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A Polynomial Time Algorithm to Diagnose the Solvability of Single
Rate n-Pair Networks with Common Bottleneck Links
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Cai et al.(2013) and Cai and Han (2014) developed polynomial-time algorithms for
two- and three-pair networks with common bottleneck links, respectively. Also, Chen and
Haibin(2012) developed non-polynomial-time methods for n-pair networks with common
bottleneck links, where n is an arbitrary integer. This study proposes a new sufficient and
necessary condition to determine the solvability of single rate n-pair networks with common
bottleneck links. It closes with a polynomial time solution for n-pair networks with common
bottleneck links, where n is an arbitrary integer. Our algorithm runs in O(|V||E|?) time, where
|V| and |E| are the number of nodes and links, respectively.
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1 Introduction

The solvability and linear solvability of communication networks are an essential issues in
network coding. The maximum flow minimum cut theorem [2] can be used to determine the solvability of
multicast networks. Furthermore, such networks are linearly solvable [15]. Unfortunately, characterizing
the solvability and linear solvability of nonmulticast networks is challenging, and the results are sporadic
and incomplete. Researchers concentrated on nonmulticast networks specializations such as two-unicast
networks with rate (1,1), sum-networks, two-unicast networks with rate (1,2), two unit-rate multicast
sessions networks and three-unicast networks with shared bottleneck links [5,6, 17-21].

Researchers have always sought to develop efficient algorithms for solving various problem
[1,16,13]. Wang and Shroff [20, 21] proposed a method for diagnosing the solvability of single rate two-
pair networks based on path overlap requirements, which state that a single rate two-pair network is solvable
if and only if it meets certain path overlap conditions. The algorithm suggested in [20, 21] is based on
the approach in [9] for discovering k edge-disjoint pathways, which requires first calculating the levels of
all nodes and then using a pebbling game to locate the paths [9].

Cai et al. [6] formulated the network structures by cut set relations and presented an algorithm to
diagnose the solvability of single rate two-pair networks. The method of [6] proposes a subnetwork
decomposition approach to investigate the underlying graph structure of single rate two-pair networks.
Their result shows that the solvability of a single rate two-pair network is completely determined by four
particular link subsets of the underlying network, which can be considered as the most important links of a
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single rate two-pair network. Comparing with the approach of [20, 21], the algorithm presented in [6] is
easier to implement (see [6], Page 131).

Finding bottleneck links plays a very important role in [6]. Cai and Fan [4] presented a method to
find a bottleneck link, where runs in O(|V||E|?) time (also, see [6], Page 131). The region decomposition
method [10, 11, 17, 18, 19] has been found efficient for analysing network structure and finding bottleneck
links, which was very successful in the 3s/nt sum networks [17], two-unicast networks with rate(1,2) [18],
two-multicast networks [19], two unit-rate multicast sessions networks [11] and two-pair networks [10].
The method defined a unique graph that is called the basic region graph, which has a much simpler
topological structure than the original graph.

Cai and Han considered single rate three-pair networks with common bottleneck links and derived
a sufficient and necessary condition to diagnose the solvability of such networks [5]. They showed that the
solvability of such networks can be determined in polynomial time. For a single rate three-pair networks
with common bottleneck links, the solvability is equivalent to the linear solvability and finite fields of size
2 or 3 are sufficient to construct linear solutions [5].

In [8], the single rate three-pair networks with common bottleneck links is considered and a
characterization (called Property P) is presented to diagnose the solvability of them. It is shown in [7] that,
the presented characterization in [8] can be generalized and a characterization (called Property P’) is
presented to determine the solvability of n-pair networks, where 7 is an arbitrary integer. Moreover, Chen
et al. [7] constructed a solvable n-pair network that has no solvable solution if its alphabet size is less than
n.

