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Optimal Sample Size in Type-11 Progressive Censoring
Using a Bayesian Prediction Approach

E. Basiri?, S.M.T.K. MirMostafaee®”

This paper considers the progressively Type-II censoring and determines the optimal sample size
using a Bayesian prediction approach. To this end, two criteria, namely the Bayes risk function
of the point predictor for a future progressively censored order statistic and the designing cost of
the experiment are considered. In the Bayesian prediction, the general entropy loss function is
applied. We find the optimal sample size such that the Bayes risk function and the cost of the
experiment do not exceed two pre-fixed values. To show the usefulness of the results, some
numerical computations are presented.
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1. Introduction

The scheme of progressive Type-1l censoring is of importance in life-testing experiments. It allows
the experimenter to remove units from a life test at various stages during the experiment. Suppose N
units are placed on a lifetime test. At the first failure time, Ry surviving items are randomly withdrawn
from the test. At the second failure time, R, surviving items are selected at random and taken out of
the experiment, and so on. Finally, at the time of the n-th failure, the remaining R, objects are
removed, where R, = N —n — Y7'R; .

If the failure times are based on an absolutely continuous cumulative distribution function (CDF)
Fo(.) and probability density function (PDF) f,(.), where @is the model parameter, and X5,.,, denotes

the i-th failure time, for 1 <i <mn, then the random variables X%, ., X,y are called
progressively Type-ll censored order statistics (PCOs) based on the censoring scheme R =

(Ry,*,Ry), where N = n + Y | R; . Then the joint PDF of Xffn.N, o XRO S

Fe ot Gae) = CF| [ = Fo)efy oo, ®
i=1

inwhich CF = [T, (N - X4 R — i + 1), with 9, R; = 0.

Also, the marginal PDF of an:,\,, forl <i < n,isgiven by
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The properties and applications of progressive censoring are well-known. For a detailed discussion
of progressive censoring, we refer the reader to Balakrishnan and Aggarwala [1], Balakrishnan [2],
Balakrishnan and Cramer [3] and the references contained therein.

In a parameter estimation problem, perhaps the most popular loss function is the squared error loss
function, which can be easily justified on the grounds of minimum variance unbiased estimation.
However, one property of this loss function is that it is symmetric and gives equal weights to
overestimation and underestimation of the same magnitude. This property may not be applicable in
some real-life situations. A number of asymmetric loss functions are available in the statistical
literature. Basu and Ebrahimi [4] defined a modified LINEX loss function. A suitable alternative to
the modified LINEX loss function is the general entropy loss function, defined as (see Calabria and
Pulcini [5] and Calabria and Pulcini [6])

P} ~
L(8,6) x (g) —8n <g> —1, 3)

where § # 0 and 8 is an estimator of 6.

This loss function is a simple generalization of the entropy loss function used by several authors,
where the shape parameter ¢ is taken to be equal to 1. It may be noted that when ¢ >0, a positive error
causes more serious consequences than a negative error. The Bayes estimator of § under the general
entropy loss function is given by (provided that it exists)

6or = [E(0-%1data)] ® . @

In many actuarial studies, when enough information is available, predictive inference for
unobserved events may be the main interest. The prediction problems have received considerable
attention in the literature, and both frequentist and Bayesian inferential methods have been developed
in this regard.
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Optimization in censoring schemes is one of the issues that has been studied so far by many
researchers. See, for example, Ahmadi et al. [7] and Basiri and Asgharzadeh [8].

In this paper, we intend to find the optimal values for the sample size using the Bayes risk and cost
functions in progressive Type-1l censoring from the one-parameter exponential distribution in a
Bayesian prediction problem.

