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Optimizing Hub-And-Spoke Networks Under Demand
Uncertainty: A Stochastic Capacitated Single Allocation
P-Hub Covering Model with Lagrangian Relaxation
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Traditional maximal p-hub covering problems focus on scenarios where network flow is
constrained by resource limitations. However, many existing models rely on static parameters,
overlooking the inherent randomness present in real-world logistics. This oversight can result in
suboptimal network designs that are vulnerable to congestion and rising costs as demand varies.
To address this issue, we propose a novel mathematical model for the capacitated single allocation
maximal p-hub covering problem that takes into account stochastic variations in origin-destination
flows. Although solving this model poses computational challenges, we utilize a Lagrangian
relaxation algorithm to enhance efficiency. Computational experiments using the CAB dataset
highlight the effectiveness of our approach in achieving optimal solutions while reducing
computation time. This framework offers valuable insights for designing robust hub-and-spoke
networks in the face of demand uncertainty.
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1. Introduction

Hub networks are a fundamental infrastructure in logistics and telecommunications, facilitating
efficient flow movement between origin and destination points. These networks rely on strategically
located hub facilities that provide crucial services like switching, sorting, and consolidating flows.
By optimizing network connections and minimizing costs, hub networks play a vital role in various
industries [7].

Hub location is a strategic decision-making problem. At the strategic level, long-term decisions
are made that are usually difficult to change and require significant amounts of time and cost to
implement. Hub location and network design are typically based on the forecast of future demand,
which is inherently stochastic. Therefore, this demand uncertainty cannot be ignored in hub network
design problems [31]. Parameters such as customer demand, cost, and travel time naturally involve
uncertainty and cannot be accurately estimated with deterministic data. Some researchers have
examined how to incorporate various aspects of uncertainty in hub network design.
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Marianov and Serra [18] Provided the first research on uncertainty in hub location within air
transport networks, modeling hubs as M/D/C queue systems. Their mathematical model is based on
the probability of customer presence in the system, which later forms the probabilistic capacity
constraints of the hub. They used a tabu search heuristic for problem-solving due to the computational
complexity of their model. Sim et al. [28] presented the probabilistic single allocation p-hub center
problem and used a chance-constrained mathematical model to ensure minimum service levels, with
travel times assumed to follow a normal distribution. A heuristic algorithm was proposed for solving
the model. Yang [29, 30] developed a probabilistic programming model for fixed-cost hub location
with single allocation, considering seasonal demand variations as different scenarios. The model
included direct connections between non-hub nodes and used real data from Taiwan and China
airlines, solved with GAMS and OSL solvers. Bashiri et al. [5] proposed a probabilistic single
allocation p-hub center problem with travel times modeled as normally distributed random variables.
The objective was to maximize the minimum service level for the maximum travel time, using a
genetic algorithm for solution. Contreras et al. [9] formulated a two-stage stochastic integer
programming model for fixed-cost, multiple allocation hub location, considering uncertain demand
and flow costs. They introduced three different probabilistic models and employed Monte Carlo
simulation-based algorithms and Benders decomposition for solving. Mohammadi et al. [20]
extended Marianov and Serra’s model for container transport, considering random transport times
and truck arrival rates. They used a combined genetic and imperialist competitive algorithm for
solving. Zhai et al. [32] proposed a two-stage stochastic hub location model with risk minimization
criteria and uncertain demand represented by a random vector. They showed that the two-stage
programming is equivalent to a single-stage p-model, solved using branch and bound methods.
Alumur et al. [2] presented three models for uncertain fixed-cost hub location problems with both
single and multiple allocations. They used various scenarios for uncertain costs and demands,
analyzed using CAB data and CPLEX software. Mohammadi et al. [21] developed a multi-objective
stochastic model for complete single allocation hub covering problems under uncertainty, including
risk factors for transport times. They compared their results using multi-objective imperialist
competitive algorithm with NSGA-II and PAES algorithms. Chen et al. [8] provided a two-stage
stochastic programming model for single allocation hub center location with budget constraints,
aiming to minimize the longest expected path, particularly for disaster response facility location. Hult
et al. [15] developed a probabilistic single allocation hub center location model with stochastic travel
times, aiming to minimize the maximum travel time given a minimum service level. They proposed
exact solution methods based on variable reduction and decomposition algorithms. Sadeghi et al. [25]
offered a probabilistic complete coverage hub location model with random capacity paths, aiming to
minimize total transportation and hub establishment costs. They used differential evolution and
standard genetic algorithms for comparison. Adibi and Razmi [1] proposed a two-stage stochastic
programming model for fixed-cost, multiple allocation hub location, considering uncertain demand
and transportation costs, analyzed using Iranian air data with GAMS and CPLEX. Ebrahimizade et
al. [11] developed a bi-objective probabilistic hub covering model with uncertain transport,
maximizing flow and reliability on the weakest network path, using fuzzy multi-objective linear
programming for solving. Yang et al. [31] proposed a two-stage stochastic hub network design model
with fixed costs, considering seasonal demand variations as discrete distributions with multiple
scenarios. Zhalechian et al. [33] proposed a multi-objective mixed integer nonlinear mathematical
model for hub location with probabilistic-possibilistic uncertainty, considering various transport
modes and independent travel times. Shang et al. [26] formulated a stochastic multi-commodity hub
location problem with direct link strategy and multiple capacity levels, using expected value and
chance-constrained programming techniques. Hu et al. [14] developed a stochastic single allocation
hub location model with capacity constraints and independent normally distributed random demands,
approximated using piecewise tangent and linear approximations. Rostami et al. [24] offered a fixed-
cost, single allocation hub location model under demand uncertainty, optimized using a custom
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branch-and-cut algorithm. Ghaffari-Nasab [12] formulated a stochastic hub location problem with
Bernoulli demands, providing both single and multiple allocation models, solved using Benders
decomposition and Lagrange relaxation techniques. Rahmati et al. [23] proposed a profit-maximizing
hub location model considering carbon emission control and population density, using advanced
sampling and Benders decomposition algorithms. Bayram et al. [6] formulated a hub network design
problem considering congestion, capacity, and stochastic demand, extending classical hub location
problems. Demand was defined as random based on different scenarios, with a Benders
decomposition and column generation algorithm for solving. Janschekowitz et al. [16] proposed an
optimization-simulation iterative approach for hub network design under single and multiple
allocation uncertainty, considering uncertain demand, transportation costs, and fixed costs for
establishing hubs and connections. The approach integrated scenario-based optimization and
simulation techniques, incorporating flow-dependent scale economies in the simulation phase.
Andaryan et al. [3] formulated a single allocation hub location problem with capacity constraints,
considering Bernoulli demand distribution. The problem was examined under facility and customer
outsourcing policies, with two-stage stochastic programming formulations and a Tabu search-based
algorithm for large-scale instances. Guillot et al. [13] present a novel approach to designing
reconfigurable park-and-ride systems by integrating hub location and fleet assignment decisions.
Their two-stage stochastic model effectively captures the dynamic nature of travel demand and traffic
conditions, leading to more resilient and efficient system designs. The authors' development of
advanced solution methodologies, including L-shaped and metaheuristic approaches, is
commendable. By applying their model to real-world data from Lyon, France, the study provides
valuable insights into the practical implementation of reconfigurable park-and-ride systems.

