the profit of the demand of client � from the facility j, and ¸ Φ_1 �1 − 	�/	 .   

is the cost for establishing facility j. 

 

   Now, our solution algorithm for finding the E-OLS of the uncertain UFLP model is summarized 

in Algorithm 3: 

 

Algorithm 3. obtains E-OLS of UFLP on uncertain networks 

Begin 

1: Calculate  ¸ Υ�_1 �	�/	 .  and ¸ Φs1 �1 − α�d	 . . 

2: Construct the corresponding deterministic network. 

3: Using Algorithm 1 find the E-OLS. 

End 
 

  Now, we consider the following example to illustrate the effectiveness of our solution approach. 
 

Example 4.7. Consider the input data of Example 4.4. According to definition of the expected 

value of a zigzag uncertain variable, we have: 

 ¶) Φ 1 �1 − α�dα 
. , … , ) Φ�1 �1 − α�dα 

. · = �3, 2, 2, 2, 3, 3�, 
 

and 

©¸ Υ�_1 �	�/	 . ª = «6 6 8 6 0 66 8 6 0 6 65 0 3 6 3 02 3 0 2 4 4¬. 

 

Note that if η = ��a, b, c� and ϕ be its uncertainty distribution, then, we will get (�y� = ) ¹1 �	�/	 
. = �B + 2º + ^�/4. 

 

   Then, by applying  Algorithm 1, we get: 

 

Iteration 1: �e �∅�, e��∅�, … , e��∅�� = �16, 15, 15, 12, 10, 13�. 
 

Since ] = B+­3B�_∉∅e_�∅� = 1 and e_®�∅� > 0 then f = {1}. 
 

Iteration 2: 
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 �ρ��S �, ρ¯�S �, … , ρ��S �� = �1, 0, −1, −1, −1�,]� = arg max_∉i®e_�f � = 2,e_°�f � > 0,f� = {1, 2 }.
 

 

Iteration 3: 

 �e¯�f��, e±�f��, … , e��f��� = �0, −1, −2, −2�,]¯ = arg max_∉i°e_�f�� = 3.  

 

Since 2
3 ( ) 0j S  , then the algorithm stops with 2 {1,2}S  as the optimal location of facilities. 

 

4.3. The TVaR of  the UFLP 

 

Consider the following uncertain UFLP model 

 3��            a y_�__∈b − 3B� a a ��__∈b�∈c `�_ 

                                           F. R.                a �̀__∈b = 1,                         � ∈ [,                                                  
                                                            �̀_ ≤ �_           � ∈ [,   ] ∈ \,                                       �_  ∈ {0, 1 }       ] ∈ \, 

                                      �̀_ ≥ 0               � ∈ [,   ] ∈ \. 

 

 

 

 

 

 

 

 

(14) 

   By using the TVaR metric, for any risk confidence level E ∈  �0, 1�, the model (14) can be 

written as follows:               3��                      a ¼ 1E ) �_1 �K�/KD
. ½ �_ −_∈b a a ¼ 1E ) O�_1 �1 − K�/KD

. ½ `�__∈b�∈c  

       F. R.                       a `�__∈b = 1,                         � ∈ [,                                                       
                                                `�] ≤ �]          � ∈ [,   ] ∈ \,                             �]  ∈ {0, 1 }       ] ∈ \, 

              `�] ≥ 0               � ∈ [,   ] ∈ \. 
 

 

 

 

 

 

 

 

  (15) 

   To solve the model (15), we divide the decisions into two stages. The decision � is called the first-

stage decision. After choosing the location �, the second stage is to solve the following optimization 

model: ℝ��, Υ1 � = max a a ¼1E ) Υ�_1 �K�/KD
. ½_∈b�∈c `�_                                               

              F. R.                       a `�__∈b = 1,                         � ∈ [,                                              
                                                `�] ≤ �]                           � ∈ [,   ] ∈ \,             
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                       `�] ≥ 0               � ∈ [,   ] ∈ \. (16) 

 

Here, the loss 

 ¿��, Φ1 , Υ1 � = ¼1E ) Φ_1 �K�/KD
. ½ �_ − ℝ��, Υ1 �,  

     (17) 

 

in fact represents the risk measure of the UFLP problem under investigation. 

