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In this work, we consider a multiobjective minimal cost flow (MMCF) problem where 

there are several commodities to transport from sources to destinations and there is more 

than one conveyance for those transporting. We also assume that in each conveyance, 

there are distinct capacities for each commodity. The obtained model is not necessary 

balanced and we introduced a method to solve this model without converting it to a 

balanced model. The advantages of the proposed method are also discussed. 
Keywords: Fuzzy multi-objective solid minimal cost flow problem, LR flat fuzzy number, 

multicommodity minimal cost flow problem. 

 

 

1. Introduction 

 

    Minimum Cost Flow (MCF) problems have many applications in almost all industries, 

such as agriculture, communications, education, energy, manufacturing, medicine, and 

transportation [1]. Generally, the MCF problem minimizes the cost of transporting some 

product that is available at some sources and required at some destinations. However, in the 

real word, there are few MCF problems with only a single objective. Therefore, in the recent 

years multiple objective minimum cost flow problems have been considered by many authors 

[14]. Another complexity which exists in the real problems is the impreciseness of values of 

coefficients of the variables in the objective functions, availability and demand of the 

products. The fuzzy set theory introduced by Zadeh [25] is a good alternative for this 

impreciseness. To the best of our knowledge, the first formulation of fuzzy multiobjective 

linear programming is proposed by Zimmermann [26]. Also, the first time, Shih and Lee [24] 

considered a fuzzy MCF problem. After that, this problem has been studied by many 

researchers from several viewpoints; see [2, 13, 17] and the references therein. Recently, 

Bavandi and Nasseri [3, 4] provided the model that manages unknown coefficients in 

fractional multi-commodity networks. In these problems, the coefficients of the objective 

function in the numerator of the fraction and the arc capacity are assumed to be fuzzy random 

variables and the coefficients of the objective function in the denominator of the fraction are 

assumed to be fuzzy variables. Since this problem is investigated simultaneously in both 

random and fuzzy environments, they used a probability-possibility approach to convert the 

problem to a deterministic form and then proposed solving process. Our motivation in this 

paper is recent works of Kaur and Kumar [16,17]. In [16], the authors consider fuzzy 

multiobjective transportation problems where there  exists some nodes, called intermediate 
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nodes, at which the product may be stored in case of the excess of the available product and 

later on the product may be supplied from these intermediate nodes to the destinations. As 

well as, they assumed that there are different types of conveyances such as trucks, cargo 

flights, trains, ships, etc., for transporting the products from sources to destinations.  Such 

multiobjective transportation problems in which both the conveyances as well as 

intermediate nodes are used simultaneously are known as multi-objective Solid Minimal Cost 

Flow (SMCF) problems  [16]. The SMCF problem with fuzzy data studied by several authors 

[5, 7, 16, 19, 21].  In some situations, we must transport more than one commodity from 

sources to destinations. These problems are called multicommodity flow problem. Ghatee 

and Hashemi [12] studied fuzzy multicommodity flow problem and  Chakraborty and et al.  

[11], Dalman and et al. [10], Kundu and et al. [20], and Rani and et al. [24] considered 

multiobjective multi item solid transportation problem under uncertainty. In this paper, we 

consider a fuzzy multiobjective multicommodity minimal cost flow (FMMMCF) problem 

when there are some limitations on conveyances. In fact, in our model, a conveyance may be 

allowed to transport a certain amount of a commodity. To the best of our knowledge, there 

is not any research for this model even for deterministic data. 

 

   This paper is organized in 6 sections. In the next section some preliminaries of fuzzy 

numbers are reviewed. In Section 3, we describe our model and a formulation of FMMMCF 

problem is introduced. In Section 4 the new method is proposed and we illustrate this method 

by some numerical example in Section 5. The conclusion and some suggestion are given in 

Section 6. 

 

2. Preliminaries 

 

    In this section we provide some preliminaries. 

 

Definition 2.1.  [23] A function 𝐿: [0,∞) →  [0,1] (or 𝑅: [0,∞) →  [0,1]) is said to be a 

reference function of fuzzy numbers if and only if 

(i) 𝐿(0) = 1 (or 𝑅(0) = 1)  

(ii) 𝐿 (𝑅) is non-increasing on [0,∞). 
 

Definition 2.2.  [10] A fuzzy number 𝑎̃ = (𝑚, 𝑛, 𝛼, 𝛽)𝐿𝑅   is  said to be LR flat fuzzy number 

if its membership function 𝜇𝑎̃(𝑥) is given by 

 

𝜇𝑎̃ =

{
 
 

 
 𝐿 (

𝑚 − 𝑥

𝛼
) ,   𝑓𝑜𝑟 𝑥 ≤ 𝑚, 𝛼 > 0

𝑅 (
𝑥 − 𝑛

𝛽
) ,   𝑓𝑜𝑟 𝑥 ≥ 𝑛, 𝛽 > 0

1,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Definition 2.3.  [10] Two LR flat fuzzy numbers 𝑎̃1 = (𝑚1, 𝑛1, 𝛼1, 𝛽1)𝐿𝑅 and 𝑎̃2 =
(𝑚2, 𝑛2, 𝛼2, 𝛽2)𝐿𝑅  are said to be equal i.e., 𝑎̃1 = 𝑎̃2 if and only if 𝑚1 = 𝑚2, 𝑛1 = 𝑛2, 𝛼1 =
𝛼2, and 𝛽1 = 𝛽2. 

 

Definition 2.4. [9] An LR flat fuzzy number 𝑎̃ = (𝑚, 𝑛, 𝛼, 𝛽)𝐿𝑅  is said to be non-negative 

LR flat fuzzy number if and only if 𝑚 −  𝛼 ≥  0. 
 

Let 𝑎̃1 = (𝑚1, 𝑛1, 𝛼1, 𝛽1)𝐿𝑅 and  𝑎̃2 = (𝑚2, 𝑛2, 𝛼2, 𝛽2)𝐿𝑅  be two LR flat fuzzy number. Then 

(i) 𝑎̃1⊕ 𝑎̃2 = (𝑚1 +𝑚2, 𝑛1 + 𝑛2, 𝛼1 + 𝛼2, 𝛽1 + 𝛽2)𝐿𝑅 .  
(ii)  Let 𝑎̃1 and 𝑎̃2 be non-negative  LR flat fuzzy numbers. Then 

𝑎̃1⊗ 𝑎̃2 ≃  (𝑚1 𝑚2, 𝑛1 𝑛2, (𝑚1  −  𝛼1)(𝑚2  −  𝛼2) − 𝑚1 𝑚2, (𝑛1 + 𝛽1)(𝑛2 + 𝛽2)
− 𝑛1 𝑛2)𝐿𝑅 

 
(iii)  Let 𝜆 be a real number. Then 

λ𝑎̃1 = {
(λ m1, λ n1, λ α1, λ β1)LR            λ ≥  0
(λ n1, λ m1, −λ β1, −λ α1)LR     λ < 0 

 

  

    In this paper we use of modified Liou and Wang's ranking [9] for the comparison of fuzzy 

numbers. 

