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Traditional maximal p-hub covering problems focus on scenarios where network flow is 

constrained by resource limitations. However, many existing models rely on static parameters, 

overlooking the inherent randomness present in real-world logistics. This oversight can result in 

suboptimal network designs that are vulnerable to congestion and rising costs as demand varies. 

To address this issue, we propose a novel mathematical model for the capacitated single allocation 

maximal p-hub covering problem that takes into account stochastic variations in origin-destination 

flows. Although solving this model poses computational challenges, we utilize a Lagrangian 

relaxation algorithm to enhance efficiency. Computational experiments using the CAB dataset 

highlight the effectiveness of our approach in achieving optimal solutions while reducing 

computation time. This framework offers valuable insights for designing robust hub-and-spoke 

networks in the face of demand uncertainty. 
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1. Introduction 

 
Hub networks are a fundamental infrastructure in logistics and telecommunications, facilitating 

efficient flow movement between origin and destination points. These networks rely on strategically 
located hub facilities that provide crucial services like switching, sorting, and consolidating flows. 
By optimizing network connections and minimizing costs, hub networks play a vital role in various 
industries [7]. 

 
Hub location is a strategic decision-making problem. At the strategic level, long-term decisions 

are made that are usually difficult to change and require significant amounts of time and cost to 
implement. Hub location and network design are typically based on the forecast of future demand, 
which is inherently stochastic. Therefore, this demand uncertainty cannot be ignored in hub network 
design problems [31]. Parameters such as customer demand, cost, and travel time naturally involve 
uncertainty and cannot be accurately estimated with deterministic data. Some researchers have 
examined how to incorporate various aspects of uncertainty in hub network design. 

 

 
* Corresponding Author. 
1 Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran, 

Email: y.khosravian@in.iut.ac.ir. 
2 Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran, 

Email: ali-nook@iut.ac.ir. 
3 Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran, 

Email: moslehi@iut.ac.ir. 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
5-

24
 ]

 

                             1 / 20

http://iors.ir/journal/article-1-834-en.html


58 Khosravian et al. 
 

Marianov and Serra [18] Provided the first research on uncertainty in hub location within air 
transport networks, modeling hubs as M/D/C queue systems. Their mathematical model is based on 
the probability of customer presence in the system, which later forms the probabilistic capacity 
constraints of the hub. They used a tabu search heuristic for problem-solving due to the computational 
complexity of their model. Sim et al. [28] presented the probabilistic single allocation p-hub center 
problem and used a chance-constrained mathematical model to ensure minimum service levels, with 
travel times assumed to follow a normal distribution. A heuristic algorithm was proposed for solving 
the model. Yang [29, 30] developed a probabilistic programming model for fixed-cost hub location 
with single allocation, considering seasonal demand variations as different scenarios. The model 
included direct connections between non-hub nodes and used real data from Taiwan and China 
airlines, solved with GAMS and OSL solvers. Bashiri et al. [5] proposed a probabilistic single 
allocation p-hub center problem with travel times modeled as normally distributed random variables. 
The objective was to maximize the minimum service level for the maximum travel time, using a 
genetic algorithm for solution. Contreras et al. [9] formulated a two-stage stochastic integer 
programming model for fixed-cost, multiple allocation hub location, considering uncertain demand 
and flow costs. They introduced three different probabilistic models and employed Monte Carlo 
simulation-based algorithms and Benders decomposition for solving. Mohammadi et al. [20] 
extended Marianov and Serra’s model for container transport, considering random transport times 
and truck arrival rates. They used a combined genetic and imperialist competitive algorithm for 
solving. Zhai et al. [32] proposed a two-stage stochastic hub location model with risk minimization 
criteria and uncertain demand represented by a random vector. They showed that the two-stage 
programming is equivalent to a single-stage p-model, solved using branch and bound methods. 
Alumur et al. [2] presented three models for uncertain fixed-cost hub location problems with both 
single and multiple allocations. They used various scenarios for uncertain costs and demands, 
analyzed using CAB data and CPLEX software. Mohammadi et al. [21] developed a multi-objective 
stochastic model for complete single allocation hub covering problems under uncertainty, including 
risk factors for transport times. They compared their results using multi-objective imperialist 
competitive algorithm with NSGA-II and PAES algorithms. Chen et al. [8] provided a two-stage 
stochastic programming model for single allocation hub center location with budget constraints, 
aiming to minimize the longest expected path, particularly for disaster response facility location. Hult 
et al. [15] developed a probabilistic single allocation hub center location model with stochastic travel 
times, aiming to minimize the maximum travel time given a minimum service level. They proposed 
exact solution methods based on variable reduction and decomposition algorithms. Sadeghi et al. [25] 
offered a probabilistic complete coverage hub location model with random capacity paths, aiming to 
minimize total transportation and hub establishment costs. They used differential evolution and 
standard genetic algorithms for comparison. Adibi and Razmi [1] proposed a two-stage stochastic 
programming model for fixed-cost, multiple allocation hub location, considering uncertain demand 
and transportation costs, analyzed using Iranian air data with GAMS and CPLEX. Ebrahimizade et 
al. [11] developed a bi-objective probabilistic hub covering model with uncertain transport, 
maximizing flow and reliability on the weakest network path, using fuzzy multi-objective linear 
programming for solving. Yang et al. [31] proposed a two-stage stochastic hub network design model 
with fixed costs, considering seasonal demand variations as discrete distributions with multiple 
scenarios. Zhalechian et al. [33] proposed a multi-objective mixed integer nonlinear mathematical 
model for hub location with probabilistic-possibilistic uncertainty, considering various transport 
modes and independent travel times. Shang et al. [26] formulated a stochastic multi-commodity hub 
location problem with direct link strategy and multiple capacity levels, using expected value and 
chance-constrained programming techniques. Hu et al. [14] developed a stochastic single allocation 
hub location model with capacity constraints and independent normally distributed random demands, 
approximated using piecewise tangent and linear approximations. Rostami et al. [24] offered a fixed-
cost, single allocation hub location model under demand uncertainty, optimized using a custom 
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branch-and-cut algorithm. Ghaffari-Nasab [12] formulated a stochastic hub location problem with 
Bernoulli demands, providing both single and multiple allocation models, solved using Benders 
decomposition and Lagrange relaxation techniques. Rahmati et al. [23] proposed a profit-maximizing 
hub location model considering carbon emission control and population density, using advanced 
sampling and Benders decomposition algorithms. Bayram et al. [6] formulated a hub network design 
problem considering congestion, capacity, and stochastic demand, extending classical hub location 
problems. Demand was defined as random based on different scenarios, with a Benders 
decomposition and column generation algorithm for solving. Janschekowitz et al. [16] proposed an 
optimization-simulation iterative approach for hub network design under single and multiple 
allocation uncertainty, considering uncertain demand, transportation costs, and fixed costs for 
establishing hubs and connections. The approach integrated scenario-based optimization and 
simulation techniques, incorporating flow-dependent scale economies in the simulation phase. 
Andaryan et al. [3] formulated a single allocation hub location problem with capacity constraints, 
considering Bernoulli demand distribution. The problem was examined under facility and customer 
outsourcing policies, with two-stage stochastic programming formulations and a Tabu search-based 
algorithm for large-scale instances. Guillot et al. [13] present a novel approach to designing 
reconfigurable park-and-ride systems by integrating hub location and fleet assignment decisions. 
Their two-stage stochastic model effectively captures the dynamic nature of travel demand and traffic 
conditions, leading to more resilient and efficient system designs. The authors' development of 
advanced solution methodologies, including L-shaped and metaheuristic approaches, is 
commendable. By applying their model to real-world data from Lyon, France, the study provides 
valuable insights into the practical implementation of reconfigurable park-and-ride systems. 