 

   Observe that we can find the optimal value of the model (15) by comparing ¿��, Φ1 , Υ1 � for all 

values of the first-stage decision variable. 

 

Example 4.8. Consider the input data of Example 4.4. Let us assume that the first-stage decision 

variable x takes the three values �1,0,0,0,0,0�, �1,1,0,0,0,0�, �1,1,1,0,0,0�. Using the data of 

Example 4.4, we construct the corresponding deterministic network where β = 0.8. We get 

 ¶1β ) Φ 1 �γ�dγÁ
. , … , 1E ) Φ�1 �γ�dγÁ

. · = �3.2, 2.2, 2.2, 2.2, 3.2, 3.2�, 
and 

© D ¸ O�_1 �1 − K�/KD. ª = «6.2 6.2 8.2 6.2 0 6.26.2 8.2 6.2 0 6.2 6.25.2 0 3.2 6.2 3.2 02.2 3.2 0 2.2 4.2 4.2¬. 

 

Note that if η = ��a, b, c�, then we will have 

 

@ABCD = ÂEº + �1 − E�^ ,                                             if      E ≤ 0.5,Ã1�Ä,Å±D + �E − 1�B + �2 − E�º,               if    E > 0.5.  

 

Let Υ = �Υ�_1 ��∈c,   _∈b  and Φ1 = �Φs1 �s∈�.  Recall that in our solution approach, we should take 

the following three steps:  

1. Compute ℝ��, Υ1 � by solving (16) for each �. 

2. Calculate ¿��, Φ1 , Υ1 � for each x by using (17). 

3. Choose the optimal values by comparing ¿��, Φ1 , Υ1 � for all �. 

 

Now, If the first stage decision variable  � = �1, 0, 0, 0, 0, 0� is considered, then the optimal second-

stage solution 

y  = y� = y¯ = y± = 1, yLs = 0, i = 1, 2, 3, 4, j = 2, 3, 4, 5, 6, 
 

 

and the optimal value on the second stage ℝ��1,0,0,0,0,0�, Υ1 � = 19.8 is resulted. Thus, from 

(17), we obtain ¿��1,0,0,0,0,0�, Φ1 , Υ1 � = −16.6. 

 

   When we consider  � = �1,1,0,0,0,0�, we get 

 y  = y�� = y¯ = y±� = 1, yLs = 0,  i = 1, 2, 3, 4,  j = 3, 4, 5, 6,  y� = y± = 0, 
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and ℝ��1,1,0,0,0,0�, Υ1 � = 22.8 , ¿��1,1,0,0,0,0�, Φ1 , Υ1 � = −17.4. 
 

    Further, for � = �1,1,1,0,0,0�,  we obtain 

          y ¯ = y�� = y¯ = y±� = 1, yLs = 0, i = 1, 2, 3, 4, j = 4, 5, 6, 
y  = y � = y�¯ = y� = y¯� = y¯¯ = y± = y±¯ = 0, 

 

and ℝ��1,1,1,0,0,0�, Υ1 � = 24.8 , ¿��1,1,1,0,0,0�, Φ1 , Υ1 � = −17.2. 
 

  Finally, comparing the objective values ¿, we get the optimal value ¿��, Φ1 , Υ1 �, with the 

optimal solution � = �1,1,0,0,0,0�. 

 

5. Conclusion 

 
  In this paper, we investigated the uncapacitated facility location problem where the profits of 

demands and the opening costs of facilities are uncertain. We proposed efficient procedures to solve 

the problem under investigation on an uncertain network. 

   For future work, we can consider the calassical and inverse capacitated facility location models on 

uncertain environments and develop the efficient solution algorithms for them. 
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