Assume, 𝑎̃ = (𝑚, 𝑛, 𝛼, 𝛽)𝐿𝑅 . 
 

ℜ(𝑎̃) = 𝛾 [∫ (𝑚𝜆 +  𝑛(1 −  𝜆))𝑑𝜆
1

0

 ]

+ (1 −  𝛾) [𝜆∫  (𝑚 −  𝛼 𝐿−1(𝜌))𝑑𝜌 + (1 −  𝜆)∫ (𝑛 + 𝛽 𝑅−1(𝜌))𝑑𝜌
1

0

 
1

0

], 

where 𝛾 ∈  [0,1] and 𝜆 ∈  [0,1]. 
 

Let 𝑎̃ and 𝑏̃ be two LR flat fuzzy numbers. Then  𝑎̃ ≥̃  𝑏̃ (𝑎̃ ≤̃ 𝑏̃) if ℜ(𝑎̃) ≥  ℜ(𝑏̃)  

(ℜ(𝑎̃) ≤  ℜ(𝑏̃)). 

3. Fully fuzzy multicommodity multiobjective model 

 

    In this section we introduce a fully fuzzy multicommodity multiobjective model for solid 

minimal cost flow problems which there are limitation on conveyances for transport the 

products. For example, assume that we want to transport coal and petroleum from a city to 

another one by train. For each commodity (coal and petroleum) we need a special tank. 

Therefore, we cannot allocate the all capacity of the train to a commodity. For another 

example, assume that we want to send grease and petroleum from a country to another 

country by ship. Assume that there are some rules for import grease or petroleum by ship in 

the destination country which do not allow to you to send more than certain value of these 

materials. Therefore, you cannot allocate the all capacity of the ship to a commodity. These 

examples show that we must design a new model to cover these problems. 
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    Assume that 𝐺 = (𝑁, 𝐴) is a given network where 𝑁 is the set of nodes and  𝐴 is the set of 

links. We describe our problem with a simple example. Consider a network with two nodes, 

shown in Figure 1. We want to send two commodity 𝑡1 and 𝑡2 from node 1 to node 2. There 

exist three conveyance between these two nodes and each conveyance has a total capacity 𝑒 

and furthermore each conveyance have a capacity for each commodity as 𝑒𝑡1 and 𝑒𝑡2. Note 

that, we cannot send commodity more of the total capacity 𝑒, while we can have 𝑒𝑡1 + 𝑒𝑡2 ≥

𝑒. 

 
 

 
Figure 1. Network representing FMMMCF 

 

Similar to [14,15],  we categorize the nodes as follows: 

 

Purely source node: Those nodes S which there exists some node 𝑆′ such that the product 

may be supplied from 𝑆 to 𝑆′ while there does not exist any node 𝑆′′ to transport product from 

𝑆′′ to 𝑆. The set of all such nodes is denoted by 𝑁𝑃𝑆. 

 

Purely destination node: Those nodes D which there does not exist any node 𝐷′ such that 

the product may be supplied from 𝐷 to 𝐷′ while there exist some node 𝐷′′ to transport product 

from 𝐷′′ to 𝐷. The set of all such nodes is denoted by 𝑁𝑃𝐷. 

 

Intermediate node:  The intermediate nodes are another part of a network. In the following 

we sort the types of these nodes: 

 

(i)  Those nodes S which have some quantity of the product for supplying to other nodes and 

also there exist some nodes such that some quantity of the product is transporting from those 

nodes to node 𝑆. Such nodes are called source nodes and the set of all such nodes is dented 

by 𝑁𝑆. 

 

(ii) Those nodes 𝐷 which require some quantity of the product and also there exist some 

nodes such that the product is supplying from node 𝐷  to those nodes. Such nodes are called 

destination nodes and the set of all such nodes is dented by 𝑁𝐷. 

 

(iii) Those nodes 𝑇 which neither any quantity of the product is available at them to transship 

nor any quantity of the products is required, and all quantity of the product which are 

transferred from some nodes to node 𝑇 is supplying from 𝑇 to some other nodes. Such nodes 

are called transition nodes and the set of all such nodes is dented by 𝑁𝑇. 

 

    In the following, we list notations which we use them in the representation of our model. 
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• 𝑎̃𝑖
𝑡: The fuzzy availability of the product   𝑡 at 𝑖th purely source node. 

• 𝑎̃𝑖
𝑡′: The fuzzy availability of the product 𝑡 at 𝑖th source node. 

• 𝑏̃𝑗
𝑡 :The fuzzy demand of the product 𝑡 at 𝑗th purely destination node. 

• 𝑏̃𝑗
𝑡′ :The fuzzy demand of the product 𝑡 at 𝑗th destination node.  

• 𝑒̃𝑘
𝑡 : The fuzzy capacity of the 𝑘th conveyance for transfer the product 𝑡. 

• 𝑒̃𝑘: The total fuzzy capacity of the 𝑘th conveyance. 

• 𝑐̃𝑖𝑗𝑘
𝑡𝑙 : The fuzzy penalty per unit of flow 𝑡from 𝑖th (purely) source to 𝑗th (purely) 

destination by means of the 𝑘th conveyance in the 𝑙th objective function. 

• 𝑥̃𝑖𝑗𝑘
𝑡 : The fuzzy quantity of the product 𝑡  that should be transported from 𝑖th node to 

𝑗th node by means of the 𝑘th conveyance in order to minimize all objective functions. 

• 𝑆𝐶: The set of all available conveyances. 

