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Enhancing the efficacy and productivity of transportation system has been on the most common 

issues in recent decades, noteworthy to the industrial managers and expert so that the products are 

delivered to the clients at right time and the least costs. Therefore, there are two important issues; 

one is to create hub as the as intermediaries for streaming from multiple origins to multiple 

destinations and also responding to the tours of every hub at the proper time. The other is a route 

where the vehicles should pay at time window of each destination node. On the other hand, these 

problems may cause cost differences between hub and interruption of their balance. Accordingly, 

this paper presents a model dealing with cost balancing among the vehicles as well as reducing the 
total cost of the system. Given the multi-objective and NP-Hard nature of the issue, a multi-

objective imperialist competitive algorithm (MOICA) is suggested to provide Pareto solutions. The 

provided solutions are at small, average and large scales are compared with the solutions provided 

by Non-Dominated Sorting Genetic Algorithm (NSGA-II) algorithm. Then, its performance is 

determined using the index for evaluating the algorithm performance efficacy to solve the problem 

at large dimensions. 
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1. Introduction and Literature Review 

 

The Hub Location Problem (HLP) has gained substantial prominence in recent decades owing 

to its extensive applications in modern transportation and communication networks. The HLP seeks 
to optimize the location of hubs, which serve as intermediary distribution nodes between origin-

destination pairs, to efficiently manage the movement of individuals, goods, and information [1]. The 

flow of demands through hubs can be either two-way or one-way, depending on the demand patterns. 
Some the applications for hub problems are: Telecommunication industries [1], air freight [2], land 

[3], postal services [4], and public transportation, urban transportation, telecommunications systems 

and emergency services. Hub Location-Routing Problems (HLRPs) encompass the optimization of 

hub locations and non-hub node allocations within a distribution network to minimize overall 
transportation costs, including collection, distribution, and communication expenses. While some 

studies have focused solely on hub location optimization [5], others have addressed both location and 

allocation decisions [6]. Given the inherent interdependence of these two aspects [7], simultaneous 
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consideration is crucial, as adopted in this study. Hubs facilitate efficient network operation by 

reducing the number of direct connections between origin-destination pairs, leading to cost savings 
compared to fully connected networks [8]. Classic Hub Location-Routing Problems (HLRPs) adhere 

to three fundamental assumptions: (1) a complete graph representation of the network, (2) 

communication among hubs governed by alpha coefficients ranging from 0 to 1, and (3) a prohibition 

on direct communication between non-hub nodes [9]. Hamacher and Nickel [10] proposed a 
comprehensive categorization of location-routing problems, examining them from seven distinct 

perspectives. Passenger transportation routing, particularly urban and public transportation, presents 

an application of the location-routing problem framework that is often overlooked in the literature. 
Routing problems encompass five distinct categories, each a combination of various routing problem 

types. The Vehicle Routing Problem (VRP) encompasses a set of optimization problems involving a 

fleet of vehicles tasked with providing services to clients at geographically dispersed locations, 

returning to the depot or a predetermined station to minimize overall transportation costs. Baños et 
al. [11] proposed a bi-objective model for a VRP with hard time windows, aiming to minimize total 

transportation costs and balance vehicle travel distances. They employed metaheuristic solution 

methods and Pareto's approach to evaluate the effectiveness of their model. Cetiner et al. [6] 
developed an iterative two-stage VRP with multiple hub allocations, considering simultaneous pickup 

and delivery within maximum tour length constraints. The proposed methodology employs a two-

stage approach to address the hub location-routing problem. In the first stage, hub locations are 
determined, and non-hub nodes are assigned to multiple hubs. This is followed by the second stage, 

where the traveling salesman problem (TSP) is solved for each established hub, considering the 

updated distance ratios among the nodes. Since the TSP for each hub is solved independently, it is 

possible for a non-hub node to appear in multiple routes. This two-stage procedure was applied to 
seven instances. Notably, the problem formulation does not impose any capacity constraints on hubs 

or vehicles, and only tour routing is restricted. Additionally, each vehicle departs from a hub, visits 

all assigned non-hub nodes, and returns to the hub. The Benders decomposition algorithm was 
employed to solve the problem due to its effectiveness in handling mixed-integer programming (MIP) 

problems with a two-stage structure. The objective of the problem was to minimize the associated 

costs. The algorithm was implemented with a focus on precision and was primarily applied to small-
scale instances. Golmohammadi et al. [12] presented a multi-objective dragonfly algorithm for a 

production, inventory, location, and routing problem by considering shared logistics resources. They 

made a comparison between their algorithm results with Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) and epsilon constraint method. De Camargo et al. [13] investigated a variant of the many-
to-many location-routing problem, incorporating multiple commodities and inter-hub transport 

processes. A mixed-integer linear programming (MILP) model was developed for the problem, and 

