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Optimal Sample Size in Type-II Progressive Censoring 

Using a Bayesian Prediction Approach 
 

E. Basiri1, S.M.T.K. MirMostafaee2,* 
 

This paper considers the progressively Type-II censoring and determines the optimal sample size 

using a Bayesian prediction approach. To this end, two criteria, namely the Bayes risk function 

of the point predictor for a future progressively censored order statistic and the designing cost of 

the experiment are considered. In the Bayesian prediction, the general entropy loss function is 

applied. We find the optimal sample size such that the Bayes risk function and the cost of the 

experiment do not exceed two pre-fixed values. To show the usefulness of the results, some 

numerical computations are presented.  
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1. Introduction 

 

The scheme of progressive Type-II censoring is of importance in life-testing experiments. It allows 

the experimenter to remove units from a life test at various stages during the experiment. Suppose N 

units are placed on a lifetime test. At the first failure time, R1 surviving items are randomly withdrawn 
from the test. At the second failure time, R2 surviving items are selected at random and taken out of 

the experiment, and so on. Finally, at the time of the n-th failure, the remaining Rn objects are 

removed, where 𝑅𝑛 = 𝑁 − 𝑛 − ∑ 𝑅𝑖
𝑛−1
𝑖=1  . 

If the failure times are based on an absolutely continuous cumulative distribution function (CDF) 

Fθ(.) and probability density function (PDF) fθ(.), where θ is the model parameter, and 𝑋𝑖:𝑛:𝑁
𝑅̃  denotes 

the i-th failure time, for 1 ≤ 𝑖 ≤ 𝑛, then the random variables 𝑋1:𝑛:𝑁
𝑅̃ , ⋯ , 𝑋𝑛:𝑛:𝑁

𝑅̃  are called 

progressively Type-II censored order statistics (PCOs) based on the censoring scheme   𝑅̃ =

(𝑅1 , ⋯ , 𝑅𝑛), where 𝑁 = 𝑛 + ∑ 𝑅𝑖
𝑛
𝑖=1  . Then the joint PDF of 𝑋1:𝑛:𝑁

𝑅̃ , ⋯ , 𝑋𝑛:𝑛:𝑁
𝑅̃  is 

𝑓
𝑋1:𝑛:𝑁

𝑅̃ ,⋯,𝑋𝑛:𝑛:𝑁
𝑅̃ (𝑥1, ⋯ , 𝑥𝑛) = 𝐶𝑅̃ ∏(1 − 𝐹𝜃(𝑥𝑖))𝑅𝑖𝑓𝜃(𝑥𝑖)

𝑛

𝑖=1

, (1) 

 in which 𝐶𝑅̃ = ∏ (𝑁 − ∑ 𝑅𝑗
𝑖−1
𝑗=1 − 𝑖 + 1)𝑛

𝑖=1 , with ∑ 𝑅𝑗
0
𝑗=1 ≡ 0. 

    Also, the marginal PDF of  𝑋𝑖:𝑛:𝑁
𝑅̃ , for 1 ≤ 𝑖 ≤ 𝑛, is given by 
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𝑓
𝑋𝑖:𝑛:𝑁

𝑅̃ (𝑥) = 𝑐𝑖−1
𝑅̃ ∑ 𝑎𝑗,𝑖

𝑅̃

𝑖

𝑗=1

(1 − 𝐹𝜃(𝑥))𝛾𝑗
𝑅̃−1𝑓𝜃(𝑥), (2) 

where 

𝛾𝑗
𝑅̃ = 𝑁 − 𝑗 + 1 − ∑ 𝑅𝑙

𝑗−1

𝑙=1
= 𝑛 − 𝑗 + 1 + ∑ 𝑅𝑙

𝑛

𝑙=𝑗
,  

𝑐𝑖−1
𝑅̃ = ∏ 𝛾𝑗

𝑅̃

𝑖

𝑗=1

,               1 ≤ 𝑖 ≤ 𝑛,  

𝑎𝑗,𝑖
𝑅̃ = ∏

1

𝛾𝑙
𝑅̃ − 𝛾𝑗

𝑅̃

𝑖

𝑙=1
𝑙≠𝑗

,      1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛.  