 

    We assume that 𝑎̃𝑖
𝑡, 𝑎̃𝑖

𝑡′  ,b̃j
t, 𝑏̃𝑗

𝑡′, 𝑒̃𝑘
𝑡 , 𝑒̃𝑘 are non-negative LR flat fuzzy numbers. We also 

assume that there are 𝐿  objective function and 𝑇commodities. With these notations, a  

FMMMCF problem can be formulated into the following fuzzy multiobjective linear 

programming problem: 

 

Minimum    ∑ ∑ ∑ (𝑐̃𝑖𝑗𝑘
𝑡𝑙 ⊗ 𝑥̃𝑖𝑗𝑘

𝑡

𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

)                               𝑙 = 1,… , 𝐿 (1) 

Subject to  

      ∑ ∑ 𝑥̃𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴  ≤̃  𝑎̃𝑖
𝑡                                                𝑖 ∈  𝑁𝑃𝑆, 𝑡 = 1,… , 𝑇  

      ∑ ∑ 𝑥̃𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴  ≤̃ ∑ ∑ 𝑥̃𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴 ⊕ 𝑎̃𝑖
𝑡′     𝑖 ∈  𝑁𝑆, 𝑡 = 1,… , 𝑇  

      ∑ ∑ 𝑥̃𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴  ≥̃  𝑏̃𝑗
𝑡                                                 𝑗 ∈  𝑁𝑃𝐷 , 𝑡 = 1,… , 𝑇  

      ∑ ∑ 𝑥̃𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴  ≥̃ ∑ ∑ 𝑥̃𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑖:(𝑗,𝑖)∈ 𝐴 ⊕ 𝑏̃𝑗
𝑡′     𝑗 ∈  𝑁𝐷 , 𝑡 = 1, … , 𝑇  

      ∑ ∑ 𝑥̃𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴 = ∑ ∑ 𝑥̃𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴                 𝑖 ∈  𝑁𝑇 , 𝑡 = 1,… , 𝑇  

      ∑ ∑ 𝑥̃𝑖𝑗𝑘
𝑡

𝑗:(𝑖,𝑗)∈ 𝐴
𝑇
𝑡=1 ≤̃ 𝑒̃𝑘                                                    𝑘 ∈  𝑆𝐶  

      𝑥̃𝑖𝑗𝑘
𝑡 ≤̃ 𝑒̃𝑘

t                                                                        𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 = 1,… , 𝑇  
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where 𝑥̃𝑖𝑗𝑘
𝑡  is a non-negative LR flat fuzzy number for all  (𝑖, 𝑗) ∈  𝐴 and  𝑘 ∈  𝑆𝐶. 

 

4. Proposed method 

 

    Almost in all available algorithms for MCF problems, we must examine that the problem 

is balanced or unbalanced and with some modifications, convert an unbalanced one to 

balanced. This process may be so expensive and therefore it is better to solve our model 

without this assumption. In our model there are some equalities and inequalities, therefore 

with a generalization of the proposed algorithm in the Subsection 5.4.2 of [13] and using of 

existing methods [18] for solving of a multiobjective linear programming, we can obtain the 

optimal compromise solution for our model. We recall the definition of fuzzy efficient 

solution from the literature.  

 

Definition 4.1. A fuzzy feasible solution 𝑥̃ = {𝑥̃𝑖𝑗𝑘
𝑡 } is said to be a fuzzy efficient solution of 

the fully fuzzy multiobjective SMMMCF problem if there is no other fuzzy feasible solution 

𝑥̃′ = {𝑥̃𝑖𝑗𝑘
𝑡′ } such that 

∑ ∑ ∑ ℜ(𝑐̃𝑖𝑗𝑘
𝑡𝑙 ⊗ 𝑥̃𝑖𝑗𝑘

𝑡′

𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

) ≤∑ ∑ ∑ ℜ(𝑐̃𝑖𝑗𝑘
𝑡𝑙 ⊗ 𝑥̃𝑖𝑗𝑘

𝑡

𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

) 

for all 𝑙 ∈ {1,… , 𝐿}, and 

∑ ∑ ∑ ℜ(𝑐̃𝑖𝑗𝑘
𝑡𝑙 ⊗ 𝑥̃𝑖𝑗𝑘

𝑡′

𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

) <∑ ∑ ∑ ℜ(𝑐̃𝑖𝑗𝑘
𝑡𝑙 ⊗ 𝑥̃𝑖𝑗𝑘

𝑡

𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

) 

 
for at least one 𝑙 ∈ {1,… , 𝐿}. 
    Note that, for real world problems, we do not need to obtain the set of all fuzzy efficient 

solutions. It is sufficient to compute a fuzzy optimal compromise solution. A fuzzy optimal 

compromise solution of the FMMMCF problem is a feasible solution which is preferred by 

the decision maker to all other solutions, taking into consideration all criteria contained in 

the multiobjective functions. We accept that a fuzzy optimal compromise solution has to be 

a fuzzy efficient solution. 

 
Step 1: Assume that 𝑐̃𝑖𝑗𝑘

𝑡𝑙 = (𝑝𝑖𝑗𝑘
𝑡𝑙 , 𝑞𝑖𝑗𝑘

𝑡𝑙 , 𝛼𝑖𝑗𝑘
𝑡𝑙 , 𝛽𝑖𝑗𝑘

𝑡𝑙 )𝐿𝑅, 𝑥̃𝑖𝑗𝑘
𝑡 = (𝑦𝑖𝑗𝑘

𝑡 , 𝑧𝑖𝑗𝑘
𝑡 , 𝛾𝑖𝑗𝑘

𝑡 , 𝛿𝑖𝑗𝑘
𝑡 )𝐿𝑅, 𝑎̃𝑖

𝑡 =

(𝑟𝑖
𝑡, 𝑠𝑖

𝑡 , 𝜀𝑖
𝑡 , 𝜁𝑖

𝑡)𝐿𝑅, 𝑎̃𝑖
𝑡′ = (𝑟𝑖

𝑡′, 𝑠𝑖
𝑡′, 𝜀𝑖

𝑡′ , 𝜁𝑖
𝑡′)𝐿𝑅, 𝑏̃𝑗

𝑡 = (𝑣𝑗
𝑡, 𝑤𝑗

𝑡 , 𝜂𝑗
𝑡, 𝜃𝑗

𝑡)𝐿𝑅, 𝑏̃𝑗
𝑡′ =

(𝑣𝑗
𝑡′, 𝑤𝑗

𝑡′, 𝜂𝑗
𝑡′, 𝜃𝑗

𝑡′)𝐿𝑅, 𝑒̃𝑘 = (𝑔𝑘, ℎ𝑘, 𝜆𝑘, 𝜇𝑘)𝐿𝑅, and 𝑒̃𝑘
𝑡 = (𝑔𝑘

𝑡 , ℎ𝑘
𝑡 , 𝜆𝑘

𝑡 , 𝜇𝑘
𝑡 )𝐿𝑅 .  Therefore 

Problem (1) can be written as: 
 

Minimum    ∑ ∑ ∑ (𝑝𝑖𝑗𝑘
𝑡𝑙 , 𝑞𝑖𝑗𝑘

𝑡𝑙 , 𝛼𝑖𝑗𝑘
𝑡𝑙 , 𝛽𝑖𝑗𝑘

𝑡𝑙 )𝐿𝑅
𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

⊗ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅                                𝑙 = 1,… , 𝐿 

