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Approach
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Regression is a statistical technique used in finance, investment, and several other
domains to assess the magnitude and precision of the association between a dependent
variable (often represented as Y) and a set of other factors (referred to as independent
variables). This work introduces a linear programming approach for constructing
regression models for Neutrosophic data. To achieve this objective, we use the least
absolute deviation approach to transform the regression issue into a linear programming
problem. In this method, the minimum absolute error value method is used to estimate
the model parameters. The feature of this method is the low effectiveness of estimates
compared to outlier data. Ultimately, the efficacy of the suggested approach in resolving

such problems has been shown through the presentation of a concrete illustration.
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1. Introduction

Regression analysis is a statistical method that explains and predicts changes in the dependent
variable through the independent variable or variables. Regression methods are theoretically divided
into three types: linear, non-linear, and non-parametric regression. Linear regression, according to the
number of dependent and independent variables, can be included in the following three types of
divisions:

A) Simple linear regression: In this case, there is a dependent variable and an independent variable.
b) Multiple regression: in this case, one dependent variable and more than one independent variable
are assumed.

c) Multivariate regression: In this case, several dependent variables and several independent variables
are assumed for analysis.

Classical linear regression has many applications, but sometimes building the model faces problems
such as a small or inappropriate number of observations, problems in defining the appropriate
distribution function, ambiguity in the relationship between dependent and independent variables,
and ambiguity in the occurrence or degree of occurrence of events. Carelessness and error. Using
statistical regression analysis in these situations may lead to wrong conclusions. To solve this
problem, other methods such as robust regression and fuzzy linear regression can be used, where
fuzzy linear regression is discussed with Neutrosophic data. Fuzzy regression is generally divided
into three types:

A) Fuzzy regression in the case that the relationships between the variables (regression model
coefficients) are assumed to be fuzzy.
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b) Fuzzy regression in cases where the observations in the dependent variable and independent
variables are imprecise and fuzzy.

c) Fuzzy regression, in which both relationships between variables and fuzzy observations are
considered.

In linear regression with fuzzy coefficients, it is assumed that observations and variables are accurate
and that there is ambiguity in the regression model and coefficients.

Due to the indeterminacy in real world data, fuzzy logic is one of the most efficient tools to deal with
these data [17,19,22]. The topic of fuzzy regression was noticed in the early 80s after the introduction
of fuzzy set theory by Professor Zadeh [30]. For the first time, Tanaka and his colleagues [29] studied
fuzzy regression in 1982. Tanaka assumed that the data were triangular fuzzy numbers and estimated
the regression coefficients by minimizing a fuzzy index. The basis of his work was mathematical
programming methods. In the same year, he discussed the simplest form of fuzzy regression. He
predicted the value of the dependent variable with fuzzy observations. In 1986, Jajoga calculated the
linear regression coefficients using a generalized version of the least squares method, while until then,
the mathematical programming method was mainly used to analyze regression models [12]. In 1987,
Celmens proposed a method for fitting a multivariate fuzzy model by minimizing a least squares
objective function and presented a least squares method for fuzzy regression models [5]. Fuzzy
regression is a method used in fuzzy inference systems to handle uncertainty and solve problems
without using accurate mathematical models. It is based on fuzzy set theory and regression analysis.
The fuzzy regression function approach is a type of fuzzy inference system that uses regression
analysis and fuzzy clustering. However, the data set's outliers have an impact on this strategy. To
overcome this limitation, robust intuitionistic fuzzy regression function approaches have been
proposed, which use robust regression methods instead of ordinary least squares. These approaches
have been successfully applied to forecast Bitcoin and gold time series data, even in the presence of
outliers. It has also been used to guess the rheological properties of bio-nanocomposites. A fuzzy-
hybrid model is better at this than a crisp model at both being accurate and general [10]. A new model
called fuzzy data envelopment regression analysis (FDERA) has also been suggested. It combines
fuzzy regression and data envelopment analysis (DEA) to figure out how efficient different businesses
are [1]. In their study, the authors of reference [21] introduced a technique called kernel fuzzy c-
regression (KFCR) to address fuzzy regression modeling. The LAD-KFCR incorporates the modified
Huber function to implement the least absolute deviation (LAD) approach. Li et al. introduced a novel
fuzzy regression model that utilizes trapezoidal fuzzy numbers and the least absolute deviation
approach [18]. Initially, a novel distance metric was established to quantify the dissimilarity between
trapezoidal fuzzy numbers. This distance metric serves as the foundation for many applications.
Additionally, the least absolute deviation method was combined with the aforementioned distance
metric to examine a fuzzy regression model. In this model, the parameters are represented as
trapezoidal fuzzy numbers. Concurrently, they thoroughly examined the model algorithms for three
specific scenarios, including various forms of inputs, outputs, and regression coefficients. The
researchers in [2] used ordered weighted averaging operators to provide a comprehensive fuzzy
regression modeling approach for crisp, fuzzy-input, or fuzzy-output data. The OWA-Least Trimmed
Absolute Deviations (OWA-LTAD) fuzzy regression model is a specific instance of the OWA-based
fuzzy regression model. It has been extensively examined for data with crisp inputs and fuzzy outputs.
Hesameian et al. used an expanded center and range technique in a three-step process to look into
nonparametric regression problems with fuzzy answers and precise predictors [9].They used the
Nadaraya-Watson estimator to estimate the unidentified fuzzy smooth function. The unknown
bandwidth at each step was established using generalized cross validation criteria [8]. The single-
valued Neutrosophic number (SVNN) is very appropriate for expressing information on truth,
falsehood, and indeterminacy in circumstances that are inconsistent and ambiguous. In [16],
researchers came up with SVNN-GPR, a method that combines Support Vector Neural Network
(SVNN) and Gaussian process regression to check how stable open-pit mining slopes are in an
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uncertain environment. The score values obtained from the SVNN output of the suggested approach
were used to forecast the stability of individual slopes.