   The properties and applications of progressive censoring are well-known. For a detailed discussion 

of progressive censoring, we refer the reader to Balakrishnan and Aggarwala [1], Balakrishnan [2], 

Balakrishnan and Cramer [3] and the references contained therein. 

  In a parameter estimation problem, perhaps the most popular loss function is the squared error loss 

function, which can be easily justified on the grounds of minimum variance unbiased estimation. 

However, one property of this loss function is that it is symmetric and gives equal weights to 

overestimation and underestimation of the same magnitude. This property may not be applicable in 

some real-life situations. A number of asymmetric loss functions are available in the statistical 

literature. Basu and Ebrahimi [4] defined a modified LINEX loss function. A suitable alternative to 

the modified LINEX loss function is the general entropy loss function, defined as (see Calabria and 

Pulcini [5] and Calabria and Pulcini [6])  

𝐿(𝜃, 𝜃) ∝ (
𝜃

𝜃
)

𝛿

− 𝛿 𝑙𝑛 (
𝜃

𝜃
) − 1, (3) 

where 𝛿 ≠ 0 and 𝜃 is an estimator of θ. 

   This loss function is a simple generalization of the entropy loss function used by several authors, 

where the shape parameter δ is taken to be equal to 1. It may be noted that when δ >0, a positive error 

causes more serious consequences than a negative error. The Bayes estimator of θ under the general 

entropy loss function is given by (provided that it exists) 

𝜃𝐺𝐸 = [𝐸(𝜃−𝛿|𝑑𝑎𝑡𝑎)]
−1
𝛿 . (4) 

   In many actuarial studies, when enough information is available, predictive inference for 

unobserved events may be the main interest. The prediction problems have received considerable 

attention in the literature, and both frequentist and Bayesian inferential methods have been developed 

in this regard. 
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   Optimization in censoring schemes is one of the issues that has been studied so far by many 

researchers. See, for example, Ahmadi et al. [7] and Basiri and Asgharzadeh [8].   

   In this paper, we intend to find the optimal values for the sample size using the Bayes risk and cost 

functions in progressive Type-II censoring from the one-parameter exponential distribution in a 

Bayesian prediction problem. 

2. Main Results  
 

   Throughout this paper, we assume that 𝑋1:𝑛:𝑁
𝑅̃ , ⋯ , 𝑋𝑛:𝑛:𝑁

𝑅̃  are the progressively Type-II censored order 

statistics with the censoring scheme 𝑅̃ = (𝑅1, ⋯ , 𝑅𝑛) from a sample of size N of independent and 

identically distributed (iid) continuous random variables from the one-parameter exponential distribution, 

denoted by 𝐸𝑥𝑝(𝜃). The PDF and CDF of 𝐸𝑥𝑝(𝜃) are, respectively, given by 

𝑓𝜃(𝑥) = 𝜃e−𝜃𝑥,    and   𝐹𝜃(𝑥) = 1 − e−𝜃𝑥. (5) 

   Besides, we suppose that 𝑌𝑖:𝑚:𝑀
𝑆 , 1 ≤ 𝑖 ≤ 𝑚, represents the i-th progressively Type-II censored order 

statistic with the censoring scheme 𝑆 = (𝑆1 , ⋯ , 𝑆𝑚) in a future independent sample of size M from the 

same distribution. For notational simplicity, hereafter, we will use 𝑋𝑖  instead of 𝑋𝑖:𝑛:𝑁
𝑅̃  and 𝑌𝑖  for 𝑌𝑖:𝑚:𝑀

𝑆̃ . 

  In this paper, n is considered an unknown value, which should be determined. We define the set of 

admissible values for n as 

𝜁𝑛 = {𝑛 ∈ ℕ|1 ≤ 𝑛 ≤ 𝑁}.  