 
A review of the maximal hub covering problem literature reveals that most models assume static 

future decision parameters and are developed in a certain environment. By assuming parameter 
certainty, designing and solving a hub network becomes simpler compared to models that consider 
dynamic, ambiguous, or stochastic conditions. However, these static models often lack practicality. 
For instance, in air transport, seasonal changes in travel volume and climate can affect key decision-
making parameters such as flow and travel time. A hub network designed with a fixed flow volume 
may face congestion, rising costs, and poor service delivery if actual flows exceed hub capacity. 
Addressing flow changes can mitigate such issues, leading to a more stable network. For example, 
Ball, Barnhart [4] estimated the total effect of flight delays in the United States in 2007 at about $30 
billion, accounting for lost revenue, flight crew overtime, passenger re-accommodation costs, and 
other welfare losses. 

 
In this study, we tackle stochastic variations in origin-destination (O/D) flows by developing a 

mathematical formulation for the Stochastic Capacitated Single Allocation Maximal Hub Covering 
Problem (SCSMHCP). We model uncertainty in O/D flows using a finite set of scenarios, each 
assigned a specific probability. The proposed model operates in two stages:  In the first stage, we 
focus on hub location, assuming it remains stable across scenarios due to its strategic nature and 
immunity to random parameter fluctuations. In the second stage, we adapt the flow transfers from 
origins to destinations in response to the revealed uncertainties, while accounting for coverage and 
capacity constraints. This approach enables flexible routing of flows, minimizing the risk of network 
congestion.  

 
Due to the computational complexity of the proposed model, we utilize the Lagrangian relaxation 

algorithm to obtain feasible solutions. We assess the model and solution methods by solving a range 
of problems. Remarkably, to the best of our knowledge, our study is the first to incorporate flow 
uncertainty and capacity constraints into maximal hub covering problems. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
5-

24
 ]

 

                             3 / 20

http://iors.ir/journal/article-1-834-en.html


60 Khosravian et al. 
 

The paper is organized as follows: Section 2 proposes the mathematical model for the capacitated 
single allocation maximal hub covering problem. Section 3 presents the Lagrangian relaxation 
method. Section 4 shows the experimental results. Finally, the conclusion is presented in Section 5. 

2. Mathematical Formulation  

2.1. Assumptions 

 
The Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP) model 
incorporates the following assumptions: 

 

 Discrete Flow Distribution: Demand uncertainty is represented by a discrete probability 
distribution for origin-destination (O/D) flows. This means there are a finite number of 
possible flow realizations, also referred to as scenarios. 

 Known Scenario Information: In each scenario, the O/D flow values are known and 
interdependent. Additionally, the probability of occurrence for each scenario is also known. 

 Hub-Encouraged Transportation: Transportation via hubs is assumed to be incentivized 
due to cost and distance savings. 

 Symmetric Travel: Direct travel time (or cost) is considered equal for both directions 
between two nodes. 

 Limited Direct Connections: Direct transportation between non-hub nodes is not permitted. 
All O/D flows must be routed through hubs. 

 Complete Inter-Hub Network: The network formed by the hubs themselves is considered a 
complete graph, and the O/D route passes at least one and at most two hubs. 

 Single/Double Hub Routing: O/D flows must pass through at least one and at most two 
hubs on their route. 

 Predefined Hub Count: The number of hubs to be located is predetermined before solving 
the model. 

 Hub Node Selection Flexibility: Any node in the network can be chosen as a hub location. 

 Single Hub Allocation: Each non-hub node can be assigned to only one hub for flow 
routing. 

 Hub Capacity Constraints: A capacity constraint is imposed on the incoming flow at each 
hub, representing the maximum flow a hub can handle. 

 Known Hub Capacities: The capacities of all hub nodes are assumed to be known 
beforehand. 

2.2. Notation 

 
In this section, we introduce the mathematical notation employed throughout the analysis. We 

define the sets, indices, parameters, and decision variables used in the model. This notation provides 
a foundation for understanding the subsequent development and results presented in the following 
sections. 