(2) 
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Subject to  

 ∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴  ≤̃  (𝑟𝑖
𝑡, 𝑠𝑖

𝑡, 𝜀𝑖
𝑡 , 𝜁𝑖

𝑡)𝐿𝑅        𝑖 ∈  𝑁𝑃𝑆, 𝑡 = 1,… , 𝑇  

 ∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴  ≤̃ ∑ ∑ (𝑦𝑗𝑖𝑘
𝑡 , 𝑧𝑗𝑖𝑘

𝑡 , 𝛾𝑗𝑖𝑘
𝑡 , 𝛿𝑗𝑖𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴 ⊕

(𝑟𝑖
𝑡′, 𝑠𝑖

𝑡′, 𝜀𝑖
𝑡′ , 𝜁𝑖

𝑡′)𝐿𝑅     𝑖 ∈  𝑁𝑆, 𝑡 = 1,… , 𝑇 
 

∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

 ≥̃  (𝑣𝑗
𝑡 , 𝑤𝑗

𝑡, 𝜂𝑗
𝑡 , 𝜃𝑗

𝑡)                   𝑗 ∈  𝑁𝑃𝐷 , 𝑡 = 1,… , 𝑇  

∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

 ≥̃ ∑ ∑ (𝑦𝑗𝑖𝑘
𝑡 , 𝑧𝑗𝑖𝑘

𝑡 , 𝛾𝑗𝑖𝑘
𝑡 , 𝛿𝑗𝑖𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑗,𝑖)∈ 𝐴

⊕ (𝑣𝑗
𝑡′, 𝑤𝑗

𝑡′, 𝜂𝑗
𝑡′, 𝜃𝑗

𝑡′)𝐿𝑅     𝑗 ∈  𝑁𝐷 , 𝑡 = 1,… , 𝑇 

 

∑ ∑(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ (𝑦𝑗𝑖𝑘
𝑡 , 𝑧𝑗𝑖𝑘

𝑡 , 𝛾𝑗𝑖𝑘
𝑡 , 𝛿𝑗𝑖𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

  𝑖 ∈  𝑁𝑇 , 𝑡      

= 1,… , 𝑇 

 

∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑗:(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

≤̃ (𝑔𝑘, ℎ𝑘, 𝜆𝑘, 𝜇𝑘)𝐿𝑅                                   𝑘 ∈  𝑆𝐶  

 (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅 ≤̃ (𝑔𝑘
𝑡 , ℎ𝑘

𝑡 , 𝜆𝑘
𝑡 , 𝜇𝑘

𝑡 )𝐿𝑅                𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 = 1,… , 𝑇  

 

where (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅 is a non-negative LR flat fuzzy number for all  𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈

 𝐴, 𝑡 = 1,… , 𝑇. 

 

Step 2. Assume that  

(𝑝𝑖𝑗𝑘
𝑡𝑙 , 𝑞𝑖𝑗𝑘

𝑡𝑙 , 𝛼𝑖𝑗𝑘
𝑡𝑙 , 𝛽𝑖𝑗𝑘

𝑡𝑙 )𝐿𝑅⊗ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅 = (𝑜𝑖𝑗𝑘
𝑡𝑙 , 𝑢𝑖𝑗𝑘

𝑡𝑙 , φ𝑖𝑗𝑘
𝑡𝑙 , τ𝑖𝑗𝑘

𝑡𝑙 )𝐿𝑅 , 

 

(𝑦𝑗𝑖𝑘
𝑡 , 𝑧𝑗𝑖𝑘

𝑡 , 𝛾𝑗𝑖𝑘
𝑡 , 𝛿𝑗𝑖𝑘

𝑡 )𝐿𝑅⊕ (𝑟𝑖
𝑡′, 𝑠𝑖

𝑡′, 𝜀𝑖
𝑡′ , 𝜁𝑖

𝑡′)𝐿𝑅 = (𝑚𝑗𝑖𝑘
𝑡 , 𝑛𝑗𝑖𝑘

𝑡 , 𝜋𝑗𝑖𝑘
𝑡 , 𝜎𝑗𝑖𝑘

𝑡 )
𝐿𝑅
, 

and 

(𝑦𝑗𝑖𝑘
𝑡 , 𝑧𝑗𝑖𝑘

𝑡 , 𝛾𝑗𝑖𝑘
𝑡 , 𝛿𝑗𝑖𝑘

𝑡 )𝐿𝑅⊕ (𝑣𝑗
𝑡′, 𝑤𝑗

𝑡′, 𝜂𝑗
𝑡′, 𝜃𝑗

𝑡′)𝐿𝑅 = (𝑚𝑗𝑖𝑘
𝑡′ , 𝑛𝑗𝑖𝑘

𝑡′ , 𝜋𝑗𝑖𝑘
𝑡′ , 𝜎𝑗𝑖𝑘

𝑡′ )
𝐿𝑅
. 

With these notations, Problem (2) can be written as 

 

Minimum    ∑ ∑ ∑ (𝑜𝑖𝑗𝑘
𝑡𝑙 , 𝑢𝑖𝑗𝑘

𝑡𝑙 , φ𝑖𝑗𝑘
𝑡𝑙 , τ𝑖𝑗𝑘

𝑡𝑙 )𝐿𝑅
𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

                               𝑙 = 1, … , 𝐿 (3) 

Subject to  

 ∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴  ≤̃  (𝑟𝑖
𝑡, 𝑠𝑖

𝑡, 𝜀𝑖
𝑡 , 𝜁𝑖

𝑡)𝐿𝑅        𝑖 ∈  𝑁𝑃𝑆, 𝑡 = 1,… , 𝑇  

 [
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 ∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴  ≤̃ (𝑚𝑗𝑖𝑘
𝑡 , 𝑛𝑗𝑖𝑘

𝑡 , 𝜋𝑗𝑖𝑘
𝑡 , 𝜎𝑗𝑖𝑘

𝑡 )
𝐿𝑅
     𝑖 ∈  𝑁𝑆, 𝑡 =

1, … , 𝑇 
 

∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

 ≥̃  (𝑣𝑗
𝑡 , 𝑤𝑗

𝑡, 𝜂𝑗
𝑡 , 𝜃𝑗

𝑡)                   𝑗 ∈  𝑁𝑃𝐷 , 𝑡 = 1,… , 𝑇  

∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

 ≥̃ ∑ ∑ (𝑚𝑗𝑖𝑘
𝑡′ , 𝑛𝑗𝑖𝑘

𝑡′ , 𝜋𝑗𝑖𝑘
𝑡′ , 𝜎𝑗𝑖𝑘

𝑡′ )
𝐿𝑅

𝑘∈ 𝑆𝐶𝑖:(𝑗,𝑖)∈ 𝐴

     𝑗 ∈  𝑁𝐷 , 𝑡

= 1,… , 𝑇 

 

