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Efficient algorithms for uncapacitated facility location problem on
uncertain environments

A. Soltanpour'””, B. Alizadeh >*, F. Baroughi®

In an uncapacitated facility location problem, the aim is to find the best
locations for facilities on a specific network in order to service the existing
clients at the maximum total profit or minimum cost. In this paper, we
investigate the uncapacitated facility location problem where the profits of the
demands and the opening costs of the facilities are uncertain values. We first
present the belief degree-constrained, expected value and tail value at risk
programming models of the problem under investigation. Then, we apply the
concepts of the uncertainty theory to transform these uncertain programs into
the corresponding deterministic optimization models. The efficient algorithms
are provided for deriving the optimal solutions of the problem under
investigation.
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1. Introduction

One of the well-known models in optimization is the uncapacitated facility location problem
(UFLP) in which the task is to find the best locations for establishing facilities in order to serve the
existing clients in an optimal way. This problem is well-known to be NP-hard, but the specific
solvable cases have been studied by the researchers up to now. For more details the interested
reader is referred to [3, 9, 10, 18, 24].

In the real life, we are usually faced the situations where some input parameters of the UFLP
problem are uncertain for example, the vertex weights, edge lengths, cost coefficients and profits of
the problem may be uncertain. On the other hand, note that there exists various types of uncertainty
in the literature. In particular, the uncertainty concept introduced by Liu [12] is a suitable tool to
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deal with these parameters which is actually based on the belief degree. On the issue of the facility
location in uncertain environment, some papers have been appeared up to now. In 2012, Gao [6]
considered the single facility location problems with uncertain demands and proposed a solution
approach for it. Later, Wen et al. [28] investigated the capacitated facility location-allocation
problem with uncertain demands. In 2016, Nguyen and Chi [19] studied the inverse 1-median
location problem on a tree network with uncertain costs and showed that the inverse distribution
function of the minimum cost can be found at O(n?logn) time. Soltanpour et al. [22] proposed
linear time algorithms for finding the 1-center and 2-center of uncertain unweighted trees. The same
authors [23] considered the inverse median location problem with uncertain vertex weights and
modification costs. They presented a solution method with O(nlogn) time complexity for the
problem with tail value at risk objective. Recently, Etemad et al. [5] developed a combinatorial
algorithm for inverse median location problem in uncertain environment on block graphs. Further,
for a survey on uncertain location problems, we refer the interested reader to [7, 8, 16, 21, 25, 30].

We know that the uncertainty leads to a risk. Hence, Liu [15] introduced the risk concept in the
uncertain environment efficiently. On the other hand, risk measurement is one of the important
steps in the decision making process and the risk metrics contain techniques and data sets used to
calculate the risk value of the problem under investigation. Among them, Tail value at risk (TVaR)
metric [20] is one of the measures of risk which is widely reliable for industry segments and market
participants. For a survey on the risk management in the location problems with uncertain random
and fuzzy variables, the reader is referred to [1, 2, 26, 27, 29].

In this paper, we investigate the UFLP model with uncertain profits of the demands and the
uncertain setup costs. We propose efficient solution methods for solving the problem. The
organization of this paper is as follows: In the next section, we first introduce the basic concepts
from uncertainty theory and the TVaR metric in an uncertain environment. Moreover, we discuss
about the optimization models in the uncertain environment. In Section 3, the mathematical
formulation of the deterministic UFLP problem and an applicable solution algorithm for it are
presented. Section 4, states the UFLP problem in the uncertain environment based on the belief
degree of Liu and the efficient procedures are provided to find the a-optimal locations set (¢-OLS),
the expected-Optimal location set (E-OLS) and the TVaR-optimal location set (TVaR-OLS) for the
problem under investigation in an uncertain network. The conclusion of the paper is resented in
Section 5.

2. Preliminaries

In this section, we first present basic concepts from the uncertainty theory and the TVaR metric in
an uncertain environment. Then, we discuss the uncertain optimization model and present a new
model with TVaR objective and expected value constraints.

2.1. The uncertainty theory
Assume that T is a nonempty set and @ is a g-algebra over I'. A set function M: @ — [0, 1] is said
to be an uncertain measure if satisfies in normality, duality and subadditivity axioms. The triple

(T, ©, M) is named an uncertainty space.