A review of the maximal hub covering problem literature reveals that most models assume static
future decision parameters and are developed in a certain environment. By assuming parameter
certainty, designing and solving a hub network becomes simpler compared to models that consider
dynamic, ambiguous, or stochastic conditions. However, these static models often lack practicality.
For instance, in air transport, seasonal changes in travel volume and climate can affect key decision-
making parameters such as flow and travel time. A hub network designed with a fixed flow volume
may face congestion, rising costs, and poor service delivery if actual flows exceed hub capacity.
Addressing flow changes can mitigate such issues, leading to a more stable network. For example,
Ball, Barnhart [4] estimated the total effect of flight delays in the United States in 2007 at about $30
billion, accounting for lost revenue, flight crew overtime, passenger re-accommodation costs, and
other welfare losses.

In this study, we tackle stochastic variations in origin-destination (O/D) flows by developing a
mathematical formulation for the Stochastic Capacitated Single Allocation Maximal Hub Covering
Problem (SCSMHCP). We model uncertainty in O/D flows using a finite set of scenarios, each
assigned a specific probability. The proposed model operates in two stages: In the first stage, we
focus on hub location, assuming it remains stable across scenarios due to its strategic nature and
immunity to random parameter fluctuations. In the second stage, we adapt the flow transfers from
origins to destinations in response to the revealed uncertainties, while accounting for coverage and
capacity constraints. This approach enables flexible routing of flows, minimizing the risk of network
congestion.

Due to the computational complexity of the proposed model, we utilize the Lagrangian relaxation
algorithm to obtain feasible solutions. We assess the model and solution methods by solving a range
of problems. Remarkably, to the best of our knowledge, our study is the first to incorporate flow
uncertainty and capacity constraints into maximal hub covering problems.
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The paper is organized as follows: Section 2 proposes the mathematical model for the capacitated
single allocation maximal hub covering problem. Section 3 presents the Lagrangian relaxation
method. Section 4 shows the experimental results. Finally, the conclusion is presented in Section 5.

2. Mathematical Formulation
2.1. Assumptions

The Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP) model
incorporates the following assumptions:

e Discrete Flow Distribution: Demand uncertainty is represented by a discrete probability
distribution for origin-destination (O/D) flows. This means there are a finite number of
possible flow realizations, also referred to as scenarios.

o  Known Scenario Information: In each scenario, the O/D flow values are known and
interdependent. Additionally, the probability of occurrence for each scenario is also known.

e  Hub-Encouraged Transportation: Transportation via hubs is assumed to be incentivized
due to cost and distance savings.

o Symmetric Travel: Direct travel time (or cost) is considered equal for both directions
between two nodes.

o  Limited Direct Connections: Direct transportation between non-hub nodes is not permitted.
All O/D flows must be routed through hubs.

o Complete Inter-Hub Network: The network formed by the hubs themselves is considered a
complete graph, and the O/D route passes at least one and at most two hubs.

o Single/Double Hub Routing: O/D flows must pass through at least one and at most two
hubs on their route.

e  Predefined Hub Count. The number of hubs to be located is predetermined before solving
the model.

e  Hub Node Selection Flexibility: Any node in the network can be chosen as a hub location.

o Single Hub Allocation: Each non-hub node can be assigned to only one hub for flow
routing.

e  Hub Capacity Constraints: A capacity constraint is imposed on the incoming flow at each
hub, representing the maximum flow a hub can handle.

o Known Hub Capacities: The capacities of all hub nodes are assumed to be known
beforehand.