This paper considers the single rate n-pair network with common bottleneck links, where 7 is an
arbitrary integer. We present a new sufficient and necessary condition to diagnose the solvability of such
networks based on previous works in [5, 6]. Furthermore, based on presented algorithm in [6], a polynomial
time algorithm for determining the solvability or unsolvability of such networks is presented. The rest of
the paper consists of four sections in addition to Introduction section. Section 2 provides definitions and
notations for single rate n-pair networks with common bottleneck links. According to [7, 8], Section 3
introduces a new necessary and sufficient criterion for determining the solvability of single rate n-pair
networks. Based on [6], a novel approach is proposed to determine the solvability of single rate n-pair
networks, resulting in a polynomial time algorithm. Section 4 finishes the paper.

1.1 Contribution of this paper

In this paper, based on [5,7,8], we present a new necessary and sufficient condition for
characterizing the solvability of n-pair networks with common bottleneck links, where n is an
arbitrary integer thatadmitsa polynomial-time algorithm with running time O(|V||E|?) .
Characterizing the solvability and linear solvability of nonmulticast networks is challenging, and
the results are sporadic and incomplete. Researchers concentrated on nonmulticast networks
specializations such as two- and three-pair networks with common bottleneck links. By [5], there
exists a necessary and sufficient condition for diagnosing the solvability of two-pair networks
without bottleneck links, but no necessary and sufficient condition has yet been established for
determining the solvability of n-pair networks without bottleneck links, where n > 3.

2 Preliminaries
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2.1 Single rate n-pair networks with common bottleneck links

A communication network G = (V,E, S, T) is modelled as a directed, acyclic, finite graph G =
(V,E), where V is the node set, E is the link set, S €V and T € V are the set of source nodes and sink
nodes, respectively. A single rate n-pair network is a communication network with source node set S =
{s1,S2, ..., Sp}, sink node set T = {t;,t,,...,t,} and n desired unit flows from s; to t; for i €
{1,2,...,n}. The n desired unit flows from s; to t; are considered as independent random variables with
unit entropies and denoted by X; for i € {1,2, ..., n}. Itis assumed that each source s; generates a message
X; € F and each terminal t; wants to get the message X;, where F is a finite field. We suppose s; # s;
and t; # tj, for each i # j.

For a communication network G = (V,E,S,T), if S = {s} and T = {t}, then G is a point-to-
point network. Let G = (V,E,{s},{t}) be a point-to-point network and let V. =W UW be a vertex
partition of G = (V,E) suchthat s € W and t € W = V\W. An s —t cut C is the collection of all the
edges from W to W. The capacity of C is defined as Y.< C(e), where C(e) is nonnegative capacity of
link e. The minimum of the cut capacities for all s —t cuts is called the minimum cut capacity and denoted
by C(s,t). A minimum cut is a cut with the minimum cut capacity.

Suppose that G = (V,E,S,T) is a single rate n-pair network. There are |S| X |T| = n? point to
point networks. For a given s; € S and t; € T, there is a point to point network G; ; = (V, E, {s;}, {t;]).
The A, j-set of G; ; is defined as the union of all s; — t; minimum cuts and denoted by 4; ;. For a single
rate n-pair network G, The bottleneck links are defined as follows:

A(L2,..,n) 2 A1 NA N L Ap .
In this paper, the single rate n-pair networks with common bottleneck links are considered which concludes
A(L2,..,n) # Q.

For the sake of simplification, each link e of G is further assumed to be error-free, delay-free and
can carry one symbol in each use, i.e., C(e) = 1, where C(e) is nonnegative capacity of link e. For any
link e = (u,v) € E, node u is called the tail of e and node v is called the head of e, and are denoted by
u = tail(e) and v = head(e), respectively. Moreover, we call e an incoming link of v and an outgoing
link of u. For two links e,e’ € E, we call e an incoming link of e’ (or e’ an outgoing link of e) if
tail(e") = head(e). For each e € E, the set of incoming links of e denotes by In(e).