  First, we recall a well-known property of PCOs that the progressively Type-II censored spacings as (see, 

for example, Balakrishnan and Aggarwala [1]) 

𝑍𝑖 = 𝛾𝑖
𝑅̃(𝑋𝑖 − 𝑋𝑖−1), 1 ≤ 𝑖 ≤ 𝑛,   with  𝑋0 ≡ 0,  

are iid random variables, each of them has the one-parameter exponential distribution, 𝐸𝑥𝑝(𝜃). So, the 

random variable 𝑇 = ∑ (1 + 𝑅𝑖)𝑋𝑖
𝑛
𝑖=1 = ∑ 𝑍𝑖

𝑛
𝑖=1  has a gamma distribution with parameters n and θ, 

denoted by Γ(𝑛, 𝜃). 

  On the one hand, from (1) and (5), the likelihood function of θ can be written as 

𝐿(𝜃) = 𝐶𝑅̃𝜃𝑛e−𝜃𝑡 ,  

where t is the observed value of T. So, considering the prior for θ as 

π(𝜃) =
𝑏𝑎

Γ(𝑎)
𝜃𝑎−1e−𝑏𝜃 ,     𝜃 > 0, 𝑎, 𝑏 > 0,  
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leads to the posterior PDF for θ as 

π(𝜃|𝑥1, ⋯ , 𝑥𝑛) =
(𝑏 + 𝑡)𝑎+𝑛

Γ(𝑎 + 𝑛)
𝜃𝑎+𝑛−1e−𝜃(𝑏+𝑡),    

where 𝑥1 , ⋯ , 𝑥𝑛 are the observed values of 𝑋1, ⋯ , 𝑋𝑛 and Γ(. ) is the complete gamma function. 

  On the other hand, from (2) and (5), the PDF of 𝑌𝑖   can be expressed as 

𝑓𝑌𝑖
(𝑦) = 𝜃𝑐𝑖−1

𝑆 ∑ 𝑎𝑗,𝑖
𝑆

𝑖

𝑗=1

e−𝜃𝛾𝑗
𝑆̃𝑦 ,    𝑦 > 0. (6) 

So, the predictive density function for 𝑌𝑖  takes the form 

𝑓𝑌𝑖

∗ (𝑦|𝑥1, ⋯ , 𝑥𝑛) = 𝑐𝑖−1
𝑆 ∑ 𝑎𝑗,𝑖

𝑆

𝑖

𝑗=1

(𝑏 + 𝑡)𝑎+𝑛

Γ(𝑎 + 𝑛)
∫ 𝜃𝑎+𝑛e−𝜃(𝑏+𝑡+𝛾𝑗

𝑆̃𝑦)d𝜃
∞

0

                                 = 𝑐𝑖−1
𝑆 (𝑏 + 𝑡)𝑎+𝑛(𝑎 + 𝑛) ∑

𝑎𝑗,𝑖
𝑆

(𝑏 + 𝑡 + 𝛾𝑗
𝑆𝑦)𝑎+𝑛+1

𝑖

𝑗=1

.

  

Under the general entropy loss function given in (3) and based on (4), the point predictor for 𝑌𝑖   is 

𝑌̂𝑖;𝐺𝐸 = [𝐸(𝑌𝑖
−𝛿|𝑋1, ⋯ , 𝑋𝑛)]

−1
𝛿 ,  

where (assuming −(𝑛 + 𝑎) < 𝛿 < 1) 

𝐸(𝑌𝑖
−𝛿|𝑋1, ⋯ , 𝑋𝑛) = 𝑐𝑖−1

𝑆 ∑ 𝑎𝑗,𝑖
𝑆

𝑖

𝑗=1

(𝑏 + 𝑇)𝑎+𝑛

Γ(𝑎 + 𝑛)
{∫ 𝜃𝑎+𝑛

∞

0

e−𝜃(𝑏+𝑇) [∫ 𝑦−𝛿e−𝜃𝛾𝑗
𝑆̃𝑦𝑑𝑦

∞

0

] d𝜃}

                             = 𝑐𝑖−1
𝑆 ∑ 𝑎𝑗,𝑖

𝑆

𝑖

𝑗=1

(𝑏 + 𝑇)𝑎+𝑛Γ(1 − 𝛿)