2.2. Notation

In this section, we introduce the mathematical notation employed throughout the analysis. We
define the sets, indices, parameters, and decision variables used in the model. This notation provides
a foundation for understanding the subsequent development and results presented in the following
sections.

Notations and Parameters:

N: Set of nodes N={1,...,n}
S: Set of scenarios S={1,...,m}
i,j: Indices of origin (destination) nodes i,j=1,..,n
k,I: Indices of hubs k,l=1,..,n


http://iors.ir/journal/article-1-834-en.html

[ Downloaded from iors.ir on 2025-11-27 ]

Optimizing Hub-And-Spoke Networks Under Demand Uncertainty

s: Indices of scenarios
P: Number of hubs
Dj;: Travel time of direct path from node i to node ;

W;5: The amount of demand flow from origin node i to destination node j under

scenario s.

ps: The probability of occurrence of scenario s X gesps = 1)
a: The discount factor for transferring flow between two hub nodes (0<a<1)
B: Coverage radius (allowable travel time/cost between O/D nodes)

I;,: The capacity of hub k&

Decision variables:

Yijiw = 1, if the flow from node i is transported to node j through hubs k and /

under scenario s, otherwise 0.

xj, = 1, if node i is allocated to hub k under scenario s, otherwise 0.

v, = 1, if a hub is established in node k under scenario s, otherwise 0

2.3. Mathematical Formulation of SCSMHCP

61
s=1,..,m
iL,j=1,..,n
iL,j=1,..,n
s=1,...,m
s=1,..,m
k=1,..,n

iL,jkl=1.,ns=
1,..,m
i,k=1,..,n&itk
s=1,..,m

Building upon the provided notation and parameters, here's the mathematical formulation of the
Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP):

SCSMHCP: Max

S.t.

S S
2 Vi S vk + x5

S S
2y < X + 1y

2 Vit < vkt
(Dix + aDy; + Dlj) X Vi < B

s210(8) Xizq Z?:1 Dk=120=1 le yisjkl

(1
i=1..,n,s=1,..,m 2)
Lk=1..,n,i#k,
s=1,..,m 3)
“)
Likl=1..,n
Jd#FEk,j#ElL,s=1,...,m )
jlle = 1;---Jn)
j*Fl,s=1,..,m (6)
Lk1=1,..,n
J#xk,s=1,...,m Q)
kl=1..,n,s=1,..,m (®)

iLjkl=1..,n,s=1.,m (9
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n n
ZZ Vi <1 ij=1.,n,5=1.,m (10)
k=11=1
n
W [Z()’igjkl + yiin) — Yisjkk] <[ k=1,.,n,s=1,..,m (11)
=1
,s=1,....m
s . .
xj, €1{0,1} Lk=1..,n,i#k (13)
,s=1,..,m
v, €{0,1} k=1,..,n (14)

Our model aims to maximize the total expected flow in a network with hubs and non-hub nodes.
We achieve this through the following formulation:

e Objective Function (1): This function maximizes the summation of expected flows across all
origin-destination pairs.
o Constraints:

o

Hub Assignment (2): These constraints ensure that each non-hub node can be
assigned to at most one hub, and simultaneously prevent hubs from being assigned
to other nodes.
Hub Connection Eligibility (3): This set restricts flow assignments under each
scenario. Node i can only be assigned to node £ if k is a designated hub.
Number of Hubs (4): This constraint guarantees that exactly P hubs are established
within the network.
Flow Establishment Conditions (5-8): These constraints define the conditions under
which flow is established between origin and destination pairs based on hub
connections and selections.

= Constraint (5): Flow is established if origin i connects to hub k& and

destination j connects to hub / (standard case).
= Constraints (6) & (7): Flow may also occur if i is the hub or j is the hub,
respectively.

»  Constraint (8): Flow is additionally possible if both i and j are hubs.
Travel Time Restriction (9): This constraint ensures that the pathi — k — [/ — j can
only be established if the travel time is less than the coverage radius f.
Unique Routes (10): This constraint guarantees that at most one route exists between
each origin-destination pair.
Hub Capacity (11): This constraint limits the total entering flow to each hub under
each scenario, ensuring it doesn't exceed the hub's capacity.
Decision Variable Types (12)-(14): These constraints define the type (binary,
continuous, etc.) of each decision variable used in the model.

Following this formulation, we delve into the solution method for this proposed model in the
subsequent section.

3. Solution Approach: Lagrangian Relaxation

The Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP)
inherits the NP-hardness of the basic Maximal Hub Covering Problem (Kara and Tansel [17]).
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Additionally, the introduction of scenarios and capacity constraints in SCSMHCP significantly
increases the number of variables and constraints compared to simpler MHCP models. This renders
directly solving the formulated model computationally intractable for large-scale problems.

To address this challenge and achieve efficient solutions, we employ the Lagrangian Relaxation
(LR) method. This technique is particularly well-suited for problems with complex constraints, such
as those relating hub location decisions variables (v,x) and the flow routing variables () in constraints
(5) to (8) of the SCSMHCP model.

Core Idea of Lagrangian Relaxation:

1. Constraint Relaxation: The LR method relaxes a subset of complicating constraints by
removing them from the original problem.