Definition 2.1. (Liu [13]). Let (T, 0, M) be an uncertainty space. A measurable function 6 from
(T, ©, M) to the set of real numbers is called an uncertain variable.
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Definition 2.2. (Liu [13]). Let ® be an uncertain variable. For any real number, say x, the function
Y(x) = M{0 < x} is called an uncertainty distribution of 6.

Definition 2.3. (Liu [13]). Let 6;,i = 1, ..., n, be the uncertain variables. We say 8;,i = 1, ...,n, is

independent if for any Borel sets By, By, ..., B, of real numbers, the following equality is satisfied:

M{ﬁwi €Bi}} = /n\M{ 0; € B;}.
i=1 i=1

Definition 2.4. (Liu [12]). The expected value of the uncertain variable 6 is defined by
+oo 0
E[0] = J M{6 = r}dr — J M{6 < r}dr,
0 —co

provided that at least one of the two integrals is finite.

Theorem 2.5. (Liu [13]). Let 6;,i = 1, ...,n, be the independent uncertain variables and Y;™*,i =
1, ...,n, be the inverse uncertainty distributions of 8;,i = 1, ...,n, respectively. Further, let it be a
strictly increasing function with respect to x;,i = 1, ..., m, and a strictly decreasing function with
respect to x;, i = m + 1, ..., n. Then the uncertain variable v = f(64,0,, ..., 8,) has the following
inverse uncertainty distribution

Y@ = (@, Y5 (@, Vb (- @), o Y3 (1 - ),

and has an expected value

1
E[v] =f FOTH0, ) Yin (@), Yinds (1 = 00, o, Vi (1 = @) )da,
0

2.2. The TVaR metric in an uncertain environment

The Risk demonstrates a situation, in which there is a chance of loss or danger. The quantification
of risk is a key step towards the management and mitigation of risk. In this section, we present the
definition of the TVaR metric to account the probability of loss and the severity of the loss in an
uncertain environment [20]. In order to define the TVaR metric, we need to know the definition of
loss function.

Definition 2.6. (Liu [15]). Consider 8;,i = 1, ..., n, as the uncertain factors of a system. A function
f s said to be a loss function if some specified loss occurs if and only if

f(64,6,, ...,6,) > 0.
In the uncertain environment, the TVaR of loss function is defined as follows:

Definition 2.7. (Peng [20]). Let 8;,i = 1, ..., n, be the uncertain factors and f be the loss function
of a system. Then the TVaR of f is defined as
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B

1
TVaRp = Efo sup {1 | M{f(04,0,, ...,0,) =1} =yldy,

for any given risk confidence level g € (0,1].

Theorem 2.8. (Peng [20]). Let 6;,i = 1, ..., n, be the uncertain factors of a system and Y;%,i =
1,2, ...,n, be the inverse uncertainty distributions of 8;,i = 1, ..., n respectively. Also let the loss
function f(xq,x,, ..., X,) be a strictly increasing function with respect to x;,i =1, ...,m, and a
strictly decreasing function with respectto x;,i = m + 1, ..., n Then, for each risk confidence level
B <(0,1]. We have

1 B
tVary = 2 [ A=) o K (= D) Yk ), )

2.3. Uncertain optimization

Let x = (xq,x3, ..., x,) be a decision vector, and be an 8 = (6,,0,, ...,0,) uncertain vector.
Consider the following optimization model.

min or max f(x,0)
s.t. z1(x)<0, I=1,..,m,
x =0,

(1)
where f is an uncertain function and z;, [ = 1, ..., m, are the crisp functions.
2.3.1. The belief degree-constrained programming model

Let a system contain independent uncertain variables 64,6,, ..., 8, with regular uncertainty
distributions, say ¥;,Y,, ..., ¥y. Let f(x1, x5, ..., X,,) be a strictly increasing function with respect to
X1,X3, ..., Xy and strictly decreasing with respect to X;,41,%3,...,X,. To find a solution with
minimum f (x, ) in the sense of an uncertain measure subject to a set of expected constraints, for
each a € (0,1] we can write the following optimization model

min or max T
s.t. M{f(x,0)<T}=>«
zi(x) <0, 1=1,..m,
x = 0. (2)

Using Theorem 2.5 and the inverse uncertainty distributions, we can rewrite the model (2) as

min or max f (Yl‘l(a), o Y (@), Yt (1 =), . Yt — a))

s.t. z1(x) <0 l=1,..,m,
x = 0. 3)
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2.3.2. The expected value programming model

Consider the optimization model (1). To find a solution with minimum expected objective value
subject to a set of expected constraints, we can equivalently write the following optimization model

min or max E( f(x,0))
s.t. z1(x) <0 =1,...m,
x = 0.