 
Notations and Parameters: 

N: Set of nodes N={1,…,n} 

S: Set of scenarios S={1,…,m} 

i,j: Indices of origin (destination) nodes   �, � = 1, … , � 

k,l: Indices of hubs �, 	 = 1, … , � 
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s: Indices of scenarios 
 = 1, … , � 

P: Number of hubs 
 

D�: Travel time of direct path from node i to node j �, � = 1, … , � ���� :  The amount of demand flow from origin node i to destination node j under 

scenario s. 

�, � = 1, … , � 
 = 1, … , � ��: The probability of occurrence of scenario s (∑ ���∈� = 1) 
 = 1, … , � α: The discount factor for transferring flow between two hub nodes (0<α≤1)  β: Coverage radius (allowable travel time/cost between O/D nodes)  ��: The capacity of hub k � = 1, … , � 
 

Decision variables: 

������ = 1, if the flow from node i is transported to node j through hubs k and l 

under scenario s, otherwise 0. 

�, �, �, 	 = 1, … , � 
 =1, … , � 

���� = 1, if node i is allocated to hub k under scenario s, otherwise 0. 
�, � = 1, … , � & i≠k 
 = 1, … , � 

�� = 1, if  a hub is established in node k under scenario s, otherwise 0 �, � = 1, … , � 

 

2.3. Mathematical Formulation of SCSMHCP 

 
Building upon the provided notation and parameters, here's the mathematical formulation of the 

Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP): 
 

SCSMHCP:   !�         ∑ �(
) ∑ ∑ ∑ ∑ ����   ������%�&'%�&'%�&'%�&'(�&' (1) 

s.t.          

) ����
%

�&' ,   �*�
= 1 − �� � = 1, … , � , 
 = 1, … , � (2) 

���� ≤ �� 
�, � = 1, … , � , � ≠ � , 
 = 1, … , � 

(3) 

) ��
%

�&'
= .   (4) 

2 ������ ≤ ���� + ����  �, �, �, 	 = 1, … , �  , � ≠ � , � ≠ 	 , 
 = 1, … , � 
(5) 

2 ������ ≤ �� + ����  �, �, 	 = 1, … , � , � ≠ 	 , 
 = 1, … , � 
(6) 

2 ������ ≤ ���� + �� �, �, 	 = 1, … , �  , � ≠ � , 
 = 1, … , � 
(7) 

2 ������ ≤ �� + �� �, 	 = 1, … , � , 
 = 1, … , � (8) 12�� + 32�� + 2��4 ×  ������ ≤ 6 �, �, �, 	 = 1, … , � , 
 = 1, … , � (9) 
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) )  ������
%

�&'

%

�&'
≤ 1 �, � = 1, … , � , 
 = 1, … , � (10) 

) ) ���� 7)1 ������ +  ������ 4 −  ������
%

�&'
8

%

�&'

%

�&'
≤ �� � = 1, … , � , 
 = 1, … , � (11) 

 ������  ∈ 90,1; �, �, �, 	 = 1, … , �  , 
 = 1, … , � 
(12) 

���� ∈ 90,1; �, � = 1, … , � , � ≠ �  , 
 = 1, … , � 
(13) 

�� ∈ 90,1; � = 1, … , � (14) 
 
Our model aims to maximize the total expected flow in a network with hubs and non-hub nodes. 

We achieve this through the following formulation: 
 
 Objective Function (1): This function maximizes the summation of expected flows across all 

origin-destination pairs. 
 Constraints: 

o Hub Assignment (2): These constraints ensure that each non-hub node can be 
assigned to at most one hub, and simultaneously prevent hubs from being assigned 
to other nodes. 

o Hub Connection Eligibility (3): This set restricts flow assignments under each 
scenario. Node i can only be assigned to node k if k is a designated hub. 

o Number of Hubs (4): This constraint guarantees that exactly P hubs are established 
within the network. 

o Flow Establishment Conditions (5-8): These constraints define the conditions under 
which flow is established between origin and destination pairs based on hub 
connections and selections. 

 Constraint (5): Flow is established if origin i connects to hub k and 
destination j connects to hub l (standard case). 

 Constraints (6) & (7): Flow may also occur if i is the hub or j is the hub, 
respectively. 

 Constraint (8): Flow is additionally possible if both i and j are hubs. 
o Travel Time Restriction (9): This constraint ensures that the path i → k → l → j can 

only be established if the travel time is less than the coverage radius β. 
o Unique Routes (10): This constraint guarantees that at most one route exists between 

each origin-destination pair. 
o Hub Capacity (11): This constraint limits the total entering flow to each hub under 

each scenario, ensuring it doesn't exceed the hub's capacity. 
o Decision Variable Types (12)-(14): These constraints define the type (binary, 

continuous, etc.) of each decision variable used in the model. 
 

Following this formulation, we delve into the solution method for this proposed model in the 
subsequent section. 

3. Solution Approach: Lagrangian Relaxation 

 
The Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP) 

inherits the NP-hardness of the basic Maximal Hub Covering Problem (Kara and Tansel [17]). 
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Additionally, the introduction of scenarios and capacity constraints in SCSMHCP significantly 
increases the number of variables and constraints compared to simpler MHCP models. This renders 
directly solving the formulated model computationally intractable for large-scale problems. 

 
To address this challenge and achieve efficient solutions, we employ the Lagrangian Relaxation 

(LR) method. This technique is particularly well-suited for problems with complex constraints, such 
as those relating hub location decisions variables (v,x) and the flow routing variables (y) in constraints 
(5) to (8) of the SCSMHCP model. 

 
Core Idea of Lagrangian Relaxation: 

1. Constraint Relaxation: The LR method relaxes a subset of complicating constraints by 
removing them from the original problem. 

2. Lagrangian Function: A penalty term, representing the violation of the relaxed constraints, 
is added to the objective function. This term is multiplied by a Lagrange multiplier, which 
acts as a weighted penalty for violating the constraints. 