Γ(𝑎 + 𝑛)(𝛾𝑗
𝑆)1−𝛿

{∫ 𝜃𝑎+𝑛+𝛿−1
∞

0

e−𝜃(𝑏+𝑇)d𝜃}

=
Γ(𝑎 + 𝑛 + 𝛿)Γ(1 − 𝛿)

Γ(𝑎 + 𝑛)(𝑏 + 𝑇)𝛿
𝑐𝑖−1

𝑆 ∑
𝑎𝑗,𝑖

𝑆

(𝛾𝑗
𝑆)1−𝛿

             

𝑖

𝑗=1

=
Γ(𝑎 + 𝑛 + 𝛿)

Γ(𝑎 + 𝑛)(𝑏 + 𝑇)𝛿
𝐴1(𝑖, 𝛿, 𝑆),    say.            

 (7) 

Since in many real applications, no prior knowledge is available about the distribution of θ, we may take 

𝑎 = 𝑏 = 0, i.e. Jeffrey’s non-informative prior for θ. So, we have 

𝐸(𝑌𝑖
−𝛿|𝑋1, ⋯ , 𝑋𝑛) =

Γ(𝑛+𝛿)

(𝑛−1)!𝑇𝛿 𝐴1(𝑖, 𝛿, 𝑆).  

Then, the point predictor for 𝑌𝑖   is 
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𝑌̂𝑖;𝐺𝐸 = 𝑇 Λ(𝑖, 𝛿, 𝑛, 𝑆), (8) 

in which 

Λ(𝑖, 𝛿, 𝑛, 𝑆) = [
Γ(𝑛+𝛿)

(𝑛−1)!
𝐴1(𝑖, 𝛿, 𝑆)]

−
1

𝛿
.  

We can consider the risk function of the obtained point predictor of 𝑌𝑖, which is computed to be 

R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) = 𝐸𝜃[L(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸)].  

Based on (3), we obtain 

R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) = 𝐸𝜃 [(
𝑌̂𝑖;𝐺𝐸

𝑌𝑖
)

𝛿

− 𝛿 ln (
𝑌̂𝑖;𝐺𝐸

𝑌𝑖
)] − 1                             

                                             = 𝐸𝜃 [𝑌̂𝑖;𝐺𝐸
𝛿

] 𝐸𝜃 [
1

𝑌𝑖
𝛿

] − 𝛿 𝐸𝜃[ ln(𝑌̂𝑖;𝐺𝐸)] + 𝛿 𝐸𝜃[ ln(𝑌𝑖)] − 1,

 (9) 

where the last equality is obtained due to the independence of 𝑌̂𝑖;𝐺𝐸 and 𝑌𝑖. 

 On the other hand, from (8), we can find  

𝐸𝜃 [𝑌̂𝑖;𝐺𝐸
𝛿

] =  Λ(𝑖, 𝛿, 𝑛, 𝑆)
𝛿

𝐸𝜃(𝑇𝛿)

                             =
1

𝜃𝛿
Λ(𝑖, 𝛿, 𝑛, 𝑆)

𝛿 Γ(𝑛 + 𝛿)

(𝑛 − 1)!

                                           
=

1

𝜃𝛿
(Γ(1 − 𝛿)𝑐𝑖−1

𝑆 ∑
𝑎𝑗,𝑖

𝑆

(𝛾𝑗
𝑆)1−𝛿

  

𝑖

𝑗=1

)

−1

=
1

𝜃𝛿
(𝐴1(𝑖, 𝛿, 𝑆))

−1
.                           

 (10) 

Also, from (6), we have 

𝐸𝜃 [
1

𝑌𝑖
𝛿

] = 𝜃𝑐𝑖−1
𝑆 ∑ 𝑎𝑗,𝑖

𝑆

𝑖

𝑗=1

∫ 𝑦−𝛿e−𝜃𝛾𝑗
𝑆̃𝑦  d𝑦

∞

0

         = 𝜃𝛿Γ(1 − 𝛿)𝑐𝑖−1
𝑆 ∑

𝑎𝑗,𝑖
𝑆

(𝛾𝑗
𝑆)1−𝛿

𝑖

𝑗=1

= 𝜃𝛿𝐴1(𝑖, 𝛿, 𝑆).              