The least-squares method has many benefits, such as being able to deal with non-Markovian data,
path-dependent pay-offs, and a flexible way to estimate conditional expectations [20].It allows for
specific implementations with increased freedom, and even modest extensions of standard linear
regression can produce satisfactory results in practical applications [2]. The method is robust against
noise and can accurately reconstruct multiple unknown coefficients from noisy data [3]. It also avoids
the need for assigning experimental values and is robust against intensity fluctuations [4].
Additionally, the least-squares method can be generalized to multidimensional space, expanding its
capabilities for geometric modeling of multifactor processes and phenomena [5].

So far, various fuzzy regression models have been examined by researchers, considering the accuracy
of Neutrosophic fuzzy numbers in modeling uncertain values, in this article we present the fuzzy
regression model in the Neutrosophic environment, as far as we know, this regression model with the
method The least absolute deviation has not been investigated so far. The subsequent sections of this
work are structured as follows. The next part introduces some fundamental principles of fuzzy
Neutrosophic. Section 3 presents the introduction of the Neutrosophic fuzzy regression model, along
with the implementation of the least absolute deviation approach. The efficacy and effectiveness of
the suggested approach is shown in Section 4. The overview of this study is finally offered in Section
5.

2. Preliminiries

Fuzzy Neutrosophic sets are used to represent uncertainty in decision making by substituting binary
components with Neutrosophic triplets in the tabular format of soft sets. This enables a more effective
management of situations in which the decision maker harbors uncertainty about the accuracy of the
fuzzy/qualitative descriptions supplied to the items of the universal set [24]. Neutrosophic decision
making approaches, using these sets, have been formulated and used across several fields, including
the selection of a new player by a soccer team [17]. Fuzzy Neutrosophic sets have the benefit of
effectively handling both uncertain and inconsistent information concurrently, rendering them well-
suited for decision-making issues that include fuzzy or qualitative parameters [28]. Some people have
also suggested using aggregation operators that work with single-valued Neutrosophic fuzzy sets to
help with the problems that come up when you have to make choices for groups with more than one
attribute [20].

The Neutrosophic sets were presented in order to address the weaknesses of the fuzzy sets.
Smarandache [25,26] defined Neutrosophic set as follows:

Definition 2.1. Let X be a universe of discourse, with a class of elements in X denoted by x.
A Neutrosophic set B in X is summarized by a truth-membership function ugz(x), an
indeterminacy-membership function vz (x), and a falsity membership function ngz(x). The
functions ug(x),vg(x) and ng(x) are real standard or nonstandard subset of ]0~, 1*[. That
isug(x): X =107, 1%[, vg(x): X »]0~,1*[, and ng(x): X -»]0~, 1*[.