4)

Using Theorem 2.5 and the inverse uncertainty distributions, we can reformulate the model (2) as

1
min or max f f (Y{l(a), oY), Yt (=), . Y (1 - a))da
0

s.t. z1(x) <0 l=1,..m
x = 0. )

2.3.3. The TVaR programming model
Since the objective function of the model (1) involves uncertainty, we apply the TvaR criterion as

the objective metric of the problem under investigation. Thus, the model (1), for any risk confidence
level B € (0,1], is transformed into the following form:

B
min TVaRg(x) = %f {sup {A|IMf(x,0) = A} = y}dy
0

s.t. z;(x) <0, =1, ..,m,
x> 0. (6)

According to Theorem 2.8, we can rewrite the model (6) as

: 1t -1 -1 -1 -1
min 2 [ F( AP, A= @ =), Y =)y
0
s.t. z;(x) <0, =1, .. m,
x=0. (7

3. The UFLP problem

In this section, we present the mathematical formulation of the UFLP problem and a well-known
greedy heuristic algorithm for it. Define I = {1, ..., m } as the index set of location clients and | =
{1, ...,n } as the index set of location facilities. The profit of the demand of client i from facility j is
c;j. Establishing a facility at location j involves a fixed cost f;. Define y;; to be the binary variable
which is equal to 1 if demand point i is served by opened facility at location j, and define x; to be
one if facility at location j is closed, and zero; otherwise. The UFLP problem is mathematically
defined as the following integer linear programming model [11]:
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max — ijxj + ZZcijyij

I3 i€l jeJ
s.t. 2yl1=1, iEI,
Jj€J
Yij S Xj IS JE]J,
x; €{0,1} JjEJ,
yij =0 iel, jej. (3)
or
Tes iel jeJ
Zyij:l' iEI,
jeJ
Yij = Xj i€l j€]J,
xj E{O,l} jEJ,
yij =0 iel, jeJ. )

The objective function maximizes the total profit or minimizes the total set up cost. The first set
of constraints state that all of the demand of client at location i must be assigned to a facility for all
j. The second set of constraints state that each client at location i is serviced just by one established
facility j. Finally, the two sets of the last constraints stand to the integrality and non-negativity of
decision variables, respectively.

Note that the UFLP problem is NP-hard in general case as proved by Krarup and Pruzan [9]. But,
some special cases of the problem are polynomially solvable.

The greedy heuristic algorithm

Here, we recall the greedy heuristic algorithm for the UFLP problem [3] as proceeds in the
following:

I.  The greedy heuristic algorithm starts with no facilities open.
II.  Given a set S of open facilities, this algorithm adds to set S the facility location
j &8 such that

piS) =2V - Z(S),
is as large as possible and positive that
Z(S) = z r?easxcl-j — Ef]
i€l j€s

III.  If there isno such j & S, (i.e. if p;(§) <0, Vj & S) then algorithm stops with S as
location of facilities.

Based on the above statements, the greedy heuristic methods for the UFLP model, is
summarized in Algorithm 1:
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Algorithm 1. Solves UFLP
Begin
1:SetS° =@, p;(®) =Yiercij — fj, Vi€]J.

2:Sett = 1.
3: Derive jp = argmax{p;(S*™1)j & S*"'}.

4: If p;,(St™1) < 0,, then stop; S*"tis the location facilities with the corresponding objective
value Z¢ = Z(S*™1), if t >1.If r =1, then set S* = {j;}.

5:1f p;,(S*™1) > 0, , then set S* = S*™1 U {ji} sett = t + 1 and return to 3.
End

Remark 3.1. The time complexity of Algorithm 1 is bounded by O(n?m) (see [3]).

Observe that Algorithm 1 will be applied in proper form for solving the UFLP problem in
uncertain environment.