∑ ∑(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ (𝑦𝑗𝑖𝑘
𝑡 , 𝑧𝑗𝑖𝑘

𝑡 , 𝛾𝑗𝑖𝑘
𝑡 , 𝛿𝑗𝑖𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

  𝑖 ∈  𝑁𝑇 , 𝑡      

= 1,… , 𝑇 

 

∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑗:(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

≤̃ (𝑔𝑘, ℎ𝑘, 𝜆𝑘, 𝜇𝑘)𝐿𝑅                                   𝑘 ∈  𝑆𝐶  

 (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅 ≤̃ (𝑔𝑘
𝑡 , ℎ𝑘

𝑡 , 𝜆𝑘
𝑡 , 𝜇𝑘

𝑡 )𝐿𝑅                𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 = 1,… , 𝑇  

 

where (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅 is a non-negative LR flat fuzzy number for all  𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈

 𝐴, 𝑡 = 1,… , 𝑇. 
 

Step 3. Using rank function ℜ, we solve the following problem: 

 

Minimum    ℜ(∑ ∑ ∑ (𝑜𝑖𝑗𝑘
𝑡𝑙 , 𝑢𝑖𝑗𝑘

𝑡𝑙 , φ𝑖𝑗𝑘
𝑡𝑙 , τ𝑖𝑗𝑘

𝑡𝑙 )𝐿𝑅
𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

)                                𝑙 = 1,… , 𝐿 (4) 

Subject to  

 ℜ(∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴 ) ≤  ℜ(𝑟𝑖
𝑡, 𝑠𝑖

𝑡 , 𝜀𝑖
𝑡 , 𝜁𝑖

𝑡)𝐿𝑅        𝑖 ∈  𝑁𝑃𝑆, 𝑡 =

1, … , 𝑇 
 

 ℜ(∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴 ) ≤ ℜ(𝑚𝑗𝑖𝑘
𝑡 , 𝑛𝑗𝑖𝑘

𝑡 , 𝜋𝑗𝑖𝑘
𝑡 , 𝜎𝑗𝑖𝑘

𝑡 )
𝐿𝑅
     𝑖 ∈  𝑁𝑆, 𝑡 =

1, … , 𝑇 
 

ℜ( ∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

) ≥  ℜ(𝑣𝑗
𝑡, 𝑤𝑗

𝑡, 𝜂𝑗
𝑡 , 𝜃𝑗

𝑡)                   𝑗 ∈  𝑁𝑃𝐷 , 𝑡

= 1,… , 𝑇 

 

ℜ( ∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

) ≥ ℜ( ∑ ∑ (𝑚𝑗𝑖𝑘
𝑡′ , 𝑛𝑗𝑖𝑘

𝑡′ , 𝜋𝑗𝑖𝑘
𝑡′ , 𝜎𝑗𝑖𝑘

𝑡′ )
𝐿𝑅

𝑘∈ 𝑆𝐶𝑖:(𝑗,𝑖)∈ 𝐴

) 

𝑗 ∈ 𝑁𝐷 , 𝑡 = 1,… , 𝑇    
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∑ ∑ 𝑦𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ 𝑦𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  

∑ ∑ 𝑧𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ 𝑧𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  

∑ ∑ γ𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ γ𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  

∑ ∑ δ𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ δ𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  

ℜ(∑ ∑ (𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑗:(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

) ≤ ℜ(𝑔𝑘, ℎ𝑘, 𝜆𝑘, 𝜇𝑘)𝐿𝑅                             𝑘 ∈  𝑆𝐶  

 ℜ(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅 ≤ ℜ(𝑔𝑘
𝑡 , ℎ𝑘

𝑡 , 𝜆𝑘
𝑡 , 𝜇𝑘

𝑡 )𝐿𝑅                𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 = 1, … , 𝑇  

𝑦𝑖𝑗𝑘
𝑡  −  𝛾𝑖𝑗𝑘

𝑡 , 𝑧𝑖𝑗𝑘
𝑡  −  𝑦𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 ≥  0                            𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 =

1, … , 𝑇     
 

 

Step 4. With respect to linear property of rank function,  (4) can be written as: 
 

Minimum    ∑ ∑ ∑ ℜ(𝑜𝑖𝑗𝑘
𝑡𝑙 , 𝑢𝑖𝑗𝑘

𝑡𝑙 , φ𝑖𝑗𝑘
𝑡𝑙 , τ𝑖𝑗𝑘

𝑡𝑙 )𝐿𝑅
𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

                               𝑙 = 1,… , 𝐿 (5) 

Subject to  

 ∑ ∑ ℜ(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴 ≤  ℜ(𝑟𝑖
𝑡, 𝑠𝑖

𝑡, 𝜀𝑖
𝑡 , 𝜁𝑖

𝑡)𝐿𝑅        𝑖 ∈  𝑁𝑃𝑆, 𝑡 =

1, … , 𝑇 
 

 ∑ ∑ ℜ(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴 ≤ ℜ(𝑚𝑗𝑖𝑘
𝑡 , 𝑛𝑗𝑖𝑘

𝑡 , 𝜋𝑗𝑖𝑘
𝑡 , 𝜎𝑗𝑖𝑘

𝑡 )
𝐿𝑅
     𝑖 ∈  𝑁𝑆, 𝑡 =

1, … , 𝑇 
 

∑ ∑ ℜ(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

≥  ℜ(𝑣𝑗
𝑡, 𝑤𝑗

𝑡 , 𝜂𝑗
𝑡, 𝜃𝑗

𝑡)                   𝑗 ∈  𝑁𝑃𝐷 , 𝑡

= 1,… , 𝑇 

 

∑ ∑ ℜ(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑘∈ 𝑆𝐶𝑖:(𝑖,𝑗)∈ 𝐴

≥ ∑ ∑ ℜ(𝑚𝑗𝑖𝑘
𝑡′ , 𝑛𝑗𝑖𝑘

𝑡′ , 𝜋𝑗𝑖𝑘
𝑡′ , 𝜎𝑗𝑖𝑘

𝑡′ )
𝐿𝑅

𝑘∈ 𝑆𝐶𝑖:(𝑗,𝑖)∈ 𝐴

 

𝑗 ∈ 𝑁𝐷 , 𝑡 = 1,… , 𝑇    

 