CPLEX 12.4 was employed to solve small-scale instances. Additionally, a multi-start procedure based 
on a fix-and-optimize scheme and a genetic algorithm was introduced to efficiently construct 

promising solutions for medium- and large-scale instances. Computational performance analysis 

demonstrated the suitability of the proposed methods for practical applications. Also, Mokhtari and 

Abbasi [14] solve the many-to-many location-routing problem by VNPSO algorithm. Zarandi et al.  
[15] developed a location-routing problem with time windows (LRPTW) under uncertainty. A fuzzy 

chance-constrained programming (CCP) model was formulated using credibility theory, and a 

simulation-embedded simulated annealing (SA) algorithm was presented to solve the problem. To 
initialize the SA solutions, a heuristic method based on fuzzy c-means (FCM) clustering with 

Mahalanobis distance and sweep method was employed. Moshrefi [16] conducted a study to optimize 

a multi-objective location-routing problem (MOLRP). The study aimed to integrate routing and 
location decisions to determine the optimal placement of warehouses, satisfy customer demands from 

these warehouses, and design efficient vehicle routes to minimize overall transportation costs. Factors 

such as customer satisfaction, vehicle fuel constraints, and adherence to hard time windows, which 

are often neglected in MOLRP studies, were explicitly considered in this research. The study's 
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objectives included achieving the best priority by identifying the shortest route and minimizing 

deviations from time windows. A MILP model was developed, followed by a metaheuristic method 
based on the NSGA-II to determine the optimal solution. The proposed approach demonstrated its 

effectiveness in balancing multiple objectives and addressing practical constraints in the MOLRP 

context. Tadaros and Migdalas [17] conducted a comprehensive review of 80 journal articles 

published in the field of MOLRP from 2014 to 2020. The reviewed papers were systematically 
categorized based on various factors encompassing model assumptions and characteristics, 

objectives, solution approaches, and application areas. Within each application area, individual papers 

were presented and subjected to in-depth analysis. The review concluded with insightful remarks and 
suggestions for future research directions in the MOLRP domain. Fallah-Tafti et al. [18] proposed a 

novel mathematical model for designing hub-and-spoke rapid transit networks that deviates from 

conventional hub location models due to the unique characteristics of rapid transit systems. The 

proposed model encompasses both hub-level and spoke-level sub-networks, enabling the 
transshipment of flows among spoke nodes and considering the setup costs and capacity constraints 

of both hub and spoke nodes and edges. Additionally, the model determines the hub-and-spoke rapid 

transit lines along with the routes of demands within these lines, incorporating profit and service time 
objectives. An efficient adaptive large neighborhood search algorithm is developed to solve the 

proposed model, demonstrating its effectiveness through computational results. Pourmohammadi et 

al. [19] proposed a novel multi-objective optimization framework for the hub location and routing 
problem (HLRP) under various uncertainties. The proposed model aims to minimize the total 

transportation cost, including routing and fixed costs, while simultaneously maximizing employment 

opportunities and regional development, reflecting social responsibility considerations. Mahmoudi et 

al. [20] presented a study which focused on the integrated routing and scheduling problem in a home 
delivery network characterized by distinct pickup and delivery operations. A fleet of capacitated 

vehicles stationed at the network's central hub is employed to transport goods between network nodes. 

The proposed MIP model aims to minimize total transportation costs while considering demand 
splitting flexibility. This model is applicable to both general hub networks and many-to-many 

networks. Due to the problem's inherent complexity, valid inequalities are introduced to strengthen 

the model's formulations. Subsequently, a genetic algorithm is employed to solve problems of varying 
sizes. The performance of the reinforced model, augmented with valid inequalities and the genetic 

algorithm, is evaluated using a case study of a same-day postal delivery company. Moreover, An 

M/M/c/K queueing system is employed by Amiari Fourk [21] to estimate waiting times at hub nodes 

and enhance responsiveness. Additionally, a fuzzy queuing approach is implemented to model the 
inherent uncertainties in the network. To address the complex multi-objective nature of the problem, 

a powerful evolutionary meta-heuristic algorithm is developed, combining fuzzy invasive weed 

optimization (FIWO), variable neighborhood search (VNS), and game theory. This hybrid algorithm 
effectively generates near-optimal Pareto solutions, providing valuable insights for decision-makers. 