4. The UFLP model in uncertain environment

In this section, we investigate the uncertain UFLP problem on networks and provide the efficient
procedures to find the a-OLS, E-OLS and TVaR-OLS in an uncertain network. Now, consider
the following assumptions:

1. The cost for establishing facility j is a positive uncertain variable 7.
2. The profit of the demand of client i from facility j is a positive uncertain variable 6;;.
3. All the uncertain variables ; and 6;; are independent.

Furthermore, we will assume that 7; and 6;; have regular uncertainty distribution ®; and Yj;,
respectively. Now, define n = {n;|j €/} and 6 = {6;; | i€ 1,j €]}. We denote the uncertain

network as N = (I,/,n,8). Obviously, the objective function of the problem is an uncertain
variable.

Definition 4.1. Let S € J and

o {1, if client i is served by facility j € S,
Yii T o, else.

and

xX; =

{1, if j € Sisselected to open facility,
j

0, else.
Then, S is called facilities location set (OLS) for UFLP if

Zyij:l’ ViEI,

Jjej
Yij < Xj, Viel,Vj€e].
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Note that x;, y;; € {0,1} forall i €1,j €].

Let S < ] be a facilities location set. We define
ueE) = 22 B3 yi; — anXj-
i€l jej i€l
4.1. Chance-constrained UFL model

Definition 4.2. In the network N = (1, ],7,0), let S* be a facilities location. Then S* is called the
a-OLS if for any facilities location S € ] the following inequality holds:

max{P | M{U(S*) =P} =a}=>max{P | M{U(S) =P} =>a}

Based on Definition 4.2, in order to find a-OLS, we propose the following optimization model:

max P
s.t. M ZZGU}/U—meJZPZa ’
iel jeJ el
Zyl’jzl, lEI,
jeJ
Yij < Xj i€l JEJ,
x €{0,1} J€J, (10)
yi,-ZO i€l JE]J,

where g is a predetermined confidence level provided by the decision-maker.

According to Theorem 2.5, the model (10) can be equivalently reformulated as the
following deterministic optimization model:

max Z Z Y (1 -y — Z o (a)x;

i€l jej jeJ
s.t. Zyijzl, i€l
JjEJ
yiijj i€l jE], (11)
x; €{0,1} j€l,
yl-]-ZO i €], JEJ.

In fact, the solution to the latest model is just UFLP of the deterministic network, and the profit
of the demand of client at location i from facility at location j is Yi]-_l(l — o) and the cost for
establishing facility at location j is <Dj_1(0(). Based on this explanations, we conclude the
following result:
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Theorem 4.3. Let in the uncertain network N, the independent uncertain variables 6;; and n; have
the regular uncertainty distributions Yj;, and @;. Then, the a-OLS solution of uncertain network is
the same optimal location set of UFLP on the corresponding deterministic network, where
Yijl(l — a) is the profit of the demand of client i from facility j and , <Dj_1(0c) is the cost for
establishing the facility j.

Altogether, for finding the a-OLS of the uncertain UFLP problem, our proposed solution
approach is summarized as the following algorithm:

Algorithm 2. obtains a-OLS of UFLP on uncertain networks
Begin

1: Assign a predetermined confidence level a.

2: Calculate Yl-;l(l —a) and qu_l(oc).

3: Construct the corresponding deterministic network.

4: Using Algorithm 1 find the a-OLS.

End

Now, let us consider the following example to illustrate the efficiency of our solution approach.
Example 4.4. Let m = 4 and n = 6. Furthermore, let
(M1, -Me) = (2(2,3,4),2(1,2,3),2(1,2,3),2(1,2,3),2(2,3,4),2(2,3,4)),

be the cost vector for establishing the facilities. Moreover, let the matrix of profit be given as
follow:

2(5,6,7) 2(56,7) 2Z(7,89) 2(5,6,7) 0 2(5,6,7)

[6,] = 2(5,6,7) 2(7,8,9) 2Z(5,6,7) 0 2(5,6,7)  2(5,6,7)
ul=12(@4,5,6) 0 2(2,3,4) 2(5,6,7) 2Z(2,3,4) 0

2(1,2,3) 2(2,3,4) 0 2(1,23) 23,45  Z(3,4,5)

For any o € (0, 1), the inverse uncertainty distribution of a zigzag uncertain variable Z(a, b, c) is as

~1(q) = { (1 -2a)a+ 2ab, if a <0.5,
(0 =12 200b + (20 - 1)c, if a = 0.5.