2. Lagrangian Function: A penalty term, representing the violation of the relaxed constraints,
is added to the objective function. This term is multiplied by a Lagrange multiplier, which
acts as a weighted penalty for violating the constraints.

3. Sub-Problems: By relaxing the constraints, the original problem is decomposed into two
easier-to-solve sub-problems:

o A relaxed master problem that optimizes the objective function considering the
penalty terms.

o A set of Lagrangian sub-problems, one for each relaxed constraint. These sub-
problems minimize the violation of the relaxed constraints for the current values of
the Lagrange multipliers.

4. [Iterative Improvement: The Lagrange multipliers and solutions from the sub-problems are
used iteratively to improve the solution of the master problem and ultimately obtain an
optimal solution for the original problem.

By employing the LR method, we can decompose the complex SCSMHCP model into smaller,
more manageable sub-problems. This allows for efficient solution techniques to be applied to each
sub-problem, leading to faster computation of near-optimal solutions for large-scale instances of the
SCSMHCP.

To solve the SCSAMHCP model using the LR, the model's rigid constraints are first identified
and added to the objective function. At first glance, it is clear from the proposed model that constraints
set (5)-(8) establishes the relationship between the binary variables v, x and y. If the desired constraints
are relaxed, the created Lagrangian problem can be solved more quickly. Let ey, =0 be the
Lagrange multiplier for constraint (5), fksjl > 0 be the Lagrange multiplier for constraint (6), g, =
0 be the Lagrange multiplier for constraint (7), and hj; = 0 be the Lagrange multiplier for constraint
(8). By doing so, we obtain the following relaxed model:


http://iors.ir/journal/article-1-834-en.html

[ Downloaded from iors.ir on 2025-11-27 ]

64 Khosravian et al.

S S S S
el (=2 ¥ij + x5 + x7))

; Mz"i
NgE

=
I
o
#
T
o
#
~.

(15)
fk]l( 2 Yijir T Vi + % x7)

it (2 Vit + xije +v1)

: MZ%MZEMZ

=
Il
-
#
Il
iy

MziMz

R (=2 Vi + vic + 11)

s.t. (2)-(4), (9)-(14)

NgE

1%}
Il
[y
=
1l
[y
~
1l
[y

By expanding equation (15), and considering the constraints, the LR model can be separated into
two location-allocation (LRy) and routing (LRy) sub-problems as follows.

N N N
LR,: Max zz 2 z 2 eisjkl(xisk+x]'sl)

N N N S N N N 16)
+22 2 Z fksjl(vk+xfl)+zz 2 Gira (i + v1)
s=1k=1j=1,#1 =1 s=11i=1k=1,#i [=1
S N N
+ 2 2 z hig(vie + v1)
s=1k=11=1
s.t (2)-(4), (13),(14)
s N N N N
LR,: Max Zp(s)z 2 ZEVVS YVijki
s=1 i=1 j=1,2i k=1 1=1
N N N N S N N N 7
_ZZ Z Z Z 2 ijkl yzjkl_zz Z Z kaﬂ ijkl (
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- zz Z Z 295 Vil z 2 2 2 hit Vi

The necessary parameters for applying the LR method are as follows:

UBZ: The objective function value of LR, in the rth iteration
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UBY: The objective function value of LRy, in the rth iteration

EMax: Maximum allowed iteration for Lagrangian relaxation algorithm

T yax: Maximum runtime for Lagrangian relaxation algorithm

LB": The lower bound obtained for the original problem in the rth iteration

UB™: The upper bound obtained for the original problem in the rth iteration

vy The optimal value of the variable v in the rth iteration

Xiks: The optimal value of the variable x in the rth iteration

y;fkls: The optimal value of the variable y in the rth iteration

el?]. klr; The Lagrangian multiplier corresponds to the constraint (5) in the rth iteration

geij i The subgradients correspond to the constraint (5) in the rth iteration

ffq.lr; The Lagrangian multiplier corresponds to the constraint (6) in the rth iteration

g ffq.lr; The subgradients correspond to the constraint (6) in the rth iteration

gfklr; The Lagrangian multiplier corresponds to the constraint (7) in the rth iteration

995" The subgradients correspond to the constraint (7) in the rth iteration

hilr; The Lagrangian multiplier corresponds to the constraint (8) in the rth iteration

ghfdr: The subgradients correspond to the constraint (8) in the rth iteration

9,: improvement Step Size of the Lagrangian multiplier in rth iteration

A The variable coefficient for calculating 6, , it has a value between zero and 2.

Limit: Maximum number of no improvement in the upper bound of the objective
function in order to change the coefficient

No imp: Counter of no improvement in the upper bound

®: The number of necessary changes in the step size after reaching the Limit
parameter

gpsilon: Maximum Percentage gap between the upper and lower bounds for stopping
algorithm

To obtain a lower-bound value in each iteration (LB”"), we set the v;" values in the original
problem and solve it to achieve the values of y and the objective function.