Definition 2.2. Let X be a universe of discourse. A single valued Neutrosophic set A over X
is an object having the form A = {(x, 1y (x), v, (x),n4(x)):x € X} where p,(x): X -
[0,1],v4(x): X - [0,1] and 71,(x): X — [0,1] with 0 < p,(x) + v4(x) + n4(x) < 3 for all
x € X. The functions u,(x),v,(x) and n,(x) denote the truth-membership degree, the
indeterminacy-membership degree and the falsity-membership degree of x to A, respectively.
For convenience, a SVN number is denoted by A = (a, b, ¢), where a, b, c € [0,1] and
a+b+c<3.

In a special case a single valued triangular Neutrosophic number is defined as:
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Definition 2.3. Let vz, w; and t; and af, aq, ay, a,, as, ay, a,, a, € Rsuch that ay’ < a; <
a; <a,<az;<a,<a,<ay..Then a single valued trapezoidal Neutrosophic number
(SVTNN), @ = ((af, aq, a3, a,, as,ay, as, ay),vg, wy, tg) is a special Neutrosophic set on
the real line set R, whose truth-membership, indeterminacy-membership and falsity
membership functions are given as follows:

(x —ay)
—112@ a <x<a,
(a; —ay)
Vg a, <x<a
lia(x)= @ z 3
(a4_x)
TV A3 =Xx=0y
(ay —a3)
( )otherwise
a, —x+wzlx—a
(2 a 1) ainSaz
(az_a1)
Wg a, <x<a
Vd(x):< @ I 2 3
(x —az + wg(ay — x)) )
, az3 < x < ay
(a4_a3)

1 otherwise
((a, —x + tg(x — aq))

ai <x<a,

(az —ay)
ty a,<x<a
(x =< a 2 = —= U3
na( ) (x _ a3 + ta(a” _ x))
4 12
@ —ay) az3 < x < ay
4
\ 1 otherwise

where v;,w; and t; denote the maximum truth-membership degree, minimum
indeterminacy-membership degree and minimum falsity-membership degree, respectively.
Definition 2.4. Let & = ((ay, ay, as, a4), Vg, Wa, tg) and b = ((by, by, b3, by), v, Wi, t;) be
two SVTNNs and A > 0 be any real number. Then,
1) Addition of two SVTNNSs

d+b={((a;+by,a,+by,as+bs,,as +by), vz Ay, Wz VWs, tzVts).
2) Subtraction of two SVTNNSs

d—b=((a;— by ay — b3, a3 — by,,a, — by), vz ANV, Wz VWs, tzVts).
3) Inverse of a SVTNN

~_1 _ 1 1 1 1 ~
a —((a—4,a—3,a—2,a—1 , Vg Wa, tgz), whered # 0.

4) Multiplication of a SVTNN by constant value
1d = {((Aal,/laz,/la3,la4),va,Wa, ty) A>0,
((Aay, Aas, Aa,, Aay),vg, wg, tg) A <DO.
Let @ = ((ay, ay, as, as), vg, Wg, tz) and b = ((by, by, bs, by), vz, wi, t;) be two SVTNNs
.To calculate the distance between two Neutrosophic fuzzy numbers, we develop the distance measure
suggested by Diamond [6,7] for Neutrosophic numbers as follows:
d(&,B) = |a; — byl + laz — byl + laz — b3| + [as — byl.

3. Fuzzy least absolute regression
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Fuzzy least absolute regression utilizes a probabilistic linguistic term set to construct a fuzzy
regression model that can handle inputs of mixed kinds. This study presents the notion of a double-
cut set for probabilistic linguistic term sets and explores novel operations for probabilistic linguistic
phrase sets using double-cut sets. The suggested model is a combination of fuzzy and least absolute
regression techniques. To calculate the fuzzy regression parameters, a linear programming approach
is used. The suggested model is suitable for cases when the data exhibits fat-tailed or non-linear
characteristics [13]. A different research used intuitionistic fuzzy numbers (IFNs) to represent the
explanatory and response variables in intuitionistic fuzzy regression models. Mathematical
programming problems are constructed using the criteria of least absolute deviations to create
intuitionistic fuzzy regression models with intuitionistic fuzzy parameters [3,8].

We assume that we have a set of n observations in the form of (X;o, ..., Xix, ¥:), (i = 1, ...,n) SO
that X;, = 1. In this model, the relationship between the independent variable and the dependent
variable is presented as follows:

Yi = aOXiO + alXil + -+ akXik-

Independent and dependent variables are Neutrosophic fuzzy numbers while coefficients a;, j =
0,1, ..., k are crisp numbers.