Applying the above input data, we are going to construct the deterministic network when a = 0.8,
(cb;l(a), ...,cbgl(a)) = (3.6,2.6,2.6,2.6,3.6,3.6),

and
54 54 74 54 0 54
1. .4]_|54 74 54 0 54 54
[YU - ]_ 44 0 24 54 24 0|
14 24 0 14 34 34

The execution of Algorithm 2 yields the following results in all iterations:
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Iteration 1:
(p1(9), p2(®), ..., pe(?)) = (13,12.6,12.6,8.6,7.6,10.6).

Since j; = argmaxjgep;(®) = 1and p; (@) > 0 then S* = {1}.
Iteration 2:

(p2(S1), p3(SY), ..., pe(SV)) = (0.4,—0.6,—1.6,—1.6,—1.6),
J2 = arg max gs1p;(SY) =2,
pj, (81 >0,
S2={1,2}.

Iteration 3:
(p3(52), p4(S?), ..., ps(5?)) = (—0.6,—1.6,—2.6,—2.6),
J3 = arg max;g2p;(S?) = 3.

Since pj, (S%) = — 0.6, then the algorithm stops with S? = {1, 2} as location of facilities.
4.2. The expected value of UFLP

Definition 4.5. In network N = (I,],1,0), let S* be a subset of J. Then S* is called E-OLS if for
S < ] the following inequality

E(U(S) = E(U(S))

1s satisfied.

Therefore, for obtaining the solution of the model (8) in the sense of expected value, we can
consider the following optimization model:

max E ZZOU)/U—Zan]

iel jeJ el
s.t. 2yl1=1, iEI,
JEJ
Yij = Xj i€l j€]J,
xj €{0,1} JjE€J,
yi]-ZO i€l JjEJ. (12)

Finally, based on Theorem 2.5, we get.

max Z Z (folyi}l(“)d“> Yij — Z (folcpj—lu — a)da) X;

i€l jej J€J
s.t. Zyi]-=1, i€l
jeJ
yiijj, i€l jE],
x; €{0,1} j€],
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yijZO i€l ]E] (13)

Now, according to the above discussions, we can get the following result:

Theorem 4.6. Let in the uncertain network N, the independent uncertain variables 6;; and n; have
the regular uncertainty distributions Y;; and ®;, respectively. Then, the E-OLS solution of
uncertain network is the same optimal location set of the corresponding deterministic network,

where fol Yijl(a)da is the profit of the demand of client i from the facility j, and | 01 (1)171(1 —a)da
is the cost for establishing facility j.

Now, our solution algorithm for finding the E-OLS of the uncertain UFLP model is summarized
in Algorithm 3:

Algorithm 3. obtains E-OLS of UFLP on uncertain networks
Begin
1: Calculate fol Y;;* (@)da and fol ;7 (1 - )da.

2: Construct the corresponding deterministic network.

3: Using Algorithm 1 find the E-OLS.
End

Now, we consider the following example to illustrate the effectiveness of our solution approach.

Example 4.7. Consider the input data of Example 4.4. According to definition of the expected
value of a zigzag uncertain variable, we have:

1 1
O o711 - a)da, ..., J o (1 - a)da> =(3,2,2,2,3,3),
0 0

and
6 6 860 6
o 16 86 0 6 6
[onif(“)d“]‘503630'
2 30 2 4 4

Note that if n = Z(a, b, c) and ¢ be its uncertainty distribution, then, we will get
1
E(n) = j ¢~ Y(a)da = (a + 2b + c) /4.
0
Then, by applying Algorithm 1, we get:

Iteration 1:
(p1(2), 02 (D), ..., ps(®)) = (16,15,15,12,10,13).

Since j; = argmaxeqp;(@) = 1 and p; (@) > 0 then S* = {1}.

Iteration 2:
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(P2(SM,p3(S1), . p6(SH) = (1,0,-1,-1,-1),
J» = argmaxgs1p;(S*) = 2,
pj, (81 >0,
$2={1,2}.

Iteration 3:

(,03(52): p4(52): rpé(sz)) = (0' _1' _21 _2)1
J3 = arg max gs2p;(S%) = 3.