 (11) 

Moreover, we can obtain (see Gradshteyn and Ryzhik [9], p. 573) 
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𝐸𝜃[ ln(𝑌̂𝑖;𝐺𝐸)] = 𝐸𝜃[ ln(𝑇)] +  ln(Λ(𝑖, 𝛿, 𝑛, 𝑆))

         = ∫ ln (𝑡)
𝜃𝑛

(𝑛 − 1)!
𝑡𝑛−1e−𝜃𝑡d𝑡

∞

0

+  ln(Λ(𝑖, 𝛿, 𝑛, 𝑆))

= Ψ(𝑛) − ln (𝜃) +  ln(Λ(𝑖, 𝛿, 𝑛, 𝑆)),              

 (12) 

where Ψ(𝑥) =
Γ′(𝑥)

Γ(𝑥)
 is the  Euler psi function or digamma function. 

Finally, from the fact that 𝑐𝑖−1
𝑆 ∑

𝑎𝑗,𝑖
𝑆̃

𝛾𝑗
𝑆̃

𝑖
𝑗=1 = 1, we find (see Gradshteyn and Ryzhik [9], p. 571) 

𝐸𝜃[ ln(𝑌𝑖)] =  𝜃𝑐𝑖−1
𝑆 ∑ 𝑎𝑗,𝑖

𝑆

𝑖

𝑗=1

∫ ln (𝑦)e−𝜃𝛾𝑗
𝑆̃𝑦  d𝑦

∞

0

             = −𝑐𝑖−1
𝑆 ∑

𝑎𝑗,𝑖
𝑆

𝛾𝑗
𝑆

(𝛾 + ln (𝜃𝛾𝑗
𝑆))

𝑖

𝑗=1

                       
= −𝛾 − ln (𝜃) − 𝑐𝑖−1

𝑆 ∑
𝑎𝑗,𝑖

𝑆

𝛾𝑗
𝑆

ln (𝛾𝑗
𝑆)

𝑖

𝑗=1

= −𝛾 − ln(𝜃) − 𝐴2(𝑖, 𝑆).     say,      

 (13) 

in which γ is the Euler constant. 

   Based on Equations (9)-(13), we have 

R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) = −𝛿[Ψ(𝑛) +  ln(Λ(𝑖, 𝛿, 𝑛, 𝑆)) + 𝛾 + 𝐴2(𝑖, 𝑆)]             

                                             = −𝛿Ψ(𝑛) + ln (
Γ(𝑛 + 𝛿)

(n − 1)!
) + ln (𝐴1(𝑖, 𝛿, 𝑆)) − 𝛿𝛾 − 𝛿𝐴2(𝑖, 𝑆),

  

which is free of θ, as we expected. Thus, the risk function and the Bayes risk function are the same. 

    We have computed the values of R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸). Table 1 shows some values of R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) for different 

choices of i and n when 𝛿 = −0.5, 0.5, 𝑚 = 10, 𝑁 = 20, 𝑀 = 20 and 𝑆1̃ = (10,0, ⋯ ,0), 𝑆2̃ =
(0, ⋯ ,0,10) and 𝑆3̃ = (1, ⋯ ,1). From Table 1, one can observe that R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) is a decreasing function 

of n and i, when all other parameters are kept fixed. Moreover, R(𝑌1, 𝑌̂1;𝐺𝐸), namely the risk function of 

the first predictor does not depend on the censoring scheme.  

  In this paper, as the second criterion, we consider a cost function as follows 

𝐶(𝑛) = 𝑝0 + 𝑝𝑢𝑁 + 𝑝𝑡𝑇,  

where p0, pu and pt are the sampling set-up cost or any other related cost involved in sampling, the 

cost per unit, and the cost related to the test time, respectively. Since T is a random variable whose 

distribution is Γ(𝑛, 𝜃), we can consider the expected value of the cost function, which is given by 

𝐸𝜃[𝐶(𝑛)] = 𝑝0 + 𝑝𝑢𝑁 + 𝑝𝑡

𝑛

𝜃
. (14) 
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Table 1. The values of R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸). 