The Algorithm 1 shows the pseudo-code of the Lagrangian relaxation algorithm used to solve the
SCSAMHCP problem. First, the input parameters of the algorithm are set. Then, LRx and LRy
problems are solved, and a new upper bound value is obtained. If the new upper bound value is better
than the current best upper bound value, it is replaced, and the counter of no improvement sets to zero
(No imp=0). The original problem for determining the lower bound is solved by considering the hubs'
locations obtained from the LRy sub-problem. If a better upper bound is not obtained, one unit is
added to the non-improvement counter, and if the counter reaches its upper limit, the A,, value
becomes smaller to make a more accurate search, and the counter will return to zero. After calculating
the lower bound of the objective function, it is checked whether a better bound has been created or
not. In the following, the algorithm's stop conditions are examined, including reaching the maximum
iteration, reaching the maximum runtime, or meeting the conditions of maximum percentage gap
between the upper and lower bounds. The new subgradients' values and the Lagrangian multipliers
are calculated if the stop conditions are not met. The optimization condition of the current solution is
then examined. The current solution is optimal if, for all non-zero subgradients' values, their
multiplication with corresponding Lagrangian multipliers equals zero. In this case, the current
solution will be the optimal solution to the original problem. If the stop conditions are not met, the
previous steps are repeated.
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Step 0: Set parameters as follows:
r=1, Best LB = —oo, Best UB = +o0
Limit =5, No imp =0,
A =2,0 =2, &yqe = 100
Tyax = 3600, epsilon = 0.01
Initialize Lagrangian multipliers:
eisjkl =0,forijkl=1..,n,izkj#+l s=1,..,m
fin=0forjkl=1..,n,j#l s=1..,m
g =0,forikl=1,..,n,i*xk s=1,..,m
hy; =0, forkl=1,..,n s=1,..,m
Step 1: Solve LR, and LR,,. Calculate UB" = UBy + UB;
If UB" < Best UB then Best UB = UB" and No imp = 0
else
Noimp =Noimp +1
If Noimp > Limit Then A, = A,./p and No imp =0
Step 2: set vy = vy, for k = 1,...,n} and solve SCSMHCP model.
If LB” > Best LB then Best LB = LB"
Step 3: If r > €4 Or T > Thyq STOP
Else update subgradients as follows:

geisjklr = —nyj“;dr+xflé‘r + xfl*r Jforijkl=1,..,n,i+kj+]l s=1,..,m
g ksjlr = —2y,§;klr+v;r + xﬁ*r Jforjkl=1,..,n,j#1, s=1,...m
ggisklr = —Zyisf,}lr+xis,:r +v;" L forikl=1,..,n,i%k s=1,..,m

ghs)” = =2ysnd v+ v L forkl=1,..,n s=1,..,m

0. =1 UB" — LB
o <2i, jkrs(@efin )2 + Xjwis(@fii)? + Eikrs(995a)? + zk,z,s<gh,§f)2>
eisjklr+1 = max {0, eis]_klr + Hngeisjklr} Jforijkl=1..,n,i#+kj#lLs=1..,m
fksleJr1 = max {O,f,fjlr + 6, gfksjlr} Jforjkl=1,.,n,j %], s=1,..,m
g = max (0,95, + 0,995, Y forikl=1..,n,i%k s=1,..,m
hfdr+1 = max {0, h,sdr + 6, gh,sdr} Jfork,l=1,..,n, s=1,..,m
Step 4: If {( geisjklr >0 and geisjklr X eis]_klr =0) and (gfksjlr >0 and gfksﬂr X ksle =
0) and (ggf.’ 20 and ggi," x gi' =0) and (gh” 20 and gh})" x hi)" =
0)fori,j,kl=1,..,n,i#kj+1ls=1,..,m}STOP, the optimal solution is achieved
Else r=r+1 and Go to Step 1.

Algorithm 1. pseudo-code of Lagrangian relaxation algorithm

4. Computational Results

This section presents the computational experiments conducted to evaluate the performance of the
proposed SCSAMHCP model. We describe the data generation methods employed for simulating
different demand scenarios and analyze the obtained results.
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4.1.Data Generation

To assess the SCSAMHCP model's efficacy under varying demand conditions, three scenarios
were considered: low demand, medium demand, and high demand.

¢ Medium Demand: Data for this scenario was obtained from the publicly available CAB
dataset [22].

e Low Demand: In this scenario, the flow rate was reduced by 50% compared to the medium
demand scenario, reflecting lower customer demand [29, 30].

e High Demand: Conversely, the flow rate was increased by 50% compared to the medium
demand scenario, simulating high customer demand conditions [29, 30].

To further diversify the test environments, we employed varying values for the discount factor and
radius of coverage, as suggested by Silva and Cunha [27]. Additionally, the capacity level for each
node was calculated using the method proposed by Ebery, Krishnamoorthy [10]. All parameter values
used in the data generation process are summarized in Table 1

Table 1- Parameter Values for Data Generation

Parameters Values
n 10, 15, 20, 25
P 2,3,4,5
m 3
1
p(s) 3 =123

wilj = CAB dataset
W wizj = 0.5wi1j
WS = 1.5wi1j

n

n = .
[y Fk=(§)><z p(s) X Wy; k=1,..,n

s=1 j=1

4.2. Results Analysis

We employed GAMS software (version 24.9.1) and CPLEX solvers (version 12.7.1) to solve the
proposed algorithms. The software ran on a computer equipped with a 3 GHz Intel processor and
4GB of RAM. We set a runtime limit of 3600 seconds for the implementation. The Lagrangian
relaxation algorithm was implemented with specific settings: A, = 2,¢@ = 2, Limit = 5, epsilon =
0.01, epax = 100, Tyax = 3600. To illustrate the algorithm's performance, we generated sample
problems with specific settings detailed in Table 2.
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Parameters settings