Since p;5(S 2) =0, then the algorithm stops with S? = {1,2} as the optimal location of facilities.

4.3. The TVaR of the UFLP

Consider the following uncertain UFLP model

min Zn]x] - maxzz:euyu

3 i€l jej
s.t. Zyi]- =1, i€l
JEJ
yiijj i€l jE],
Xj € {0,1} jEJ,
yijZO i€l ]E]

(14)

129

By using the TVaR metric, for any risk confidence level § € (0, 1], the model (14) can be

written as follows:

min 2[ f 1(y)aly]x, 22[ f vt - y)dy]yl,

i€l jej
s.t. Zyu—l, i€l
Jj€J
yl.ijj i€ JE,
x; €{0,1} j€l,
yl.jZO i€l JjE]J.

(15)

To solve the model (15), we divide the decisions into two stages. The decision x is called the first-
stage decision. After choosing the location x, the second stage is to solve the following optimization

model:

R(x, Y 1) = maxzz [ﬁ Ul()’)dy] Yij

i€l jej

S.t. Zyl]=1, lE[,
JEJ
Yy <% LEI J €]
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y,; 20 i €1, jE]. (16)

Here, the loss

-1 -1 1 p -1 -1
0

in fact represents the risk measure of the UFLP problem under investigation.

Observe that we can find the optimal value of the model (15) by comparing L(x, ®~1, Y1) for all
values of the first-stage decision variable.

Example 4.8. Consider the input data of Example 4.4. Let us assume that the first-stage decision
variable x takes the three values (1,0,0,0,0,0), (1,1,0,0,0,0), (1,1,1,0,0,0). Using the data of
Example 4.4, we construct the corresponding deterministic network where = 0.8. We get

1 (B 1 (P
<Ef o7 (y)dy, Ef cbgl(y)dy>=(3.2,2.2,2.2,2.2,3.2,3.2),
0 0

and
62 62 82 62 0 62
1B |62 82 62 0 62 62
[ﬁfo 1 V)dy]_ 52 0 32 62 32 0/

22 32 0 22 42 42

Note that if 1 = Z(a, b, ¢), then we will have

pb+ (1—p)c, if B <0.5,
TVaRg = S L (B - Da+ 2 B)b, if B> 0.5.

LetY = (Yl-}l)ie 1, jey and o1 = (CDJ_ 1)],6]. Recall that in our solution approach, we should take

the following three steps:
1. Compute R(x, Y1) by solving (16) for each x.
2. Calculate L(x, ®~1,Y™1) for each x by using (17).
3. Choose the optimal values by comparing L(x, ®~1, Y1) for all x.

Now, If the first stage decision variable x = (1,0, 0,0, 0, 0) is considered, then the optimal second-
stage solution

V11 =Y21 =¥31 =YVa1 =Ly =0,1=1,2,3,4j=2,3,4,5,6,
and the optimal value on the second stage ]R{((l,0,0,0,0,0),Y_l) = 19.8 is resulted. Thus, from
(17), we obtain L((1,0,0,0,0,0),®71,Y"1) = —16.6.
When we consider x = (1,1,0,0,0,0), we get

Vi1 = Y22 = V31 =VYa2 = Lyj5 = 0,i=1,234,j=3,456,y21 =y41 =0,
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and R((1,1,0,0,0,0), Y1) = 22.8, L((1,1,0,0,0,0), =1, Y1) = —17.4.
Further, for x = (1,1,1,0,0,0), we obtain
V13 =Y22 =¥31 = Va2 = Ly =0,1=1,2,3,4,j =4,5,6,

Y11 = Y12 = Y23 = Y21 = Y32 = Y33 = Y41 = Ya3 =0,

and R((1,1,1,0,0,0), Y1) = 24.8, L((1,1,1,0,0,0), -1, Y1) = —17.2.

Finally, comparing the objective values L, we get the optimal value L(x, ®~1,Y™1), with the
optimal solution x = (1,1,0,0,0,0).

5. Conclusion

In this paper, we investigated the uncapacitated facility location problem where the profits of
demands and the opening costs of facilities are uncertain. We proposed efficient procedures to solve
the problem under investigation on an uncertain network.

For future work, we can consider the calassical and inverse capacitated facility location models on
uncertain environments and develop the efficient solution algorithms for them.
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