3. Sub-Problems: By relaxing the constraints, the original problem is decomposed into two 
easier-to-solve sub-problems: 

o A relaxed master problem that optimizes the objective function considering the 
penalty terms. 

o A set of Lagrangian sub-problems, one for each relaxed constraint. These sub-
problems minimize the violation of the relaxed constraints for the current values of 
the Lagrange multipliers. 

4. Iterative Improvement: The Lagrange multipliers and solutions from the sub-problems are 
used iteratively to improve the solution of the master problem and ultimately obtain an 
optimal solution for the original problem. 

 
By employing the LR method, we can decompose the complex SCSMHCP model into smaller, 

more manageable sub-problems. This allows for efficient solution techniques to be applied to each 
sub-problem, leading to faster computation of near-optimal solutions for large-scale instances of the 
SCSMHCP. 

 
To solve the SCSAMHCP model using the LR, the model's rigid constraints are first identified 

and added to the objective function. At first glance, it is clear from the proposed model that constraints 
set (5)-(8) establishes the relationship between the binary variables v, x and y. If the desired constraints 
are relaxed, the created Lagrangian problem can be solved more quickly.  Let  <����� ≥ 0 be the 

Lagrange multiplier for constraint (5), >���� ≥ 0 be the Lagrange multiplier for constraint (6),  ?���� ≥0 be the Lagrange multiplier for constraint (7), and  ℎ��� ≥ 0 be the Lagrange multiplier for constraint 
(8). By doing so, we obtain the following relaxed model: 
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AB:   !�   ) �(
) ) ) ) ) ����   ������C

�&'

C

�&'

C

�&',*�

C

�&'

�

�&'
+ ) ) ) ) )  <����� 1−2 ������ + ���� + ���� 4

C

�&',*�

C

�&',*�

C

�&',*�

C

�&'

�

�&'
+ ) ) ) )  >���� 1−2 ������ + �� + ���� 4

C

�&'

C

�&',*�

C

�&'

�

�&'
+ ) ) ) )  ?���� (−2 ������ + ���� + ��)C

�&'

C

�&',*�

C

�&'

�

�&'
+ ) ) )  ℎ��� (−2 ������ + �� + ��)C

�&'

C

�&'

�

�&'
 

(15) 

s.t.  (2)-(4), (9)-(14)   

 
By expanding equation (15), and considering the constraints, the LR model can be separated into 

two location-allocation (LRx) and routing (LRy) sub-problems as follows. 
 

ABD:   !�   ) ) ) ) )  <����� 1���� + ���� 4
C

�&',*�

C

�&',*�

C

�&',*�

C

�&'

�

�&'
+ ) ) ) )  >���� 1�� + ���� 4

C

�&'

C

�&',*�

C

�&'

�

�&'
+ ) ) ) )  ?���� (���� + ��)C

�&'

C

�&',*�

C

�&'

�

�&'
+ ) ) )  ℎ��� (�� + ��)C

�&'

C

�&'

�

�&'
 

(16) 

s.t.         (2)-(4) , (13),(14)  

 

ABE:   !�   ) �(
) ) ) ) ) ����   ������C

�&'

C

�&'

C

�&',*�

C

�&'

�

�&'
− ) ) ) ) )  2<�����  ������C

�&',*�

C

�&',*�

C

�&',*�

C

�&'

�

�&'
− ) ) ) )  2>����  ������C

�&'

C

�&',*�

C

�&'

�

�&'
− ) ) ) )  2?����  ������C

�&'

C

�&',*�

C

�&'

�

�&'
− ) ) ) 2 ℎ���  ������

C

�&'

C

�&'

�

�&'
 

(17) 

S.t.       (9)-(12)    

 
The necessary parameters for applying the LR method are as follows: 
 FGHI : The objective function value of JKH in the rth iteration 
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FGLI  : The objective function value of ABE in the rth iteration MNOH : Maximum allowed iteration for Lagrangian relaxation algorithm PNOH : Maximum runtime for Lagrangian relaxation algorithm JGI : The lower bound obtained for the original problem in the rth iteration FGI : The upper bound obtained for the original problem in the rth iteration QR∗I : The optimal value of the variable v in the rth iteration HTRU∗I  : The optimal value of the variable x in the rth iteration LTVRWU∗I  : The optimal value of the variable y in the rth iteration  XTVRWU I
 : The Lagrangian multiplier corresponds to the constraint (5) in the rth iteration 

 YXTVRWU I
 : The subgradients correspond to the constraint (5) in the rth iteration 

 ZRVWU I
 : The Lagrangian multiplier corresponds to the constraint (6) in the rth iteration 

 YZRVWU I
 : The subgradients correspond to the constraint (6) in the rth iteration 

 YTRWU I
 : The Lagrangian multiplier corresponds to the constraint (7) in the rth iteration  YYTRWU I

 : The subgradients correspond to the constraint (7) in the rth iteration  [RWU I
 : The Lagrangian multiplier corresponds to the constraint (8) in the rth iteration  Y[RWU I

 : The subgradients correspond to the constraint (8) in the rth iteration \I : improvement Step Size of the Lagrangian multiplier in rth iteration ]I : The variable coefficient for calculating ^_ , it has a value between zero and 2. 
Limit : Maximum number of no improvement in the upper bound of the objective 

function in order to change the coefficient 
No imp : Counter of no improvement in the upper bound ` : The number of necessary changes in the step size after reaching the Limit 

parameter MaUTWbc : Maximum Percentage gap between the upper and lower bounds for stopping 
algorithm 

 
To obtain a lower-bound value in each iteration (Ad_), we set the ��∗_ values in the original 

problem and solve it to achieve the values of y and the objective function. 
 