In order to get the following objective function, we first compute each estimated value a; of the
regression coefficient a; based on the criteria of the least absolute deviation. This is accomplished by
minimizing the total absolute error in accordance with the suggested absolute distance.

n

mlnz d(Yi,a()Xio + alXil + -+ ale-k).

=1
Let Xij = ((Xijp, Xijyo Xijr Xij,)s Vxip Wiy b)) and X = (Y, Yoy Yoy, Vi, ), vy Wy ty,). Here
we consider two cases:

(1) aj > 0.
n k k k k
minz Yi, - z aXij, [+ 1Y, — z aXij, | + ¥, —z aXij, Z Xij,
i j j=0 j=0 Jj=0
Now we turn the above m|n|m|zat|on problem into a linear programming problem.

minzmu + Niz + 0i1 + 0i2 + pixr + piz + Kix + Kiz)

i=1
S.t.
K
Y, — Z a;Xij, = N1 — Nizs
j=0
Kk
Y, - Z a;jXij, = 01 — Oz,
j=0
Kk
Vi, — Z a;Xij, = Pi1 — Pizs
j=0
Kk
Y, = Z a;Xij, = Kix = Kig,
j=0

Ni1, Ni2, Hil' BiZ' Pi1 Pi2, Ki1, Ki2, aj = 0.
(2) a]- <0.


http://iors.ir/journal/article-1-818-en.html

[ Downloaded from iors.ir on 2026-01-29 ]

6 Behdani and Darehmiraki

n k k k k
minz YiﬁZ“inh + Yiz+Zanij3 + Y}3+Zanij2 + Yi4+Zanij1
i j=0 j=0 j=0 j=0

i=1
Now we turn the above minimization problem into a linear programming problem.
n

minZ(ml + Niz + 0i1 + 0i2 + i1 + piz + Kix +Ki2)
=1

S.t

. .t
Y, + z aiXij, = Mi1 — Mizs
j=0
Kk
Y, + z ajXi3 = 0i1 — Oz,
j=0
Kk
Y, + z a;jXij, = Pi1 — Pizs
j:

0
K

Y, + z ajXij, = Ki1 — Kiz,
j=0

Ni1, Niz» 011, Bi2, Pin, Pizs Kivs Kiz, @ = 0.

3.1. Error Analysis

Within the framework of conventional regression analysis, the evaluation of a model is based on
the degree of dissimilarity between the data that is seen and the data that is estimated. Instead of using
points on a single axis, fuzzy regression models make use of membership functions that are distributed
over two axes. As a result, the evaluation of fuzzy regression models needs to be based on the
discrepancy that exists between the membership functions. In the event where the anticipated
membership function and the actual membership function are in perfect agreement with one another,
there will be no difference in the membership numbers. Four distinct locations may be used to create
a trapezoid-shaped membership function: the left and right extremities, as well as the beginning and
finish of the peak value. This means that the estimated fuzzy number's membership function will be
very similar to the observed fuzzy data's membership function if the two endpoints and two peak
values are very close to the corresponding points of the observed fuzzy number.

4. Numerical example

This section presents numerical illustrations using Neutrosophic fuzzy numbers to showcase the use
of the proposed fuzzy multiple linear least absolute regression model.

Due to the fact that most previous research on fuzzy regression analysis has focused on triangular
fuzzy numbers, we present an example of how our new fuzzy multiple linear least absolute regression
model works with trapezoidal Neutrosophic fuzzy numbers. These data include a response variable
and three independent variables that are recorded in Table 1.

Table 1. The observed fuzzy data

The observed fuzzy outpu Y | X, | X, X3
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((27.80,29.3,30.8,32);0.7,0.4,0.3)

((2,3,4,5); 0.7,0.4,0.3)

((2.1,2.6,2.8,3); 0.7,0.4,0.3)

((2.9,3,3.2,3.4); 0.7,0.4,0.3)

((23.80,25.3,26.8,28.1); 0.7,0.4,0.3)

((1,1.3,2,2.5); 0.7,0.4,0.3)

((2.1,2.3,2.7,3.1); 0.7,0.4,0.3)

((3,3.1,3.8,3.9); 0.7,0.4,0.3)