∑ ∑ 𝑦𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ 𝑦𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  
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∑ ∑ 𝑧𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ 𝑧𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  

∑ ∑ γ𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ γ𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  

∑ ∑ δ𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑖,𝑗)∈ 𝐴

= ∑ ∑ δ𝑗𝑖𝑘
𝑡

𝑘∈ 𝑆𝐶𝑗:(𝑗,𝑖)∈ 𝐴

                                                                  𝑖 ∈  𝑁𝑇  

∑ ∑ ℜ(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅
𝑗:(𝑖,𝑗)∈ 𝐴

𝑇

𝑡=1

≤ ℜ(𝑔𝑘, ℎ𝑘 , 𝜆𝑘, 𝜇𝑘)𝐿𝑅                             𝑘 ∈  𝑆𝐶  

 ℜ(𝑦𝑖𝑗𝑘
𝑡 , 𝑧𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 )𝐿𝑅 ≤ ℜ(𝑔𝑘
𝑡 , ℎ𝑘

𝑡 , 𝜆𝑘
𝑡 , 𝜇𝑘

𝑡 )𝐿𝑅                𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 = 1, … , 𝑇  

𝑦𝑖𝑗𝑘
𝑡  −  𝛾𝑖𝑗𝑘

𝑡 , 𝑧𝑖𝑗𝑘
𝑡  −  𝑦𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 ≥  0                            𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 =

1, … , 𝑇     
 

 

Step 5. With solving the crisp programming problem (5), find the optimal compromise 

solution 𝑥𝑖𝑗𝑘
𝑡∗ = (𝑦𝑖𝑗𝑘

𝑡∗ , 𝑧𝑖𝑗𝑘
𝑡∗ , 𝛾𝑖𝑗𝑘

𝑡∗ , 𝛿𝑖𝑗𝑘
𝑡∗ )𝐿𝑅 .  

 

Step 6. Find the fuzzy optimal value of each objective function by putting the values of  

𝑥𝑖𝑗𝑘
𝑡∗ = (𝑦𝑖𝑗𝑘

𝑡∗ , 𝑧𝑖𝑗𝑘
𝑡∗ , 𝛾𝑖𝑗𝑘

𝑡∗ , 𝛿𝑖𝑗𝑘
𝑡∗ )𝐿𝑅 in ∑ ∑ ∑ (𝑐̃𝑖𝑗𝑘

𝑡𝑙 ⊗ 𝑥̃𝑖𝑗𝑘
𝑡

𝑘∈ 𝑆𝐶(𝑖,𝑗)∈ 𝐴
𝑇
𝑡=1 ). 

 

5. Illustrative example 

    In this section, we illustrate our method with an example. 

 

Figure 2. Network representing Example 5.1. 

 

Example 5.1. Consider the network Figure 2 with the following data: 

• Fuzzy penalty for 1st objective function to transport commodity 1st: 

𝑐131
11 = (3, 4, 2, 2)𝐿𝑅 ,         𝑐132

11 = (2, 3, 1, 2)𝐿𝑅 

𝑐211
11 = (4, 5, 3, 3)𝐿𝑅 ,          𝑐212

11 = (5, 6, 3, 3)𝐿𝑅 

 𝑐231
11 = (5, 7, 4, 3)𝐿𝑅 ,           𝑐232

11 = (3, 4, 2, 3)𝐿𝑅 

• Fuzzy penalty for 2nd objective function to transport commodity 1st: 

 [
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𝑐131
12 = (4, 6, 3, 3)

𝐿𝑅
,         𝑐132

12 = (3, 4, 2, 2)
𝐿𝑅

 

𝑐211
12 = (5, 6, 4, 3)

𝐿𝑅
,          𝑐212

12 = (6, 7, 4, 4)
𝐿𝑅

 

 𝑐231
12 = (6, 8, 4, 4)

𝐿𝑅
,           𝑐232

12 = (4, 5, 2, 3)
𝐿𝑅

 

• Fuzzy penalty for 1st objective function to transport commodity 2nd: 

𝑐131
21 = (2, 3, 1, 1)𝐿𝑅 ,         𝑐132

21 = (2, 4, 1, 2)𝐿𝑅 

𝑐211
21 = (4, 5, 3, 2)𝐿𝑅 ,          𝑐212

21 = (2, 3, 2, 2)𝐿𝑅 

 𝑐231
21 = (4, 6, 3, 3)𝐿𝑅 ,           𝑐232

21 = (2, 3, 1, 2)𝐿𝑅 

• Fuzzy penalty for 2nd objective function to transport commodity 2nd: 

𝑐131
22 = (3, 4, 2, 1)

𝐿𝑅
,         𝑐132

22 = (3, 4, 2, 2)
𝐿𝑅

 

𝑐211
22 = (5, 7, 4, 3)

𝐿𝑅
,          𝑐212

22 = (5, 6, 3, 3)
𝐿𝑅

 

 𝑐231
22 = (5, 6, 4, 3)𝐿𝑅 ,           𝑐232

22 = (2, 3, 1, 1)𝐿𝑅 

• Fuzzy availability of the commodity 1st at source node 1 and purely source node 2: 

a1
1′ = (30, 40, 20, 10)LR             a2

1 = (30, 40, 20, 20)LR 

• Fuzzy availability of the commodity 2nd at source node 1 and purely source node 2: 

a1
2′ = (40, 60, 20, 30)LR,              a2

2 = (40, 50, 30, 30)LR 

• Fuzzy demand of the commodity 1st at purely destination node 3: 

𝑏3
1 = (30, 50, 20, 30)𝐿𝑅 

• Fuzzy demand of the commodity 2nd at purely destination node 3: 

𝑏3
2 = (40, 50, 30, 30)𝐿𝑅 

• Fuzzy capacity of the 1st conveyance for transfer the commodities 1st and 2nd: 

𝑒1
1 = (60, 70, 40, 30)𝐿𝑅 ,             𝑒1

2 = (60, 70, 30, 30)𝐿𝑅 
• Fuzzy capacity of the 2nd conveyance for transfer the commodities 1st and 2nd: 

𝑒2
1 = (60, 70, 30, 30)𝐿𝑅 ,              𝑒2

2 = (60, 70, 20, 20)𝐿𝑅 

• Total fuzzy capacity of the 1st and 2nd conveyances: 

𝑒1 = (70, 70, 30, 30)𝐿𝑅 ,               𝑒2 = (70, 80, 20, 20)𝐿𝑅 

 

    We assume that 𝐿(𝑥) = 𝑅(𝑥) = 𝑚𝑎𝑥 {0, 1 − 𝑥4}. Therefore, for a fuzzy number  𝑎̃ =

(𝑚, 𝑛, 𝛼, 𝛽), ℜ(𝑎̃) =
1

2
(𝑚 + 𝑛) +

4

15
(𝛽 − 𝛼) (see Remark 1 in [14] ). 