The Algorithm 1 shows the pseudo-code of the Lagrangian relaxation algorithm used to solve the 

SCSAMHCP problem. First, the input parameters of the algorithm are set. Then, LRx and LRy 
problems are solved, and a new upper bound value is obtained. If the new upper bound value is better 
than the current best upper bound value, it is replaced, and the counter of no improvement sets to zero 
(No imp=0). The original problem for determining the lower bound is solved by considering the hubs' 
locations obtained from the LRx sub-problem. If a better upper bound is not obtained, one unit is 
added to the non-improvement counter, and if the counter reaches its upper limit, the e% value 
becomes smaller to make a more accurate search, and the counter will return to zero. After calculating 
the lower bound of the objective function, it is checked whether a better bound has been created or 
not. In the following, the algorithm's stop conditions are examined, including reaching the maximum 
iteration, reaching the maximum runtime, or meeting the conditions of maximum percentage gap 
between the upper and lower bounds. The new subgradients' values and the Lagrangian multipliers 
are calculated if the stop conditions are not met. The optimization condition of the current solution is 
then examined. The current solution is optimal if, for all non-zero subgradients' values, their 
multiplication with corresponding Lagrangian multipliers equals zero. In this case, the current 
solution will be the optimal solution to the original problem. If the stop conditions are not met, the 
previous steps are repeated.  
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Step 0: Set parameters as follows: f = 1, d<
g Ad = −∞, d<
g id = +∞  A���g = 5, kl ��� = 0,  e_ = 2, m = 2, nopD = 100  qopD = 3600, n�
�	l� = 0.01  
Initialize Lagrangian multipliers: 

               <����� = 0, >lf �, �, �, 	 = 1, … , � , � ≠ �, � ≠ 	, 
 = 1, … , � 

               >���� = 0, >lf �, �, 	 = 1, … , � , � ≠ 	, 
 = 1, … , � 

               ?���� = 0, >lf �, �, 	 = 1, … , � , � ≠ �, 
 = 1, … , � 

               ℎ��� = 0, >lf �, 	 = 1, … , �, 
 = 1, … , � 

Step 1: Solve ABD and ABE. Calculate  id_ = idD_ + idE_  

If  id_ < d<
g id then d<
g id = id_ and kl ��� = 0 

else  
      kl ��� = kl ��� + 1  

      If  kl ��� > A���g Then e_ = e_/m and  kl ��� = 0 

Step 2: set {��_ = ��∗_ , >lf � = 1, … , �} and solve SCSMHCP model. 

If Ad_ > d<
g Ad then d<
g Ad = Ad_ 

Step 3: If f > nopD  or q > qopD  STOP 

 Else update subgradients as follows:  ?<����� _ = −2������∗ _+����∗_ + ����∗_   , >lf �, �, �, 	 = 1, … , � , � ≠ �, � ≠ 	, 
 = 1, … , �  ?>���� _  = −2������∗ _+��∗ _ + ����∗_     , >lf �, �, 	 = 1, … , � , � ≠ 	, 
 = 1, … , �  ??���� _ = −2������∗ _+����∗_ + ��∗_      , >lf �, �, 	 = 1, … , � , � ≠ �, 
 = 1, … , �  ?ℎ��� _  = −2������∗ _+��∗ _ + ��∗_      , >lf �, 	 = 1, … , �, 
 = 1, … , � 

^_ = e_ x id_ − Ad_
∑ (?<����� _)y�,�,�,�,� + ∑ (?>���� _)y�,�,�,� + ∑ (??���� _)y�,�,�,� + ∑ (?ℎ��� _)y�,�,� z 

<����� _{' = �!� 90, <����� _ + ^%?<����� _; , >lf �, �, �, 	 = 1, … , � , � ≠ �, � ≠ 	, 
 = 1, … , � 

>���� _{' = �!� 90, >���� _ + ^% ?>���� _;  , >lf �, �, 	 = 1, … , � , � ≠ 	, 
 = 1, … , � 

?���� _{' = �!� 90, ?���� _ + ^%??���� _; , >lf �, �, 	 = 1, … , � , � ≠ �, 
 = 1, … , � ℎ��� _{' = �!� 90,  ℎ��� _ + ^% ?ℎ��� _;  , >lf �, 	 = 1, … , �, 
 = 1, … , � 

Step 4: If  {( ?<����� _ ≥ 0  !�|   ?<����� _ ×  <����� _ = 0) and ( ?>���� _ ≥ 0  !�|   ?>���� _ ×  >���� _ =0) and ( ??���� _ ≥ 0  !�|   ??���� _ ×  ?���� _ = 0) and ( ?ℎ��� _ ≥ 0  !�|   ?ℎ��� _ ×  ℎ��� _ =0) for �, �, �, 	 = 1, … , � , � ≠ �, � ≠ 	, 
 = 1, … , � }STOP, the optimal solution is achieved 
Else r=r+1 and Go to Step 1. 

Algorithm 1. pseudo-code of Lagrangian relaxation algorithm 

4. Computational Results 

 
This section presents the computational experiments conducted to evaluate the performance of the 

proposed SCSAMHCP model. We describe the data generation methods employed for simulating 
different demand scenarios and analyze the obtained results. 
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4.1. Data Generation 

 
To assess the SCSAMHCP model's efficacy under varying demand conditions, three scenarios 

were considered: low demand, medium demand, and high demand. 
 
 Medium Demand: Data for this scenario was obtained from the publicly available CAB 

dataset [22]. 
 Low Demand: In this scenario, the flow rate was reduced by 50% compared to the medium 

demand scenario, reflecting lower customer demand [29, 30]. 
 High Demand: Conversely, the flow rate was increased by 50% compared to the medium 

demand scenario, simulating high customer demand conditions [29, 30]. 
 