In this study, a mathematical planning model is proposed considering the transportation cost 
balancing for each vehicle, and then the proposed meta-heuristic multi-objective imperialist solution 
is developed for the problem. The suggested algorithm is performed on various scales. The 
performance of the proposed solution is approved compared with NSGA-II given to various metrics. 

 

2. Suggested Model 
 

The proposed model incorporates several optimization objectives to enhance the efficiency of 

the transportation network. Each vehicle, equipped with a specified capacity, can pick up and deliver 
goods from multiple origins to multiple destinations. Vehicles must pass through at least one hub, 

adhering to the hard time windows of each hub and maximum traveling time and distance constraints. 
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The model simultaneously minimizes the total transportation cost, the maximum and minimum 

differences in distance and travel time among vehicles, and the overall service level at each node. 
This comprehensive approach aims to improve labour, equipment, and energy utilization while 

reducing environmental impacts and driver fatigue. 

 

2.1. Mathematical Model 

 

2.1.1. Assumption 

• There is a certain demand among tow nodes and problem parameters all are certain. 

• All the nodes can be change into the hub and discount factor exists to interconnect the hubs. 

• Simultaneous pickup and delivery operations are performed, with hubs serving as the vehicle 

departure points.  

• Vehicles must return to their assigned hub upon completing their route, adhering to maximum 

time and distance constraints.  

• Each node can be serviced by multiple hubs (multi-allocation) and is subject to a hard time 

window for service completion.  

• The vehicle fleet is homogeneous, with each vehicle having the same capacity. Both the 

single-product and single-period models employ bi-objective functions. 

• Hubs with capacity constraints and their connections are complete graph and their numbers 

varies. 

 

2.1.2. Notations 
 

Indices and Sets: 

𝑁 : Set of nodes; 

𝐾 : Set of potential nodes for hub; 

𝐴 : Set of arcs; 

𝑉 : Set of vehicles; 

 
Parameters: 

𝑤𝑖𝑗 : flow demand from client i to customer j; 

𝐷𝑗 = ∑ 𝑤𝑖𝑗

𝑖

 : the total of demand destined to customer j; 

𝑂𝑖 = ∑ 𝑤𝑖𝑗

𝑗

 : the total of demand originated from  i; 

𝑡 : the traveling time of arc ) u , v(; 

𝑠𝑡 : Time to service node v  including  loading and unloading time; 

𝑇 : the maximum time allowed for the tours; 

 𝑎𝑘 : the fixed cost of installing a hub; 

 𝑐̂𝑖𝑘 : the cost of handling the incoming and outgoing demands of client i by hub k; 

 𝑐̈𝑢𝑣 : the cost of traveling arc )u , v(; 

𝑐𝑙̇ : the cost of assigning a vehicle l to a hub; 

𝑘𝑚 : the transportation cost of demands 𝑤𝑖𝑗 and 𝑤𝑖𝑗 with economic  coefficient of  𝛼  

which is 𝑐̆𝑖𝑗
𝑘𝑚 = 𝛼(𝑤𝑖𝑗 ∗ 𝑐𝑘𝑚 + 𝑤𝑗𝑖 ∗ 𝑐𝑚𝑘); 

𝑐 : the transportation cost of demands wij and wji for the inter-hub connection )k,m); 
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𝑉 : Capacity of hub k; 

𝐶𝑎𝑝 : Maximum capacity of vehicle l; 

𝐸 : Maximum  length of vehicle tour ; 

𝑟 : Distance between nodes u , v; 

𝑀 : Very big number; 
 
Decision Variables: 

𝒛𝒌𝒌 : If node k is selected as hub it is 1 and otherwise it is zero. 

𝒛𝒊𝒌 : If the node i is assigned to the hub k ,it is one and otherwise it is zero. 

𝒙𝒊𝒋𝒌𝒎 : A percentage of  𝑤𝑖𝑗 and 𝑤𝑖𝑗 passing hubs k and m. 