Parameters settings

Problem Problem
Number Number Number Discount Coverage Number Number Number Discount Coverage

of Nodes of Hubs Factor Radius of Nodes of Hubs Factor Radius
1 10 2 0.2 1425 41 20 2 0.2 1851
2 10 3 0.2 1117 42 20 3 0.2 1549
3 10 4 0.2 811 43 20 4 0.2 1356
4 10 5 0.2 736 44 20 5 0.2 1162
5 10 2 0.4 1627 45 20 2 0.4 2067
6 10 3 0.4 1185 46 20 3 0.4 1744
7 10 4 0.4 970 47 20 4 0.4 1473
8 10 5 0.4 863 48 20 5 0.4 1386
9 10 2 0.6 1671 49 20 2 0.6 2255
10 10 3 0.6 1387 50 20 3 0.6 1996
11 10 4 0.6 1148 51 20 4 0.6 1835
12 10 5 0.6 1079 52 20 5 0.6 1663
13 10 2 0.8 1744 53 20 2 0.8 2493
14 10 3 0.8 1589 54 20 3 0.8 2264
15 10 4 0.8 1457 55 20 4 0.8 2154
16 10 5 0.8 1413 56 20 5 0.8 2118
17 10 2 1 1839 57 20 2 1 2611
18 10 3 1 1791 58 20 3 1 2605
19 10 4 1 1770 59 20 4 1 2601
20 10 5 1 1766 60 20 5 1 2600
21 15 2 0.2 2004 61 25 2 0.2 2136
22 15 3 0.2 1638 62 25 3 0.2 1913
23 15 4 0.2 1324 63 25 4 0.2 1617
24 15 5 0.2 1149 64 25 5 0.2 1346
25 15 2 0.4 2019 65 25 2 0.4 2401
26 15 3 0.4 1741 66 25 3 0.4 2099
27 15 4 0.4 1436 67 25 4 0.4 1881
28 15 5 0.4 1287 68 25 5 0.4 1597
29 15 2 0.6 2103 69 25 2 0.6 2557
30 15 3 0.6 1844 70 25 3 0.6 2336
31 15 4 0.6 1756 71 25 4 0.6 2184
32 15 5 0.6 1560 72 25 5 0.6 2002
33 15 2 0.8 2424 73 25 2 0.8 2713
34 15 3 0.8 2165 74 25 3 0.8 2552
35 15 4 0.8 2100 75 25 4 0.8 2457
36 15 5 0.8 2080 76 25 5 0.8 2307
37 15 2 1 2611 77 25 2 1 2806
38 15 3 1 2610 78 25 3 1 2762
39 15 4 1 2605 79 25 4 1 2726
40 15 5 1 2600 80 25 5 1 2725
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4.2.1 Performance Evaluation of SCSAMHCP Model

To assess the effectiveness of the proposed stochastic model (SCSAMHCP), we evaluated two
key metrics: Expected Value of Perfect Information (EVPI) and Value of the Stochastic Solution
(VSS) [19]. These metrics are calculated by comparing the model's solution to the optimal solution
of the Stochastic Problem (SP):

EVPI: This metric quantifies the value of knowing future conditions with certainty.
VSS: This metric represents the benefit of using probabilistic information about future
outcomes instead of relying solely on deterministic data.

The following equations (Equations 22, 23, and 24) were employed to calculate EVPI and VSS [19].

EVPI = (WS — SP)/SP (18)
VSS = (SP — EVS)/SP (19)
EVS <SP <WS (20)

4.2.2 Comparison of Modeling Methods

To determine the SCSAMHCP model's advantage, we compared it with two alternative solution
approaches:

e Wait-and-See (WS) Solution: This approach involves solving the deterministic equivalent
(DE) for each scenario independently. The final solution is then obtained by averaging the
objective values across all scenarios, weighted by their respective probabilities.

e Expected Value Solution (EVS): This approach involves solving the deterministic model with
the average flow parameter across all scenarios to determine hub locations. Subsequently, the
optimal solution for each scenario is calculated individually using the established hubs.
Finally, the EVS value is the average objective value obtained from all scenarios.

The results obtained for evaluating the SCSAMHCP model are presented in Table 3.

Table 3- Results of evaluating SCSAMHCP model

Problem SP EVPI VSS Problem SP EVPI VSS
Number Number
1 919,935 1.07% 0.00% 11 744,260 0.61% 0.05%
2 830,171 0.24% 0.00% 12 686,828 1.07% 1.50%
723,825 1.15% 0.00% 13 939,834 0.74% 3.51%
4 679,364 1.14% 1.11% 14 834,474 0.45% 0.00%
5 945,279 0.20% 0.00% 15 756,879 0.53% 0.00%
6 824,102 0.40% 0.00% 16 697,326 1.14% 0.00%
7 737,296 1.41% 0.48% 17 951,047 0.00% 421%
8 678,675 0.87% 1.01% 18 837,261 0.28% 0.00%
9 945,279 0.00% 0.00% 19 764,001 0.31% 0.00%
10 830,145 0.56% 0.00% 20 703,409 0.34% 0.00%
Average 801,470 0.63% 0.59%
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Analysis of Results:

The VSS values in Table 3 indicate that the SCSAMHCP model often provides superior solutions
compared to the deterministic models (positive VSS values). This improvement arises from
incorporating probabilistic data rather than relying solely on deterministic assumptions. Deterministic
models, employing average data, have a solution space inherently limited compared to the
probabilistic model. This limitation explains why they cannot outperform the SCSAMHCP model,
which was confirmed by solving the problems.