    The model will be as: 

 

Minimum  (3, 4, 2, 2)LR ⊗  x131
1 ⊕  (2, 3, 1, 2)LR⊗ x132

1 ⊕ (4, 5, 3, 3)LR ⊗  x211
1   

              ⊕ (5, 6, 3, 3)𝐿𝑅⊗  𝑥212
1  ⊕ (5, 7, 4, 3)LR ⊗  x231

1 ⊕ (3, 4, 2, 3)LR⊗  x232
1  

              ⊕ (2, 3, 1, 1)𝐿𝑅 ⊗  𝑥131
2 ⊕  (2,4, 1, 2)LR⊗  x132

2 ⊕ (4, 5, 3, 2)LR  ⊗  x211
2    

              ⊕  (2, 3, 2, 2)𝐿𝑅⊗  𝑥212
2 ⊕ (4, 6, 3, 3)LR⊗ x231

2 ⊕  (2, 3, 1, 2)LR⊗  x232
2    

(6) 

Minimum  (4, 6, 3, 3)LR ⊗  x131
1 ⊕   (3, 4, 2, 2)LR⊗ x132

1 ⊕ (5, 6, 4, 3)LR ⊗  x211
1   

              ⊕ (6, 7, 4, 4)𝐿𝑅⊗  𝑥212
1  ⊕ (6, 8, 4, 4)LR ⊗  x231

1 ⊕ (4, 5, 2, 3)LR⊗  x232
1  

              ⊕ (3, 4, 2, 1)𝐿𝑅 ⊗  𝑥131
2 ⊕  (3, 4, 2, 2)LR⊗  x132

2 ⊕ (5, 7, 4, 3)LR  ⊗  x211
2    

              ⊕  (5, 6, 3, 3)𝐿𝑅⊗  𝑥212
2 ⊕ (5, 6, 4, 3)LR⊗ x231

2 ⊕  (2, 3, 1, 1)LR⊗  x232
2    

 

Subject to  
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             𝑥211
1  ⊕  𝑥212

1  ⊕  𝑥231
1  ⊕  𝑥232

1 ≤̃ (30, 40, 20, 20)𝐿𝑅  

             𝑥211
2  ⊕  𝑥212

2  ⊕  𝑥231
1  ⊕  𝑥232

2 ≤̃ (40, 50, 30, 30)𝐿𝑅  

             𝑥131
1  ⊕  𝑥132

1  ≤̃  𝑥211
1  ⊕  𝑥212

1 ⊕ (30, 40, 20, 10)𝐿𝑅  

             𝑥131
2  ⊕  𝑥132

2  ≤̃  𝑥211
2  ⊕  𝑥212

2 ⊕ (40, 60, 20, 30)𝐿𝑅  

             𝑥131
1  ⊕  𝑥132

1  ⊕  𝑥231
1  ⊕  𝑥232

1 ≥̃ (30, 50, 20, 30)𝐿𝑅  

             𝑥131
2  ⊕  𝑥132

2  ⊕  𝑥231
2  ⊕  𝑥232

2 ≥̃ (40, 50, 30, 30)𝐿𝑅  

𝑥211
1 ⊕  𝑥231

1 ⊕  𝑥131
1 ⊕   𝑥211

2 ⊕  𝑥231
2 ⊕𝑥131

2  ≤̃ (70, 70, 30, 30)𝐿𝑅  

             𝑥211
1  ≤̃ (60, 70, 40, 30)𝐿𝑅  

             𝑥212
1  ≤̃ (60, 70, 30, 30)𝐿𝑅  

             𝑥231
1  ≤̃ (60, 70, 40, 30)𝐿𝑅  

             𝑥232
1  ≤̃ (60, 70, 30, 30)𝐿𝑅  

             𝑥211
2  ≤̃ (60, 70, 30, 30)𝐿𝑅  

             𝑥212
2  ≤̃ (60, 70, 20, 20)𝐿𝑅  

             𝑥231
2  ≤̃ (60, 70, 30, 30)𝐿𝑅  

             𝑥231
2  ≤̃ (60, 70, 20, 20)𝐿𝑅  

 

and 𝑥𝑖𝑗𝑘
𝑡  (𝑖 = 𝑗 = 1, 2, 3, 𝑘, 𝑡 = 1, 2) is a non-negative LR flat fuzzy number. With respect to 

Steps 3 and 4 in Section 4, the fuzzy optimal solution can be obtained by solving the 

following problem: 
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Minimum  
1

30
(61 𝑦131

1 + 76 z131
1 + 8 γ131

1 + 48 δ131
1 + 38 y132

1 + 61 z132
1 +

8 γ132
1 + 40 δ132

1 + 84 y211
1 + 99 z211

1 + 8 γ211
1 + 64 δ211

1 + 99 y212
1 + 114 z212

1 +
16 γ212

1 + 72 δ212
1 + 107y231

1 + 129 z231
1 + 8 γ231

1 + 80 δ231
1 + 61y232

1 + 84 z232
1 +

8 γ232
1 + 56 δ232

1 + 38 y131
2 + 53 z131

2 + 8 γ131
2 + 32 δ131

2 + 38 y132
2 + 76 z132

2 +
8 γ132

2 + 48 δ132
2 + 84 y211

2 + 91 z211
2 + 8 γ211

2 + 56 δ211
2 + 46y212

2 + 61 z212
2 +

0 γ212
2 + 40 δ212

2 + 84y231
2 + 114 z231

2 + 8 γ231
2 + 72 δ231

2 + 38y232
2 + 61 z232

2 +
8 γ232

2 + 40 δ232
2 ) 

(7) 

Minimum  
1

30
(84 𝑦

131
1 + 114 z131

1 + 8 γ131
1 + 72 δ131

1 + 61 y
132
1 + 76 z132

1 + 8 γ132
1

+ 48 δ132
1 + 107 y

211
1 + 114 z211

1 + 8 γ
211
1 + 72 δ211

1 + 122 y
212
1

+ 137 z212
1 + 16 γ212

1 + 88 δ212
1 + 122y

231
1 + 152 z231

1 + 16 γ231
1

+ 96 δ231
1 + 76y

232
1 + 99 z232

1 + 16 γ232
1 + 64 δ232

1 + 61 y
131
2 + 68 z131

2

+ 8 γ131
2 + 40 δ131

2 + 61 y
132
2 + 76 z132

2 + 8 γ132
2 + 48 δ132

2 + 107 y
211
2

+ 129 z211
2 + 8 γ

211
2 + 80 δ211

2 + 99y
212
2 + 114 z212

2 + 16 γ212
2 + 72 δ212

2

+ 107y
231
2 + 114 z231

2 + 8 γ231
2 + 72 δ231

2 + 38y
232
2 + 53 z232

2 + 8 γ232
2

+ 32 δ232
2 ) 