𝒒𝒌𝒍 : If the vehicle l is assigned to the hub k , it is one and otherwise it is zero. 

𝒀𝒖𝒗
𝒌𝒍  : If the vehicle l assigned to the hub k uses arc u ,v in its path it  is one and otherwise it 

is zero. 

𝑷𝒖
𝒌𝒍 : If the vehicle l assigned to the hub provide service to node u ,it is one and otherwise 

it is zero. 

𝑺𝒋
𝒍 : The time of beginning to service each j node by the vehicle l 

 

2.1.3. The Mathematical Model 

 
Accordingly ,the MMHLRP  model can  be stated as follows: 

 

𝑀𝑖𝑛  𝑓1 = ∑ 𝑧𝑘𝑘𝑎𝑘

𝑘

+ ∑ ∑ 𝑧𝑖𝑘𝑐̂𝑖𝑘 

𝑘𝑖

+ ∑ ∑ ∑ 𝑌𝑢𝑣
𝑘𝑙  

𝑢,𝑣𝑙𝑘

𝑐̈𝑢𝑣 +  ∑ ∑ 𝑐𝑙̇

𝑙𝑘

𝑞𝑘𝑙

+ ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑐̆𝑖𝑗
𝑘𝑚 

(1) 

𝑀𝑖𝑛 𝑓2 =  𝑀𝑎𝑥𝑙∈𝑉  {∑ ∑ 𝑌𝑢𝑣
𝑘𝑙

(𝑢,𝑣)∈𝐴𝑘

𝑐̈𝑢𝑣} − 𝑀𝑖𝑛𝑙∈𝑉  {∑ ∑ 𝑌𝑢𝑣
𝑘𝑙

(𝑢,𝑣)∈𝐴𝑘

𝑐̈𝑢𝑣} (2) 

Subject to: 
 

∑ 𝑧𝑖𝑘

𝑘

≥ 1 ∀ 𝑖 ∈ 𝑁 (3) 

𝑧𝑖𝑘 ≤ 𝑧𝑘𝑘           ∀ 𝑖, 𝑘 ∈ 𝑁: 𝑖 ≠ 𝑘                 (4) 

∑ 𝑥𝑖𝑗𝑘𝑚

𝑚∈𝑁

= 𝑧𝑖𝑘  ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑁; 𝑖 < 𝑗  (5) 

∑ 𝑥𝑖𝑗𝑘𝑚

𝑘∈𝑁

= 𝑧𝑗𝑚     ∀ 𝑖, 𝑗, 𝑚 ∈ 𝑁; 𝑖 < 𝑗     (6) 

∑ 𝑦𝑢𝑣
𝑘𝑙

(𝑢,𝑣)

= 𝑝𝑢
𝑘𝑙     ∀ 𝑢, 𝑘 ∈ 𝑁, 𝑙 ∈ 𝑉    (7) 

∑ 𝑦𝑢𝑣
𝑘𝑙

(𝑢,𝑣)

= 𝑝𝑣
𝑘𝑙        ∀ 𝑣, 𝑘 ∈ 𝑁, 𝑙 ∈ 𝑉     (8) 

𝑦𝑢𝑣
𝑘𝑙 ≤ 𝑞𝑘𝑙     ∀ (𝑢, 𝑣) ∈ 𝐴, 𝑙 ∈ 𝑉, 𝑘 ∈ 𝑁 (9) 

𝑞𝑘𝑙  ≤ 𝑞𝑘(𝑙−1) ∀ 𝑙 ∈ 𝑉, 𝑘 ∈ 𝑁: 𝑙 > 1 (10) 
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∑ 𝑝𝑡
𝑘𝑙

𝑙

= 𝑧𝑡𝑘 ∀ 𝑡, 𝑘 ∈ 𝑁: 𝑘 ≠ 𝑡 (11) 

∑ 𝑦𝑢𝑣
𝑘𝑙 𝑡𝑢𝑣

(𝑢,𝑣)

+ ∑ 𝑦𝑢𝑣
𝑘𝑙 𝑠𝑡𝑣

(𝑢,𝑣)

≤ 𝑇     ∀ 𝑙 ∈ 𝑉, 𝑘 ∈ 𝑉  (12) 

∑ ∑ 𝑂𝑖 × 𝑥𝑖𝑗𝑘𝑚 ≤

𝑚𝑖

𝑉𝑘 × 𝑧𝑘𝑘 ∀𝑘, 𝑗 ∈ 𝑁   (13) 