2. Main Results

Throughout this paper, we assume that Xf:n:N, ,Xfmz,\, are the progressively Type-Il censored order
statistics with the censoring scheme R = (R,,---,R,) from a sample of size N of independent and
identically distributed (iid) continuous random variables from the one-parameter exponential distribution,
denoted by Exp(0). The PDF and CDF of Exp(6) are, respectively, given by

fo(x) =0e %, and Fy(x) =1—e %% (5)

Besides, we suppose that Yi:gm:M, 1 < i < m, represents the i-th progressively Type-Il censored order
statistic with the censoring scheme S = (S;, -+, S,,) in a future independent sample of size M from the
same distribution. For notational simplicity, hereafter, we will use X; instead of X{?n:,\, and Y; for Yfm: M-

In this paper, n is considered an unknown value, which should be determined. We define the set of
admissible values for n as

{n={neN|1<n<N}

First, we recall a well-known property of PCOs that the progressively Type-1l censored spacings as (see,
for example, Balakrishnan and Aggarwala [1])

Zi=yR(X; - X_), 1<i<n, with X, =0,

are iid random variables, each of them has the one-parameter exponential distribution, Exp(6). So, the
random variable T = Y.7*., (1 + R))X; = X}, Z; has a gamma distribution with parameters n and 6,
denoted by I'(n, 6).

On the one hand, from (1) and (5), the likelihood function of & can be written as

L(6) = CRgneot,

where t is the observed value of T. So, considering the prior for 6 as

a

b
0) =——0%1e P 9>0ab>0
m(6) 0! e ", ,a,b >0,
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leads to the posterior PDF for 6 as

b+ t)atn

“(leb :xn) — [‘(a = n) a+n—1e—9(b+t)’

where x4, -+-, x,, are the observed values of X;, -+, X,, and I'(.) is the complete gamma function.

On the other hand, from (2) and (5), the PDF of Y; can be expressed as

i

5 s —yS
Fr0) = 6cSy ) af e, y > ©)
j=1
So, the predictive density function for Y; takes the form
: < (b+0)e*m @ _ 3
* — S SN O(b+t+
fyi(ylxl, ,Xp) = Ci_lZaj'i fatm ) ga+ne Yiv)de
J=
i aS'
_ .S +n J,i
=l b+ @+ ) - .
i-1 = (b +t +y}$y)a+n+1
Under the general entropy loss function given in (3) and based on (4), the point predictor for Y; is
_ s =L
Vice = [E(Y°1X0, -, X)) %,
where (assuming —(n + a) < § < 1)
i
_ ¢ < (b+ T ([ o o8
E(Y, 01Xy, -+, X,) = ¢ Za$-— f gatn @=0(b+T) f y e Ydy|de
( 4 1 Tl) i 1j=1 J,L F(a+n) o 0
i a+n _ [ee}
— Ci§_1 Z afi (b + T) F(_gl 1_85) {j ga+n+é-1 e—@(b+T)d9}
= F(a + n)(]/j ) . 0 (7)

Ma+n+8(1-8) ¢ N a
= C-_l p
Tla+n)(b+T) JZ=1 ¥H1-e

r o) -
(a+n+d) Al(i,S,S), say.

“Ta+n)b+T)°

Since in many real applications, no prior knowledge is available about the distribution of 8, we may take

a = b = 0, i.e. Jeffrey’s non-informative prior for 6. So, we have

r(n+6)
(n-1)!T9

E(Yi_‘lep"'an) = Al(i,5,§).

Then, the point predictor for Y; is
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Yie = TA®,6,1,5), (8)
in which
(n+9) -3
. & _ [T(n+é . AN\| ¢
A8, S) = [E2 4, (6.6,9)] °
We can consider the risk function of the obtained point predictor of Y;, which is computed to be
R(Y: Yige) = Eo[L(Y, ¥ige)].
Based on (3), we obtain
P\ 7
R(Yir?i:GE) = Ey < uGE) -6 ln( uGE) -1
~ 5 1 ~
= Bo[Fige' | B |-5| — 8 Eol In(Fie)] + 8 Eol ()] - 1,
i
where the last equality is obtained due to the independence of ?L-;GE and Y;.
On the other hand, from (8), we can find
PO . )
Ee Ve | = A(6,m,5) Eg(T?)
1 . ~oT(n+9)
= ﬁ/\(l, 5,71, S) m
. & s\ (10)
=—|r(- 5)c5_1z e
6° =170
1 . -1
= E(Al(l, 55)) .
Also, from (6), we have
1 l [ee) ~
Eq [—5] =0c, ) a; f y8e 07 dy
Y; = 0
j=1
L& (11)
N as;
= 5T(1 = §)cf, Z el
j=1 (}/] )

=0%4,(i,6,5).