((26.80,30.3,32.8,33); 0.7,0.4,0.3)

((1.1,1.7,2,2.4); 0.7,0.4,0.3)

((1.6.1.7,1.9,2.2); 0.7,0.4,0.3)

((2.1,2.3,2.6,2.8);0.7,0.4,0.3)

((27,29,30,32);0.7,0.4,0.3)

((3.2,3.9,4.5,5); 0.7,0.4,0.3)

((2,2.6,2.9,3.1); 0.7,0.4,0.3)

((1.9,2.3,2.5,2.8);0.7,0.4,0.3)

((32,34,36,38); 0.7,0.4,0.3)

((3,3.2,3.8,4.3); 0.7,0.4,0.3)

((3.1,3.3,3.4,3.7); 0.7,0.4,0.3)

((2.6.3.3.1.3.8); 0.7,0.4,0.3)

((23.2,24.3,26.2,28); 0.7,0.4,0.3)

((1.5,2,2.4,3);0.7,0.4,0.3)

((3.9,4,4.1,4.3); 0.7,0.4,0.3)

((2.8,3,3.6,3.7); 0.7,0.4,0.3)

((20.80,23.3,25,27); 0.7,0.4,0.3)

((1.8,2.1,2.4,2.8);0.7,0.4,0.3)

((1.8,1.9,2,2.3); 0.7,0.4,0.3)

((1.7,1.9,2.4,2.8);0.7,0.4,0.3)

((17.7,20.3,22,24); 0.7,0.4,0.3)

((2.8,3.1,3.4,4); 0.7,0.4,0.3)

((2.9,3,3.2,3.3);0.7,0.4,0.3)

(2.5,2.8,2.9,3.1;0.7,0.4,0.3)

((24,25.3,26.8.,29); 0.7,0.4,0.3)

((3.8,4.2,4.9,5);0.7,0.4,0.3)

((1.2.1.3,1.4,1.9); 0.7,0.4,0.3)

((1,1.7,2.7,3); 0.7,0.4,0.3)

((23,25.3,27.6,28.9); 0.7,0.4,0.3)

((3,3.1,3.4,4); 0.7,0.4,0.3)

((2.5,2.8,3.4,3.6); 0.7,0.4,0.3)

((3.1,3.3,3.9,4); 0.7,0.4,0.3)

For Neutrosophic fuzzy data in Table 1, we fitted the following regression model:
Y = Bo+B1X1 + BoXs + P3X3

In this model, the independent variables and the dependent variable are Neutrosophic fuzzy numbers
and the coefficients of the model are crisp numbers. As mentioned before, the method of the least
absolute error introduced in section 3 is used to estimate the coefficients. In order to find estimates,
the problem has been converted into a linear programming problem and the estimation of parameters
has been calculated using R software.
By using linear programming and using R software, the model parameters were estimated and these
parameters are equal to: B, = 16.96, ; = 1.60, B, =0, B3 = 1.74
In other words, the appropriate model for the table data is as follows:
j =16.96 + 1.6%; + 1.74%;
Figure 1 shows the membership function plot of the observed value (continuous line) versus the fitted
value (dashed line) for the fourth data. For simplicity, this diagram is drawn only for the membership

function.
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Figure 1. the membership function of the observed value (black) and the fitted value (red)
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Using this model, it is possible to make predictions and estimates. For example, using this model, the
fitted value for the 4th table data is equal to:

¥4 = ((25.41163,27.23256,28.54419,29.86977); 0.7,0.4,0.3)

Also, for a new observation with values % = ((4,2.1,3.7,2);0.7,0.4,0.3),%, =
((2.1,3.4,1.9,2.8);0.7,0.4,0.3) and %; = (2.8,2.1,3.4,4.5); 0.7,0.4,0.3) the predicted value using the
model is equal to:

Pnew = ((28.26512,23.99535, 28.83023,28.02093); 0.7,0.4,0.3)

Table 2 shows the fitted values for all ten data samples in Table 1. This Table shows all the fitted
values of the data in Table 1 using the obtained model.