∑ ∑ 𝐷𝑖 × 𝑥𝑖𝑗𝑘𝑚 ≤

𝑘𝑖

𝑉𝑘 × 𝑧𝑚𝑚   ∀ 𝑚, 𝑗 ∈ 𝑁  (14) 

∑ 𝑟𝑢𝑣 × 𝑌𝑢𝑣
𝑘𝑙

(𝑢,𝑣)

≤ 𝐸  ∀ 𝑘 ∈ 𝑁, 𝑙 ∈ 𝑉   (15) 

∑ ∑ 𝑂𝑖 × 𝑌𝑢𝑣
𝑘𝑙 ≤

(𝑢,𝑣)𝑘

𝐶𝑎𝑝𝑙    ∀𝑙 ∈ 𝑉  (16) 

∑ ∑ 𝐷𝑖 × 𝑌𝑢𝑣
𝑚𝑙 ≤

(𝑢,𝑣)𝑚

𝐶𝑎𝑝𝑙   ∀𝑙 ∈ 𝑉 (17) 

𝑆𝑖
𝑙 + 𝑡𝑢𝑣 + 𝑠𝑡𝑣 − 𝑀(1 − 𝑌𝑢𝑣

𝑘𝑙) ≤ 𝑆𝑗
𝑙      ∀ 𝑢, 𝑣, 𝑘 ∈ 𝑁, 𝑙 ∈ 𝑉 (18) 

𝑎𝑗 × 𝑧𝑘𝑘 ≤ 𝑆𝑗
𝑙 ≤ 𝑏𝑗 × 𝑧𝑘𝑘   ∀ 𝑗, 𝑘 ∈ 𝑁, 𝑙 ∈ 𝑉 (19) 

𝑧𝑘𝑘 , 𝑧𝑖𝑘, , 𝑃𝑢
𝑘𝑙 , 𝑞𝑘𝑙 ∈ {0,1}         ∀ 𝑢, 𝑣, 𝑘, 𝑙, 𝑖 (20) 

0 ≤ 𝑥𝑖𝑗𝑘𝑚  ≤ 1 ∀  𝑖, 𝑗, 𝑘, 𝑚 (21) 

𝑆𝑗
𝑙 ≥ 0  ∀  𝑙, 𝑗  

(22) 

The objective functions aim to minimize the total transportation costs, encompassing installation 

costs, handling costs, local tour execution costs, vehicle-hub allocation costs, and inter-hub 

transportation costs. Objective function (2) specifically addresses the balance of vehicle loading, 

ensuring efficient route planning. Constraint (3) stipulates that every non-hub node must be assigned 

to at least one hub node. Constraint (4) ensures that a non-hub node is assigned to a node only if that 

node is designated as a hub. Constraints (5) and (6) establish that if a node is not assigned to a hub, 

then the hub and the node must lie on the same path. Constraints (7), (8), and (9) define the 

connections between vehicles, nodes, and arcs. Constraint (10) limits the maximum number of hubs 

to which a vehicle can be assigned. Constraint (11) ensures that if a vehicle from a hub is assigned to 

a node, the node must first be assigned to that hub. Constraint (12) imposes a maximum time 

constraint on each tour. Constraints (13) and (14) address hub capacity restrictions. Constraints (15) 

and (16) indicate path constraints for ach tour. Constraints (17) and (18) are vehicle capacity. 

Constraints (19) and (20) are related to hard time window. Finally, constraints (21) and (22) are 

related to variation ranges.  

 

3. Problem Solution Approaches  
 

First of all, the one-objective problem at small scale was solved. Then the ɛ- constraint method is 

provided for the multi-objective model and hybrid imperialist competitive algorithm, NSGA-II and 
PEAS is explained to answer the problem at large scale. 