Moreover, we can obtain (see Gradshteyn and Ryzhik [9], p. 573)
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Eg[In(Y65)] = Eg In(M)] + In(A@, 6,1,5))

_ f In (6) o 1)' " le=0tdt + In(AG, 8,1, 5)) (12)
0
=W¥(n) —In (0) + In(A(i, 6,n,5)),
where ¥(x) = |s the Euler psi function or digamma function.
as.
Finally, from the fact that Cl 1 Z 43 = 1, we find (see Gradshteyn and Ryzhik [9], p. 571)
Yj

i o ~
i 0

LI
=—c e 4
= —cj_ 1; Vf (y+1In (Oy; )) (13)

S

—1n (0) —cf_lz#ln o)

j=1"J
—ln(@)—Az(i,.S:). say,

in which y is the Euler constant.

Based on Equations (9)-(13), we have

R(Y;, Vige) = —8[W() + In(A@, 6,1,5)) +v + 4,(i,5)]

= —6%(n) +In <((n +1))> +1n(4,(1,8,5)) — 6y — 84,(1.5),

which is free of 6, as we expected. Thus, the risk function and the Bayes risk function are the same.

We have computed the values of R(Y;, ¥, ). Table 1 shows some values of R(Y;, ¥, for different
choices of i and n when § = —0.5,0.5, m = 10, N = 20, M = 20 and S; = (10,0, --+,0), S, =
(0,---,0,10) and S; = (1,---,1). From Table 1, one can observe that R(Yi, 17[;65) is a decreasing function
of nand i, when all other parameters are kept fixed. Moreover, R(Yl, f’l;GE), namely the risk function of

the first predictor does not depend on the censoring scheme.
In this paper, as the second criterion, we consider a cost function as follows

C(n) = po + puN +p.T,

where po, pu and p; are the sampling set-up cost or any other related cost involved in sampling, the
cost per unit, and the cost related to the test time, respectively. Since T is a random variable whose
distribution is I'(n, 8), we can consider the expected value of the cost function, which is given by

Eg[C(M)] = po + puN + p¢ g- (14)
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Table 1. The values of R(Y;, ¥;.5x).

N
0 S i 5 10 15 20

-0.5 S 1 0.1965 0.1812 0.1765 0.1742
3 0.0792 0.0639 0.0592 0.0570

5 0.0579 0.0425 0.0379 0.0356

7 0.0500 0.0346 0.0300 0.0277

S, 1 0.1965 0.1812 0.1765 0.1742

3 0.0752 0.0598 0.0552 0.0529

5 0.0555 0.0402 0.0355 0.0332

7 0.0476 0.0323 0.0276 0.0254

S3 1 0.1965 0.1812 0.1765 0.1742

3 0.0754 0.0600 0.0554 0.0531

5 0.0561 0.0407 0.0361 0.0338

7 0.0489 0.0336 0.0289 0.0267

0.5 S 1 0.3104 0.2966 0.2922 0.2901
3 0.0839 0.0701 0.0657 0.0636

5 0.0580 0.0442 0.0398 0.0377

7 0.0490 0.0352 0.0308 0.0287

S, 1 0.3104 0.2966 0.2922 0.2901

3 0.0796 0.0659 0.0615 0.0593

5 0.0555 0.0417 0.0373 0.0352

7 0.0466 0.0328 0.0284 0.0262

Ss 1 0.3104 0.2966 0.2922 0.2901

3 0.0798 0.0661 0.0617 0.0595

5 0.0561 0.0423 0.0379 0.0357

7 0.0479 0.0341 0.0297 0.0275

From (14), we can see that Eg[C(n)] depends on the unknown parameter 6, and therefore it can be
replaced by its preliminary estimator based on past experiments and pre-information. In Table 2,
we present some values of E4[C(n)] for different choices of n,when 8 = 1,p, = 1, p, = 0.5, p; =
1and N = 20. From Table 2, we observe that the values of E4[C(n)] increase as n increases, as we
expected.