To further diversify the test environments, we employed varying values for the discount factor and 

radius of coverage, as suggested by Silva and Cunha [27]. Additionally, the capacity level for each 
node was calculated using the method proposed by Ebery, Krishnamoorthy [10]. All parameter values 
used in the data generation process are summarized in Table 1 

 
 

Table 1- Parameter Values for Data Generation 

Parameters Values 

n 10, 15, 20, 25 

P 2, 3, 4, 5 

m 3 

p(s) 
13     s = 1,2,3 

w��  

w�' = CAB dataset   w�y = 0.5w�' w�� = 1.5w�' 

Γ� Γ� = �nP� × ) ) p(s) × W���
�

�&'

�

�&'
       k = 1, … , n 

 

4.2. Results Analysis  

We employed GAMS software (version 24.9.1) and CPLEX solvers (version 12.7.1) to solve the 
proposed algorithms. The software ran on a computer equipped with a 3 GHz Intel processor and 
4GB of RAM. We set a runtime limit of 3600 seconds for the implementation. The Lagrangian 
relaxation algorithm was implemented with specific settings: λ� = 2 , φ = 2 , Limit = 5 , εpsilon =0.01 , ε��� = 100, T��� = 3600. To illustrate the algorithm's performance, we generated sample 
problems with specific settings detailed in Table 2.  
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Table 2- Sample issues settings 

Problem 

Number 

Parameters settings 
Problem 

Number 

Parameters settings 

Number 

of Nodes 

Number 

of Hubs 

Discount 

Factor 

Coverage 

Radius 

Number 

of Nodes 

Number 

of Hubs 

Discount 

Factor 

Coverage 

Radius 

1 10 2 0.2 1425 41 20 2 0.2 1851 

2 10 3 0.2 1117 42 20 3 0.2 1549 

3 10 4 0.2 811 43 20 4 0.2 1356 

4 10 5 0.2 736 44 20 5 0.2 1162 

5 10 2 0.4 1627 45 20 2 0.4 2067 

6 10 3 0.4 1185 46 20 3 0.4 1744 

7 10 4 0.4 970 47 20 4 0.4 1473 

8 10 5 0.4 863 48 20 5 0.4 1386 

9 10 2 0.6 1671 49 20 2 0.6 2255 

10 10 3 0.6 1387 50 20 3 0.6 1996 

11 10 4 0.6 1148 51 20 4 0.6 1835 

12 10 5 0.6 1079 52 20 5 0.6 1663 

13 10 2 0.8 1744 53 20 2 0.8 2493 

14 10 3 0.8 1589 54 20 3 0.8 2264 

15 10 4 0.8 1457 55 20 4 0.8 2154 

16 10 5 0.8 1413 56 20 5 0.8 2118 

17 10 2 1 1839 57 20 2 1 2611 

18 10 3 1 1791 58 20 3 1 2605 

19 10 4 1 1770 59 20 4 1 2601 

20 10 5 1 1766 60 20 5 1 2600 

21 15 2 0.2 2004 61 25 2 0.2 2136 

22 15 3 0.2 1638 62 25 3 0.2 1913 

23 15 4 0.2 1324 63 25 4 0.2 1617 

24 15 5 0.2 1149 64 25 5 0.2 1346 

25 15 2 0.4 2019 65 25 2 0.4 2401 

26 15 3 0.4 1741 66 25 3 0.4 2099 

27 15 4 0.4 1436 67 25 4 0.4 1881 

28 15 5 0.4 1287 68 25 5 0.4 1597 

29 15 2 0.6 2103 69 25 2 0.6 2557 

30 15 3 0.6 1844 70 25 3 0.6 2336 

31 15 4 0.6 1756 71 25 4 0.6 2184 

32 15 5 0.6 1560 72 25 5 0.6 2002 

33 15 2 0.8 2424 73 25 2 0.8 2713 

34 15 3 0.8 2165 74 25 3 0.8 2552 

35 15 4 0.8 2100 75 25 4 0.8 2457 

36 15 5 0.8 2080 76 25 5 0.8 2307 

37 15 2 1 2611 77 25 2 1 2806 

38 15 3 1 2610 78 25 3 1 2762 

39 15 4 1 2605 79 25 4 1 2726 

40 15 5 1 2600 80 25 5 1 2725 
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4.2.1 Performance Evaluation of SCSAMHCP Model 

 
To assess the effectiveness of the proposed stochastic model (SCSAMHCP), we evaluated two 

key metrics: Expected Value of Perfect Information (EVPI) and Value of the Stochastic Solution 
(VSS) [19]. These metrics are calculated by comparing the model's solution to the optimal solution 
of the Stochastic Problem (SP): 

EVPI: This metric quantifies the value of knowing future conditions with certainty. 
VSS: This metric represents the benefit of using probabilistic information about future 
outcomes instead of relying solely on deterministic data. 

 
The following equations (Equations 22, 23, and 24) were employed to calculate EVPI and VSS [19]. 
 ��.� = (�� − �.)/�. (18) ��� = (�. − ���)/�. (19) ��� ≤ �. ≤ �� (20) 

4.2.2 Comparison of Modeling Methods 

 
To determine the SCSAMHCP model's advantage, we compared it with two alternative solution 
approaches: 
 

 Wait-and-See (WS) Solution: This approach involves solving the deterministic equivalent 
(DE) for each scenario independently. The final solution is then obtained by averaging the 
objective values across all scenarios, weighted by their respective probabilities. 

 Expected Value Solution (EVS): This approach involves solving the deterministic model with 
the average flow parameter across all scenarios to determine hub locations. Subsequently, the 
optimal solution for each scenario is calculated individually using the established hubs. 
Finally, the EVS value is the average objective value obtained from all scenarios. 

The results obtained for evaluating the SCSAMHCP model are presented in Table 3. 