 

3.1. Model Validation 
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GAMS software was used to solve the instances of small-scale problems to approve the correct 

performance of the model. The instances used the data of urban transportation in Iran [16] and the 
conclusions are provided below: 

 

Table 1. GAMS output 

Number of nodes Number of hubs Optimized solutions of GAMS 

6 3 5718901.4 

7 3 8015275.083 

9 4 17702802.52 

10 4 27003209.24 

 

Given the findings, it can be concluded that the model has had a good performance and large-

scale problems can also be solved using this model. Following, ɛ-constraint is used to solve the model 

as multi-objective problem. Table 2 demonstrates the problem output with 10 nodes and 4 vehicles 

using GAMS. Table 3 presents the minimum transportation cost based on ɛ values in cost balance 

constraint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2. Imperialist Competitive Algorithm 

 

In optimization problem of Imperialist Competitive Algorithm (ICA), the optimized values are 
defined as an array of country= [p1, p2, p3, …, pN]. The total process of ICA is shown in figure 1. 

 

Table 2. Total costs based on various  values 
 

Row  Min f1 Min f2 

1 81 37002210 79 
2 72.9 37178630 71,6 

3 64.8 38000380 60.9 

4 56.7 38052950 56.7 

5 48.6 40065830 45.5 

6 40.5 40060990 40.3 

7 32.4 40868790 30.4 
8 24.3 41071500 22.1 

9 16.2 42142000 10.7 

10 8.1 43211320 8.1 

Table 3. Objective function values based on  values 

f2 f1  

89.1 37000102 Min f1 

8.1 43211320 Min f2 
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Figure 1. Flowchart of imperialist competitive algorithm 

 
3.3. Solution 

 

Consider a scenario with n customers, m available vehicles, and d potential hub locations. The 

blue cell (n) represents the sequence of nodes in each route, the green cell (m) indicates the number 
of nodes assigned to each vehicle, and the red cell (d) denotes the positions of the hubs and the starting 

hub for each vehicle. 

 

 

4. Numerical Results 

 

Two indices of QM = quality metric and DM = diversity metrics proposed by Schaffer et al (16) 
were used in order to compare the proposed algorithm with the NSGA-II algorithm. The values given 

the values of table 4 for small, average and large-scale instances are obtained as shown in table 5 and 

charts 1 and 2. 
 

Table 4. Parameters of the Algorithm 
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Figure 2. Solution representation 
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Factors 
Optimal real value Optimal real value 

S L S L 

n-Pop 0.85 1 193 300 

N-imp -0.20 -1 5 8 

PA 0.18 0.20 0.54 0.64 

PC 1 0.50 0.60 0.60 

PR -0.80 0.19 0.12 0.32 

ξ 0.90 0.50 0.19 0.12 

β -0.20 0.15 1.80 2.15 

 

 Diversity metrics shows the uniform distribution of Pareto solutions. The metric was 

calculated based on equation (22) and the quality metric of all the solutions for each algorithm are 

totally considered and non-domination operations were done for all the solutions. The quality of each 

algorithm equals the share of Pareto solutions for that algorithm and higher quality indicated the more 

optimized algorithm. 

𝐷𝑀 =
∑ |𝑑̅ − 𝑑𝑖|𝑛−1

𝑖=1

(𝑛 − 1)𝑑̅
    (23) 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Comparison of quality and diversity metrics for scale 100 

MOICA NSGAII MOICA NSGAII  

DM QM Problem  No. 
1.136 0.957 1 0 100#3 

1.016 0.788 1 0 100#4 

1.147 1.035 1 0 100#5 

0.928 1.089 1 0 100#6 

0.804 1.039 1 0 100#7 

1.066 0.902 0.950 0.05 100#8 

0.939 0.811 1 0 100#9 

1.274 0.999 1 0 100#10 

1.254 0.795 1 0 100#11 

0.996 1.083 0.950 0.5 100#12 
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Figure 3. Comparison of quality metrics 

 

 

 

Figure 4. Comparison of diversity metrics 
 

 

5. Conclusion  
 

As shown in table 5, the quality metrics and diversity metrics of the ICA at large scale have 
better performance in comparison with NSGA-II. Given the fact that scales higher than 20 in hub 
location-routing problems indicate the hard phase problems which cannot be solved by the 
mathematical optimization algorithms, high-efficiency meta-heuristic algorithms should be used. It 
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is noteworthy that the proposed algorithm can be one of the efficient meta-heuristic algorithms to 
solve the hub location and many-to-many routing problems based on hard time windows. In this 
study, a mathematical planning model was proposed considering the transportation cost balancing for 
each vehicle, and then the proposed meta-heuristic multi-objective imperialist solution was developed 
for the problem. The suggested algorithm was performed on various scales. The performance of the 
proposed solution was approved compared with NSGA-II given to various metrics. 
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