Table 2. The values of E5[C(n)]
n 1 5 10 15 20
Ejc]| 12 | 16 | 21 | 26 | 31

In the sequel, the aim is to find the optimal value for n under the optimization problem
R(Y;, Yi.ge) < R* and Eg[C(n)] < B*, where R* and B* are pre-fixed values.

On the one hand, R(Yi, 171-;65) < R* is equivalent to saying that n = ny, where n, is the solution of
the following equation
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I'(n+6)
(n—-1)!
where A;(+,-,-) and A, (+,") are defined in (7) and (13), respectively.

—8¥(n) +In < > =R*—In (Al(i, 5, 5)) + 8y + 64,(i,5),

On the other hand, from (14), we have

Eg[C(n)] < B* ©n < 6(B* —po— puN) /Dt

So, we readily find that the optimal value for n, say nopt, satisfies the following inequality

Pt

0(B* — po — pyN
Inol < nopr < min {N{ (B” ~ po — pulV) }

where |+] is the floor function.

Table 3 presents some values of nep: by considering different values of i when B* = 20, p, = 1,
Py =05 p, =1, m=10,N =20, M =20,60 =1and S5; = (10,0,---,0), S, = (0,---,0,10) and
S;=(1,-,1)for§ = —0.5,R* = 0.2 and § = 0.5, R* = 0.3.

Table 3. The values of ny: (a dash (-) means that there is no Nop)
1) S B* R* i Nopt
05 | § 20 | 0.2

(2,...9}
2,..9
(2,...9}
(5,...9
(2,...9}
(2,...9}
(2,...9
(5,...9}
(2,...9
(2,...9
.9}

S, |20 |02

05 |5 | 2003

(2,...9}
(1,....9}
(1,....9}

S, | 20 |03

(2,...9}
(1,...9}
{1,....9}
{9}

{1,....9}
{1,....9}
{1,....9}

S, 2003

~NOWFRNOOWFRPINOTW RPN WP INOTW (R ([N W (-
b~
ul\)
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Figure 1 presents the values of E4[C(n)] for 6 =1, py =1, p, = 0.5, p, = 1and N = 20, when
B* = 20. Figures 2 and 3 show the values of R(Y;, ¥;. ) for different choices of i and n for § = —0.5,
R*=0.2 and 6§ = 0.5, R* = 0.3, respectively, when m = 10, N = 20, M = 20, and for S, =

(10,0,---,0), S; = (0,---,0,10) and S5 = (1,---,1).

10

20.

Figure 1. The values of Eq[C(n)] for 8 = 1, p, = 1, p, = 0.5, p, = 1and N = 20, when B*

R(Y)

05

04

03

02

(a)

T
20

R(Y)

(b)

RiY)

0s

04

03

02

(©)

(1’ ’1)

,0), (0): S = (0,+--,0,10) and (c): S5 =

Figure 2. The values of R(Yi, ﬁ;GE) for different choices of iandn when § = —0.5, m = 10, N =
20, M = 20, and R* = 0.2, when (a): §; = (10,0, ---
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Figure 3. The values of R(Y;, ¥, ) for different choices of i and n when § = 0.5, m = 10, N =

20, M = 20, and R* = 0.3, when (a): §; = (10,0,--,0), (b): S = (0,---,0,10) and (c): S3 =

(1’ ’1)
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3. Concluding Remarks

This paper focused on the problem of Bayesian prediction of a future progressively Type-11 censored order
statistic under an asymmetric loss function. Two main criteria are applied to determining the optimal values of
n, the number of failures to be observed in the informative sample. One of them is the Bayes risk function, and
the other is the cost function. The values of optimized n are computed and tabulated for selected cases. All the
computations in this paper were done using the statistical software R [10].
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