Furthermore, solving problems with more than 15 nodes revealed a significant increase in
execution time due to the model's NP-hard nature. This highlights the need for further exploration of
computational efficiency techniques for larger-scale instances.

4.2.3 Evaluating the Performance of the Proposed Solution Method

This section evaluates the performance of the proposed Lagrangian Relaxation (LR) method for
solving the Stochastic Capacitated Maximal Hub Covering Problem (SCSAMHCP).

Since finding the optimal solution for all problem instances can be computationally challenging,
an upper bound for the SCSAMHCP problem was established (Equation (21)) to assess the error
percentage of each method. These upper bound leverages the fact that the objective functions of the
multiple allocation version of stochastic maximal hub covering problems inherently create an upper
bound for single-allocation problems. To achieve this, constraints set (2) were removed from the
SCSAMHCP model and re-solved.

(Upperbound_Value) — (Objective_Value) (21)
Error =

(Upperbound_Value)

The detailed results of the performance evaluation are presented in Appendix. The LR method
exhibits a consistently lower error rate (4.22%) compared to other method (26.82%), indicating
superior solution quality. It also demonstrates a smaller average runtime, making it a more efficient
approach for larger problem instances. Based on these findings, we can conclude that the Mixed-
Integer Linear Programming (MILP) model remains a viable option for solving problems with smaller
dimensions. However, for larger and more complex scenarios, the LR method emerges as a more
efficient and accurate solution strategy.

5. Conclusions

This study tackles the challenge of designing robust hub-and-spoke networks amid demand
uncertainty in logistics and telecommunications. We proposed a novel mathematical model known as
the Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP), which
accounts for variability in origin-destination flows. Our model represents a significant advancement
over existing approaches that depend on static flow assumptions.

The Lagrangian Relaxation (LR) algorithm was employed to solve the computationally
challenging SCSAMHCP model efficiently. The effectiveness of the proposed model and solution
approach was evaluated through computational experiments using various problem instances. The
results demonstrated that:

e The SCSAMHCP model provides superior solutions compared to deterministic models
that neglect demand uncertainty. This is evident from the positive Value of the Stochastic
Solution (VSS) values.
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e The LR algorithm offers a good balance between solution quality and computational
efficiency, making it suitable for solving large-scale problems.

Our findings indicate that the SCSAMHCP model, along with the Lagrangian Relaxation (LR)
solution method, serves as an effective tool for designing robust and flexible hub-and-spoke networks
capable of managing fluctuating demand conditions in real-world logistics and telecommunications
contexts. This research paves the way for further exploration in various areas. Future work may
include:
o Investigating the scalability of the proposed model and solution approach for even larger
network instances.
e Developing more sophisticated methods for incorporating different types of demand
uncertainties, such as temporal variations.
e Exploring the integration of the SCSAMHCP model with dynamic network optimization
frameworks for real-time flow management in hub-and-spoke networks.

By focusing on these areas, we can further improve the practical applicability of the proposed
model and solution method for creating robust and efficient hub-and-spoke networks in response to
dynamic demand conditions.
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Appendix: Results obtained from different methods of solving the SCMAMHCP model