Table 2. The observed fuzzy data and the estimated fuzzy outputs for the data in Tablel
The observed fuzzy outpu Y The fitted fuzzy output y
((27.80,29.3,30.8,32); 0.7,0.4,0.3) | ((25.23,30.50,28.96,30.91); 0.7,0.4,0.3)

((23.80,25.3,26.8,28.1); 0.7,0.4,0.3) ((23.8,23.4,26.8,27.78); 0.7,0.4,0.3)
((26.80,30.3,32.8,33); 0.7,0.4,0.3) | ((22.39,23.87,24.7,25.69); 0.7,0.4,0.3)

((27,29,30,32); 0.7,0.4,0.3) ((25.41,31.94,28.54,29.86); 0.7,0.4,0.3)
((32,34,36,38);0.7,0.4,0.3) ((26.31,29.60,28.47,30.49); 0.7,0.4,0.3)
((23.2,24.3,26.2,28); 0.7,0.4,0.3) ((24.25,25.40,27.09,28.23); 0.7,0.4,0.3)

((20.80,23.3,25,27); 0.7,0.4,0.3) ((22.82,25.22,25,26.34); 0.7,0.4,0.3)
((17.7,20.3,22,24); 0.7,0.4,0.3) ((25.82,28.91,27.48,28.79); 0.7,0.4,0.3)
((24,25.3,26.8.,29); 0.7,0.4,0.3) ((28.29,32.42,33.55,35.45); 0.7,0.4,0.3)
((23,25.3,27.6,28.9); 0.7,0.4,0.3) | ((27.18,28.91,29.22,30.36); 0.7,0.4,0.3)

The sum absolute error and the mean absolute error are two model evaluation criteria. These two
criteria have been calculated for the data in table one and the model obtained for them.

n k k k k
SAE =Z Y, - Z aXij, |+ Vi, — Z @ Xij, [+ |Yi, — Z aXij | + | Y, — 2 a;Xij,
i=1 =0 =0 =0 =0
1 n k k k k
MAE = ;Z Y, - Z Xy, |+ |, —Z aXij, | + |, —Z @ Xij, | + | Y, — Eanm
i=1 j=0 j=0 j=0 j=0

SAE = 136.84, MAE = 13.68
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5. Conclusion

Fuzzy regression is a method used to estimate the relationship between variables when accurate
mathematical models are not available. It is a fuzzy inference system based on regression analysis, using
techniques such as ordinary least squares and fuzzy clustering. The goal of fuzzy regression is to
minimize the vagueness of the model by estimating fuzzy coefficients. However, traditional fuzzy
regression methods may not guarantee the desired level of generalization. To address this, a novel
methodology called EFLR (Enhanced Fuzzy Linear Regression) has been proposed. EFLR aims to
maximize the reliability of the constructed models instead of minimizing vagueness. It achieves this by
minimizing the weighted variance of different ambiguities in each validation data situation. The
proposed EFLR method has shown better generalizability and more accurate results compared to classic
versions of fuzzy linear regression. Fuzzy regression offers several advantages over linear regression.
Firstly, fuzzy regression models can handle uncertain relationships between variables and estimate the
uncertain relationship more effectively. This is particularly useful in situations where the underlying
relationship is not precise or crisp. Additionally, fuzzy regression models can handle multicollinearity,
a common issue in predictive modeling, more efficiently. Fuzzy regression also provides higher
reliability and robustness, as it is less sensitive to outliers and can identify poorly fitted data points.
Furthermore, fuzzy regression models can provide more accurate results and narrower prediction
intervals, leading to better generalization ability. Overall, fuzzy regression offers improved performance
and flexibility compared to traditional linear regression models.

The Least Absolute Deviations approach is a crucial estimate technigue in regression analysis due

to its resilience and widespread use in many scenarios. A trapezoidal Neutrosophic fuzzy number is a
frequently seen sort of Neutrosophic fuzzy number that may serve as a substitute for or symbolize other
fuzzy numbers.
Therefore, using the Least Absolute Deviations method and trapezoidal Neutrosophic fuzzy number to
construct a fuzzy regression model and perform further analysis has significant practical importance
and is aworthwhile pursuit. This article demonstrates the computation of the precise magnitude between
two trapezoidal Neutrosophic fuzzy numbers. Furthermore, a unique fuzzy regression model is
introduced, which relies on the least absolute deviation technique using trapezoidal Neutrosophic fuzzy
numbers. The study also investigates the algorithms used in the model and does a comprehensive
analysis of the model. The experimental results indicate that our proposed model is applicable not only
to trapezoidal Neutrosophic fuzzy numbers but also to triangular Neutrosophic fuzzy numbers, and it
consistently produces better fitting results.
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