   

 

Subject to  

1

2
(y211
1 + y212

1 + y231
1 + y232

1 + z211
1 + z212

1 + z231
1 + z232

1 )

+
4

15
(δ211
1 + δ212

1 +  δ231
1 +  δ232

1 −  γ211
1 −  γ212

1 −  γ231
1 −  γ232

1 )

≤ 35 

 

1

2
(y211
2 + y212

2 + y231
2 + y232

2 + z211
2 + z212

2 + z231
2 + z232

2 ) +
4

15
(δ211
2 + δ212

2 +

 δ231
2 +  δ232

2 −  γ211
2 −  γ212

2 −  γ231
2 −  γ232

2 ) ≤ 45 
 

1

2
(y131
1 + y132

1 + 𝑧131
1 + z132

1 ) +
4

15
(δ131
1 + δ132

1 −  γ131
1 −  γ132

1 )

≤
1

2
(70 + y211

1 + y212
1 + 𝑧211

1 + z212
1 )

+
4

15
(δ211
1 + δ212

1 −  γ211
1 −  γ212

1 − 10) 

 

 
1

2
(y131
2 + y132

2 + 𝑧131
2 + z132

2 ) +
4

15
(δ131
2 + δ132

2 −  γ131
2 −  γ132

2 ) ≤
1

2
(100 + y211

2 + y212
2 + 𝑧211

2 + z212
2 ) +

4

15
(δ211
2 + δ212

2 −  γ211
2 −  γ212

2 + 10) 
 

1

2
(y131
1 + y132

1 + y231
1 + y232

1 + 𝑧131
1 + z132

1 + z231
1 + z232

1 ) +
4

15
(δ131
1 + δ132

1 +

δ231
1 + δ232

1 −  γ131
1 −  γ132

1 − γ231
1 −  γ232

1 ) ≥
128

3
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1

2
(y131
2 + y132

2 + y231
2 + y232

2 + 𝑧131
2 + z132

2 + z231
2 + z232

2 )

+
4

15
(δ131
2 + δ132

2 + δ231
2 + δ232

2 −  γ131
2 −  γ132

2 − γ231
2 −  γ232

2 )

≥ 45 

 

1

2
(y211
1 + y231

1 + y131
1 + y211

2 + y231
2 + y131

2 + 𝑧211
1 + z231

1 + z131
1 + z211

2 + 𝑧231
2

+ 𝑧131
2 )

+
4

15
(δ211
1 + δ231

1 + δ131
1 + δ211

2 + δ231
2 + δ131

2 −   γ211
1 − γ231

1

− γ131
1 − γ211

2 − γ231
2 − γ131

2 ) ≤ 70 

 

1

2
(y211
1 + z211

1 ) +
4

15
(δ211
1 −  γ211

1 ) ≤
187

3
   

1

2
(y212
1 + z212

1 ) +
4

15
(δ212
1 −  γ212

1 ) ≤ 65  

1

2
(y231
1 + z231

1 ) +
4

15
(δ231
1 −  γ231

1 ) ≤
187

3
  

1

2
(y232
1 + z232

1 ) +
4

15
(δ232
1 −  γ232

1 ) ≤ 65  

1

2
(y211
2 + z211

2 ) +
4

15
(δ211
2 −  γ211

2 ) ≤ 65  

1

2
(y212
2 + z212

2 ) +
4

15
(δ212
2 −  γ212

2 ) ≤ 65  

1

2
(y231
2 + z231

2 ) +
4

15
(δ231
2 −  γ231

2 ) ≤ 65  

1

2
(y232
2 + z232

2 ) +
4

15
(δ232
2 −  γ232

2 ) ≤ 65  

𝑦𝑖𝑗𝑘
𝑡  −  𝛾𝑖𝑗𝑘

𝑡 , 𝑧𝑖𝑗𝑘
𝑡  −  𝑦𝑖𝑗𝑘

𝑡 , 𝛾𝑖𝑗𝑘
𝑡 , 𝛿𝑖𝑗𝑘

𝑡 ≥  0                            𝑘 ∈  𝑆𝐶 , (𝑖, 𝑗) ∈  𝐴, 𝑡 = 1,… , 𝑇     

With solving this problem using weighted sum method [18], we have, 

0.0627 𝑦211
1  0.0103 𝑦232

1  0.0415 𝑦231
1  

0.0979 𝑧211
1  0.0103 𝑧232

1  0.0198 𝑧231
1  

0 𝛾211
1  0.6951 𝛾232

1  0 𝛾231
1  

0 𝛿211
1  0 𝛿232

1  0 𝛿231
1  
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0.0481 𝑦132
1  0.0322 𝑦131

1  0.1259 𝑦212
1  

0.2467 𝑧132
1  0.0322 𝑧331

1  0.1259 𝑧212
1  

0 𝛾132
1  0 𝛾131

1  0 𝛾212
1  

0 𝛿132
1  0.1873 𝛿131

1  0 𝛿212
1  

 

0.0474 𝑦211
2  0.0437 𝑦232

2  0.0208 𝑦231
2  

0.087 𝑧211
2  0.0437 𝑧232

2  0.1824 𝑧231
2  

0.0215 𝛾211
2  0 𝛾232

2  0 𝛾231
2  

0 𝛿211
2  0 𝛿232

2  0 𝛿231
2  

 

-0.4967 𝑦132
2  -0.3316 𝑦131

2  -0.1491 𝑦212
2  

-1.0268 𝑧132
2  -0.3316 𝑧131

2  -0.1491 𝑧212
2  

0 𝛾132
2  0.3438 𝛾131

2  0 𝛾212
2  

0 𝛿132
2  0 𝛿131

2  0 𝛿212
2  

 

6. Conclusion 

    In this paper we introduced a new model for fully fuzzy multiobjective 

multicommodity minimal cost flow problems which there are several commodities to 

transport from sources to destinations and there is more than one conveyance for these 

transporting. We also assume that in each conveyance, there are distinct capacities for 

each commodity. We proposed a method for solving this problem without considering a 

balanced version of that. Our method can be also considered as a generalization of some 

methods for solving fuzzy multiobjective method in the presence of equalities and fuzzy 

inequalities. 
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