Problem Upper- SCSAMHCP LR
Number Bound Objective Runtime Error Objective Runtime Error
Value (s) Value (s)
1 919,935 919,935 36 0.00% 919,901 183 0.00%
2 830,171 830,171 45 0.00% 830,169 202 0.00%
3 723,825 723,825 25 0.00% 718,149 243 0.78%
4 679,364 679,364 1572 0.00% 678,837 1138 0.08%
5 945,279 945,279 23 0.00% 945,276 199 0.00%
6 824,100 824,100 67 0.00% 823,732 196 0.04%
7 737,296 737,296 39 0.00% 726,568 220 1.46%
8 678,675 678,675 30 0.00% 678,675 299 0.00%
9 945,279 945,279 20 0.00% 867,127 194 8.27%
10 830,145 830,145 83 0.00% 829,027 202 0.13%
11 744,260 744,260 56 0.00% 729,499 224 1.98%
12 686,828 686,828 51 0.00% 679,841 327 1.02%
13 939,834 939,834 78 0.00% 923,373 190 1.75%
14 834,474 834,474 261 0.00% 830,220 254 0.51%
15 756,879 756,879 100 0.00% 740,187 501 2.21%
16 697,326 697,326 95 0.00% 690,530 391 0.97%
17 951,047 951,047 29 0.00% 934,121 187 1.78%
18 837,261 837,261 135 0.00% 827,899 321 1.12%
19 764,001 764,001 1770 0.00% 752,591 497 1.49%
20 703,409 703,409 1163 0.00% 688,708 493 2.09%
21 2,293,477 2,293,477 572 0.00% 2,293,477 652 0.00%
22 2,193,061 2,193,061 754 0.00% 2,163,970 674 1.33%
23 2,089,862 2,089,862 872 0.00% 1,993,400 731 4.62%
24 2,082,010 1,981,617 3600 4.82% 1,981,610 1588 4.82%
25 2,293,477 2,293,477 809 0.00% 2,293,477 683 0.00%
26 2,175,294 2,175,294 2293 0.00% 2,173,330 730 0.09%
27 2,016,944 2,016,944 441 0.00% 1,882,820 771 6.65%
28 1,938,864 1,938,864 616 0.00% 1,873,240 971 3.38%
29 2,317,659 2,317,659 303 0.00% 2,317,659 678 0.00%
30 2,149,915 2,149,915 794 0.00% 2,102,090 685 2.22%
31 2,057,290 2,057,290 1581 0.00% 2,057,220 920 0.00%
32 2,234,163 1,941,342 3600 13.11% 1,880,920 1109 15.81%
33 2,334,862 2,334,862 512 0.00% 2,334,860 730 0.00%
34 2,199,318 2,199,318 1024 0.00% 2,113,370 979 3.91%
35 2,364,942 2,061,179 3600 12.84% 1,967,520 1198 16.80%
36 2,320,434 1,972,208 3600 15.01% 1,890,040 3600 18.55%
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Problem Upper- SCSAMHCP LR
Number Bound Objective Runtime Error Objective Runtime Error
Value (s) Value (s)
37 2,305,489 2,305,489 732 0.00% 2,239,610 679 2.86%
38 2,364,942 2,251,888 3600 4.78% 2,251,888 1103 4.78%
39 2,364,942 2,115,293 3600 10.56% 2,070,980 3600 12.43%
40 2,320,434 2,022,491 3600 12.84% 1,961,950 3600 15.45%
41 5,294,908 2,550,896 3600 51.82% 5,075,970 2064 4.13%
42 5,374,303 5,374,303 2997 0.00% 5,374,300 2786 0.00%
43 5,340,441 5,340,441 2941 0.00% 5,338,340 2255 0.04%
44 5,706,888 5,146,359 3600 9.82% 5,083,090 2313 10.93%
45 5,642,255 1,990,531 3600 64.72% 5,349,580 2151 5.19%
46 5,514,049 5,514,049 2812 0.00% 5,514,049 2241 0.00%
47 5,710,398 5,272,968 3600 7.66% 5,172,860 2537 9.41%
48 5,729,076 5,116,473 3600 10.69% 4,913,080 2476 14.24%
49 5,667,077 5,222,609 3600 7.84% 5,339,069 2749 5.79%
50 5,754,594 3,901,694 3600 32.20% 5,585,340 2190 2.94%
51 5,739,268 5,128,879 3600 10.64% 5,339,210 2466 6.97%
52 5,744,452 5,098,658 3600 11.24% 5,037,220 3513 12.31%
53 5,752,254 1,990,421 3600 65.40% 5,433,240 2991 5.55%
54 5,754,594 4,256,282 3600 26.04% 5,476,408 2240 4.83%
55 5,754,594 5,014,274 3600 12.86% 5,279,990 3600 8.25%
56 5,754,594 4,744,012 3600 17.56% 4,966,830 3600 13.69%
57 5,754,594 5,122,655 3600 10.98% 5,523,278 2580 4.02%
58 5,754,594 1,352,844 3600 76.49% 5,432,860 2381 5.59%
59 5,754,594 3,374,349 3600 41.36% 5,383,340 3600 6.45%
60 5,710,086 976,340 3600 82.90% 5,088,600 3600 10.88%
61 8,391,410 3,035,691 3600 63.82% 7,428,197 3600 11.48%
62 8,539,901 2,049,641 3600 76.00% 8,374,150 3600 1.94%
63 8,523,370 1,641,238 3600 80.74% 8,244,920 3600 3.27%
64 8,169,545 1,394,661 3600 82.93% 7,772,027 3600 4.87%
65 8,207,264 3,035,699 3600 63.01% 7,745,736 3600 5.62%
66 8,539,901 2,049,646 3600 76.00% 8,358,110 3600 2.13%
67 8,312,332 1,869,931 3600 77.50% 8,235,969 3600 0.92%
68 8,292,035 1,394,652 3600 83.18% 8,235,970 3600 0.68%
69 8,147,716 3,035,669 3600 62.74% 7,824,860 3600 3.96%
70 8,392,633 2,049,724 3600 75.58% 8,313,170 3600 0.95%
71 8,475,657 1,641,339 3600 80.63% 8,260,840 3600 2.53%
72 8,356,619 4,881,475 3600 41.59% 8,131,350 3600 2.70%
73 8,199,543 3,035,560 3600 62.98% 8,009,290 3600 2.32%
74 8,445,827 2,049,679 3600 75.73% 8,200,747 3600 2.90%
75 8,463,800 1,641,153 3600 80.61% 8,200,747 3600 3.11%

75
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Problem Upper- SCSAMHCP LR
Number Bound Objective Runtime Error Objective Runtime Error
Value (s) Value (s)

76 8,153,549 1,394,413 3600 82.90% 8,072,390 3600 1.00%
71 8,234,366 3,035,796 3600 63.13% 8,070,770 3600 1.99%
78 8,278,286 2,049,851 3600 75.24% 7,924,460 3600 4.27%
79 8,144,848 1,641,308 3600 79.85% 7,796,750 3600 4.27%
80 8,186,563 1,394,493 3600 82.97% 7,679,290 3600 6.20%
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