 N 

δ 𝑆 i 5 10 15 20 

-0.5 𝑆1̃ 1 0.1965 0.1812 0.1765 0.1742 

3 0.0792 0.0639 0.0592 0.0570 

5 0.0579 0.0425 0.0379 0.0356 

7 0.0500 0.0346 0.0300 0.0277 

𝑆2̃ 1 0.1965 0.1812 0.1765 0.1742 

3 0.0752 0.0598 0.0552 0.0529 

5 0.0555 0.0402 0.0355 0.0332 

7 0.0476 0.0323 0.0276 0.0254 

𝑆3̃ 1 0.1965 0.1812 0.1765 0.1742 

3 0.0754 0.0600 0.0554 0.0531 

5 0.0561 0.0407 0.0361 0.0338 

7 0.0489 0.0336 0.0289 0.0267 

0.5 𝑆1̃ 1 0.3104 0.2966 0.2922 0.2901 

3 0.0839 0.0701 0.0657 0.0636 

5 0.0580 0.0442 0.0398 0.0377 

7 0.0490 0.0352 0.0308 0.0287 

𝑆2̃ 1 0.3104 0.2966 0.2922 0.2901 

3 0.0796 0.0659 0.0615 0.0593 

5 0.0555 0.0417 0.0373 0.0352 

7 0.0466 0.0328 0.0284 0.0262 

𝑆3̃ 1 0.3104 0.2966 0.2922 0.2901 

3 0.0798 0.0661 0.0617 0.0595 

5 0.0561 0.0423 0.0379 0.0357 

7 0.0479 0.0341 0.0297 0.0275 

 

From (14), we can see that 𝐸𝜃[𝐶(𝑛)] depends on the unknown parameter θ, and therefore it can be 

replaced by its preliminary estimator based on past experiments and pre-information. In Table 2, 

we present some values of 𝐸𝜃[𝐶(𝑛)] for different choices of n, when 𝜃 = 1, 𝑝0 = 1, 𝑝𝑢 = 0.5,  𝑝𝑡 =

1 and 𝑁 = 20. From Table 2, we observe that the values of 𝐸𝜃[𝐶(𝑛)] increase as n increases, as we 

expected.  

Table 2. The values of 𝐸𝜃[𝐶(𝑛)] 

n 1 5 10 15 20 

𝐸𝜃[𝐶(𝑛)] 12 16 21 26 31 

   

In the sequel, the aim is to find the optimal value for 𝑛 under the optimization problem 

R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) ≤ 𝑅∗ and 𝐸𝜃[𝐶(𝑛)] ≤ 𝐵∗, where 𝑅∗ and 𝐵∗ are pre-fixed values.  

  On the one hand, R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) ≤ 𝑅∗ is equivalent to saying that 𝑛 ≥ 𝑛0, where 𝑛0 is the solution of 

the following equation 
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−𝛿Ψ(𝑛) + ln (
Γ(𝑛 + 𝛿)

(𝑛 − 1)!
) = 𝑅∗ − ln (𝐴1(𝑖, 𝛿, 𝑆)) + 𝛿𝛾 + 𝛿𝐴2(𝑖, 𝑆),  

where 𝐴1(∙,∙,∙) and 𝐴2(∙,∙) are defined in (7) and (13), respectively. 

  On the other hand, from (14), we have 

𝐸𝜃[𝐶(𝑛)] ≤ 𝐵∗  ⇔ 𝑛 ≤ 𝜃(𝐵∗ − 𝑝0 − 𝑝𝑢𝑁)/𝑝𝑡.  

So, we readily find that the optimal value for n, say nopt, satisfies the following inequality  

⌊𝑛0⌋ ≤ 𝑛𝑜𝑝𝑡 ≤ min {𝑁, ⌊
𝜃(𝐵∗ − 𝑝0 − 𝑝𝑢𝑁)

𝑝𝑡
⌋},  

where ⌊∙⌋ is the floor function.  