Table 3-  Results of evaluating SCSAMHCP model 

Problem 

Number 
SP EVPI VSS 

Problem 

Number 
SP EVPI VSS 

1 919 ,935 1 .07 % 0 .00 % 11 744 ,260 0 .61 % 0 .05 % 

2 830 ,171 0 .24 % 0 .00 % 12 686 ,828 1.07 % 1 .50 % 

3 723 ,825 1 .15 % 0 .00 % 13 939 ,834 0 .74 % 3.51 % 

4 679 ,364 1.14 % 1.11 % 14 834 ,474 0 .45 % 0 .00 % 

5 945 ,279 0 .20 % 0 .00 % 15 756 ,879 0 .53 % 0 .00 % 

6 824 ,102 0 .40 % 0 .00 % 16 697 ,326 1.14 % 0 .00 % 

7 737 ,296 1.41 % 0 .48 % 17 951 ,047 0 .00 % 4.21 % 

8 678 ,675 0 .87 % 1.01 % 18 837 ,261 0 .28 % 0 .00 % 

9 945 ,279 0 .00 % 0 .00 % 19 764 ,001 0 .31 % 0 .00 % 

10 830 ,145 0 .56 % 0 .00 % 20 703 ,409 0 .34 % 0 .00 % 

Average 801,470 0 .63 % 0 .59 % 
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Analysis of Results: 

The VSS values in Table 3 indicate that the SCSAMHCP model often provides superior solutions 
compared to the deterministic models (positive VSS values). This improvement arises from 
incorporating probabilistic data rather than relying solely on deterministic assumptions. Deterministic 
models, employing average data, have a solution space inherently limited compared to the 
probabilistic model.  This limitation explains why they cannot outperform the SCSAMHCP model, 
which was confirmed by solving the problems. 

 
Furthermore, solving problems with more than 15 nodes revealed a significant increase in 

execution time due to the model's NP-hard nature. This highlights the need for further exploration of 
computational efficiency techniques for larger-scale instances. 

4.2.3 Evaluating the Performance of the Proposed Solution Method 

 
This section evaluates the performance of the proposed Lagrangian Relaxation (LR) method for 
solving the Stochastic Capacitated Maximal Hub Covering Problem (SCSAMHCP). 
 

Since finding the optimal solution for all problem instances can be computationally challenging, 
an upper bound for the SCSAMHCP problem was established (Equation (21)) to assess the error 
percentage of each method. These upper bound leverages the fact that the objective functions of the 
multiple allocation version of stochastic maximal hub covering problems inherently create an upper 
bound for single-allocation problems. To achieve this, constraints set (2) were removed from the 
SCSAMHCP model and re-solved. 

�fflf = (i��<f�l �|_�!	 <) − (¢��<£g��<_�!	 <)(i��<f�l �|_�!	 <)  (21)  

 
The detailed results of the performance evaluation are presented in Appendix. The LR method 

exhibits a consistently lower error rate (4.22%) compared to other method (26.82%), indicating 
superior solution quality. It also demonstrates a smaller average runtime, making it a more efficient 
approach for larger problem instances. Based on these findings, we can conclude that the Mixed-
Integer Linear Programming (MILP) model remains a viable option for solving problems with smaller 
dimensions. However, for larger and more complex scenarios, the LR method emerges as a more 
efficient and accurate solution strategy. 

5. Conclusions 

This study tackles the challenge of designing robust hub-and-spoke networks amid demand 
uncertainty in logistics and telecommunications. We proposed a novel mathematical model known as 
the Stochastic Capacitated Single Allocation Maximal Hub Covering Problem (SCSMHCP), which 
accounts for variability in origin-destination flows. Our model represents a significant advancement 
over existing approaches that depend on static flow assumptions.  

 

The Lagrangian Relaxation (LR) algorithm was employed to solve the computationally 
challenging SCSAMHCP model efficiently. The effectiveness of the proposed model and solution 
approach was evaluated through computational experiments using various problem instances. The 
results demonstrated that: 

 The SCSAMHCP model provides superior solutions compared to deterministic models 
that neglect demand uncertainty. This is evident from the positive Value of the Stochastic 
Solution (VSS) values. 
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 The LR algorithm offers a good balance between solution quality and computational 
efficiency, making it suitable for solving large-scale problems. 

 
Our findings indicate that the SCSAMHCP model, along with the Lagrangian Relaxation (LR) 
solution method, serves as an effective tool for designing robust and flexible hub-and-spoke networks 
capable of managing fluctuating demand conditions in real-world logistics and telecommunications 
contexts.  This research paves the way for further exploration in various areas. Future work may 
include: 

 Investigating the scalability of the proposed model and solution approach for even larger 
network instances. 

 Developing more sophisticated methods for incorporating different types of demand 
uncertainties, such as temporal variations. 

 Exploring the integration of the SCSAMHCP model with dynamic network optimization 
frameworks for real-time flow management in hub-and-spoke networks. 

 
By focusing on these areas, we can further improve the practical applicability of the proposed 

model and solution method for creating robust and efficient hub-and-spoke networks in response to 
dynamic demand conditions. 
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Appendix: Results obtained from different methods of solving the SCMAMHCP model  
 