Table 3 presents some values of nopt by considering different values of i when 𝐵∗ = 20, 𝑝0 = 1, 

𝑝𝑢 = 0.5, 𝑝𝑡 = 1, 𝑚 = 10, 𝑁 = 20, 𝑀 = 20, 𝜃 = 1 and  𝑆1̃ = (10,0, ⋯ ,0), 𝑆2̃ = (0, ⋯ ,0,10) and 

𝑆3̃ = (1, ⋯ ,1) for 𝛿 = −0.5, 𝑅∗ = 0.2 and 𝛿 = 0.5, 𝑅∗ = 0.3.  

Table 3. The values of nopt (a dash (-) means that there is no nopt) 

𝛿
 

𝑆
 

𝐵∗ 𝑅∗ i nopt 

-0.5 𝑆1̃ 20 0.2 1 {5,…,9} 

3 {2,…,9} 

5 {2,…,9} 

7 {2,…,9} 

𝑆2̃ 20 0.2 1 {5,…,9} 

3 {2,…,9} 

5 {2,…,9} 

7 {2,…,9} 

𝑆3̃ 20 0.2 1 {5,…,9} 

3 {2,…,9} 

5 {2,…,9} 

7 {2,…,9} 

0.5 𝑆1̃ 20 0.3 1 - 

3 {2,…,9} 

5 {1,…,9} 

7 {1,…,9} 

𝑆2̃ 20 0.3 1 - 

3 {2,…,9} 

5 {1,…,9} 

7 {1,…,9} 

𝑆3̃ 20 0.3 1 {9} 

3 {1,…,9} 

5 {1,…,9} 

7 {1,…,9} 
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Figure 1 presents the values of 𝐸𝜃[𝐶(𝑛)] for 𝜃 = 1, 𝑝0 = 1, 𝑝𝑢 = 0.5, 𝑝𝑡 = 1 and 𝑁 = 20, when 

𝐵∗ = 20. Figures 2 and 3 show the values of R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) for different choices of i and n for 𝛿 = −0.5, 

𝑅∗ = 0.2 and 𝛿 = 0.5, 𝑅∗ = 0.3, respectively, when 𝑚 = 10, 𝑁 = 20, 𝑀 = 20, and for  𝑆1̃ =

(10,0, ⋯ ,0),  𝑆2̃ = (0, ⋯ ,0,10) and  𝑆3̃ = (1, ⋯ ,1). 

 
Figure 1. The values of 𝐸𝜃[𝐶(𝑛)] for 𝜃 = 1, 𝑝0 = 1, 𝑝𝑢 = 0.5, 𝑝𝑡 = 1 and 𝑁 = 20, when 𝐵∗ =

20. 

   
Figure 2. The values of R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) for different choices of i and n when 𝛿 = −0.5, 𝑚 = 10, 𝑁 =

20, 𝑀 = 20, and 𝑅∗ = 0.2, when (a):  𝑆1̃ = (10,0, ⋯ ,0), (b): 𝑆2̃ = (0, ⋯ ,0,10) and (c): 𝑆3̃ =
(1, ⋯ ,1).  

   
Figure 3. The values of R(𝑌𝑖 , 𝑌̂𝑖;𝐺𝐸) for different choices of i and n when 𝛿 = 0.5, 𝑚 = 10, 𝑁 =

20, 𝑀 = 20, and 𝑅∗ = 0.3, when (a):  𝑆1̃ = (10,0, ⋯ ,0), (b): 𝑆2̃ = (0, ⋯ ,0,10) and (c): 𝑆3̃ =
(1, ⋯ ,1). 
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3. Concluding Remarks 

 

     This paper focused on the problem of Bayesian prediction of a future progressively Type-II censored order 

statistic under an asymmetric loss function. Two main criteria are applied to determining the optimal values of 

n, the number of failures to be observed in the informative sample. One of them is the Bayes risk function, and 

the other is the cost function. The values of optimized n are computed and tabulated for selected cases. All the 

computations in this paper were done using the statistical software R [10]. 
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