Problem 

Number 

Upper- 

Bound 

SCSAMHCP LR 

Objective 

Value 

Runtime 

(s) 
Error 

Objective 

Value 

Runtime 

(s) 
Error 

1 919,935  919,935  36 0.00% 919,901 183 0.00% 

2 830,171  830,171  45 0.00% 830,169 202 0.00% 

3 723,825  723,825  25 0.00% 718,149 243 0.78% 

4 679,364  679,364  1572 0.00% 678,837 1138 0.08% 

5 945,279  945,279  23 0.00% 945,276 199 0.00% 

6 824,100  824,100  67 0.00% 823,732 196 0.04% 

7 737,296  737,296  39 0.00% 726,568 220 1.46% 

8 678,675  678,675  30 0.00% 678,675 299 0.00% 

9 945,279  945,279  20 0.00% 867,127 194 8.27% 

10 830,145  830,145  83 0.00% 829,027 202 0.13% 

11 744,260  744,260  56 0.00% 729,499 224 1.98% 

12 686,828  686,828  51 0.00% 679,841 327 1.02% 

13 939,834  939,834  78 0.00% 923,373 190 1.75% 

14 834,474  834,474  261 0.00% 830,220 254 0.51% 

15 756,879  756,879  100 0.00% 740,187 501 2.21% 

16 697,326  697,326  95 0.00% 690,530 391 0.97% 

17 951,047  951,047  29 0.00% 934,121 187 1.78% 

18 837,261  837,261  135 0.00% 827,899 321 1.12% 

19 764,001  764,001  1770 0.00% 752,591 497 1.49% 

20 703,409  703,409  1163 0.00% 688,708 493 2.09% 

21 2,293,477 2,293,477 572 0.00% 2,293,477 652 0.00% 

22 2,193,061 2,193,061 754 0.00% 2,163,970 674 1.33% 

23 2,089,862 2,089,862 872 0.00% 1,993,400 731 4.62% 

24 2,082,010  1,981,617 3600 4.82% 1,981,610 1588 4.82% 

25 2,293,477 2,293,477 809 0.00% 2,293,477 683 0.00% 

26 2,175,294 2,175,294 2293 0.00% 2,173,330 730 0.09% 

27 2,016,944 2,016,944 441 0.00% 1,882,820 771 6.65% 

28 1,938,864 1,938,864 616 0.00% 1,873,240 971 3.38% 

29 2,317,659 2,317,659 303 0.00% 2,317,659 678 0.00% 

30 2,149,915 2,149,915 794 0.00% 2,102,090 685 2.22% 

31 2,057,290 2,057,290 1581 0.00% 2,057,220 920 0.00% 

32 2,234,163  1,941,342 3600 13.11% 1,880,920 1109 15.81% 

33 2,334,862 2,334,862 512 0.00% 2,334,860 730 0.00% 

34 2,199,318 2,199,318 1024 0.00% 2,113,370 979 3.91% 

35 2,364,942  2,061,179 3600 12.84% 1,967,520 1198 16.80% 

36 2,320,434  1,972,208 3600 15.01% 1,890,040 3600 18.55% 
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Problem 

Number 

Upper- 

Bound 

SCSAMHCP LR 

Objective 

Value 

Runtime 

(s) 
Error 

Objective 

Value 

Runtime 

(s) 
Error 

37 2,305,489 2,305,489 732 0.00% 2,239,610 679 2.86% 

38 2,364,942  2,251,888 3600 4.78% 2,251,888 1103 4.78% 

39 2,364,942  2,115,293 3600 10.56% 2,070,980 3600 12.43% 

40 2,320,434  2,022,491 3600 12.84% 1,961,950 3600 15.45% 

41 5,294,908  2,550,896 3600 51.82% 5,075,970 2064 4.13% 

42 5,374,303 5,374,303 2997 0.00% 5,374,300 2786 0.00% 

43 5,340,441 5,340,441 2941 0.00% 5,338,340 2255 0.04% 

44 5,706,888  5,146,359 3600 9.82% 5,083,090 2313 10.93% 

45 5,642,255  1,990,531 3600 64.72% 5,349,580 2151 5.19% 

46 5,514,049 5,514,049 2812 0.00% 5,514,049 2241 0.00% 

47 5,710,398  5,272,968 3600 7.66% 5,172,860 2537 9.41% 

48 5,729,076  5,116,473 3600 10.69% 4,913,080 2476 14.24% 

49 5,667,077  5,222,609 3600 7.84% 5,339,069 2749 5.79% 

50 5,754,594  3,901,694 3600 32.20% 5,585,340 2190 2.94% 

51 5,739,268  5,128,879 3600 10.64% 5,339,210 2466 6.97% 

52 5,744,452  5,098,658 3600 11.24% 5,037,220 3513 12.31% 

53 5,752,254  1,990,421 3600 65.40% 5,433,240 2991 5.55% 

54 5,754,594  4,256,282 3600 26.04% 5,476,408 2240 4.83% 

55 5,754,594  5,014,274 3600 12.86% 5,279,990 3600 8.25% 

56 5,754,594  4,744,012 3600 17.56% 4,966,830 3600 13.69% 

57 5,754,594  5,122,655 3600 10.98% 5,523,278 2580 4.02% 

58 5,754,594  1,352,844 3600 76.49% 5,432,860 2381 5.59% 

59 5,754,594  3,374,349 3600 41.36% 5,383,340 3600 6.45% 

60 5,710,086  976,340 3600 82.90% 5,088,600 3600 10.88% 

61 8,391,410  3,035,691 3600 63.82% 7,428,197 3600 11.48% 

62 8,539,901  2,049,641 3600 76.00% 8,374,150 3600 1.94% 

63 8,523,370  1,641,238 3600 80.74% 8,244,920 3600 3.27% 

64 8,169,545  1,394,661 3600 82.93% 7,772,027 3600 4.87% 

65 8,207,264  3,035,699 3600 63.01% 7,745,736 3600 5.62% 

66 8,539,901  2,049,646 3600 76.00% 8,358,110 3600 2.13% 

67 8,312,332  1,869,931 3600 77.50% 8,235,969 3600 0.92% 

68 8,292,035  1,394,652 3600 83.18% 8,235,970 3600 0.68% 

69 8,147,716  3,035,669 3600 62.74% 7,824,860 3600 3.96% 

70 8,392,633  2,049,724 3600 75.58% 8,313,170 3600 0.95% 

71 8,475,657  1,641,339 3600 80.63% 8,260,840 3600 2.53% 

72 8,356,619  4,881,475 3600 41.59% 8,131,350 3600 2.70% 

73 8,199,543  3,035,560 3600 62.98% 8,009,290 3600 2.32% 

74 8,445,827  2,049,679 3600 75.73% 8,200,747 3600 2.90% 

75 8,463,800  1,641,153 3600 80.61% 8,200,747 3600 3.11% 
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Problem 

Number 

Upper- 

Bound 

SCSAMHCP LR 

Objective 

Value 

Runtime 

(s) 
Error 

Objective 

Value 

Runtime 

(s) 
Error 

76 8,153,549  1,394,413 3600 82.90% 8,072,390 3600 1.00% 

77 8,234,366  3,035,796 3600 63.13% 8,070,770 3600 1.99% 

78 8,278,286  2,049,851 3600 75.24% 7,924,460 3600 4.27% 

79 8,144,848  1,641,308 3600 79.85% 7,796,750 3600 4.27% 

80 8,186,563  1,394,493 3600 82.97% 7,679,290 3600 6.20% 
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