We assume that each source s; has an imaginary incoming link, called X; source link s(i), and
each terminal t; has an imaginary outgoing link, called terminal link t(j). Note that the source links have
no tail and the terminal links have no head. For the sake of convenience, if e € E is not a source link (resp.
terminal link), we call e a non-source link (resp. non-terminal link). Also, we assume that each non-source
non-terminal link e of G is on a path from some source to some terminal. Otherwise, link e is removed
from G.

The transmitted information over an edge e € E and an edge set A € E are denoted by X, and
Xy, respectively. Also, H(e) and H(A) are the entropies of X, and X,, respectively. A code over an
alphabet F for a single rate n-pair network is a collection of functions {f,:e € E} such that

1. X, = fe(XIn(e)):
2. Xs(i) = Xi for i = 1,2, e, N

A code over an alphabet F is a solvable solution for a single rate n-pair network if H(s(i)|t(i)) =
0 for i = 1,2,...,n. In other words, if each source s; can send a unit rate of information flow to t;, for
each i € {1,2, ..., n}, then, the single rate n-pair network is solvable.

We always suppose there exists at least one path from s; to t;, for each i = 1,2, ..., n, otherwise,
the given n-pair network is unsolvable. A u — v path P, ,, isastring of ordered edges (e, e,,**, e,) such
that u = tail(e;), v = head(e,) and head(e;) = tail(e;;+1), for i = 1,2,---,n — 1. In the following,
the single rate n-pair networks with C(s;,t;) =1 for i € {1,2,...,n} are considered. If C(s;,t;) = 0, then
there is no path from s; to t; or and the single rate n-pair problem is unsolvable.
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Definition 2.1. /12, 6] Suppose G is a single rate n-pair network and A and B are two subsets
of E. Moreover, let X, and Xg are transmitted information over an edge set A and B, respectively. If
Xp is a function of X, for all network coding solutions, then A informationally dominates B and is
denoted by A ' B. Furthermore, the following properties are held for informational dominance:

t(i) =t s(@), for i =1,2,...,n.

2. A=A for ACE.

3. If Aw! B,and B w' C, then A = C.

4. If A»'B,and A w' C,then A ' BUC.

—

2.2 The solvability of single rate n-pair networks with common bottleneck links

In [6], the single rate two-pair networks with common bottleneck links (A(1,2) # @) are
considered and a necessary and sufficient condition to diagnose the solvability of them is presented as
follows:

Theorem 2.1. /6] Let G = (V,E,{s1,52},{t1,t2}) be a single rate two-pair network such that
A(1,2) # @. Then G is solvable if and only if there exist an s, — t, path Ps . and an s, —ty path
P, ¢+, with (Ps ¢, UPs, ) NA(L2) = 0.

vl2 201

By Theorem 2.1, a polynomial time algorithm to diagnose the solvability of two-pair networks
with A(1,2) # @ is concluded [6].

Example 2.1. Consider the network G in Fig. 1. G is an example of a two-pair network with
(v3,v4) € A(1,2) # @. Also, there exist s; —t, path Ps . = ((s1,71), (v1,V5), (Vs,t3)) and s, — t;
path P, . = ((s2,v2), (V2,V6), (Ve, t1)) in G such that (Ps . UPg ;)N A(1,2) = @. Thus, G satisfies
the conditions of Theorem 2.1 and is solvable.

1l2 2,01

In [8], a property, called Property P, is presented to characterize the solvability of a class of three-
pair networks with A(1,2,3) # @. Let F is a finite field, m is a permutation over F and € is a mapping
from F X F to F. Then, Property P is defined as follows:

Definition 2.2. /8] (Property P) Let G is a single rate three-pair network with A(1,2,3) = @
such that each source s; generates message X; € F for i € {1,2,3}. A code over an alphabet F has
Property P, if there exist 4 edges Y,,Y,,Ys, M in G, permutations 1y, Ty, ..., g of F and a mapping @
F X F = F such that (F,@®) is an Abelian group and

Y; = my (1 (X7) © m2(X3)),

Y, = w5 (1 (X1) D m3(X3)),

Y3 = me(m,(X2) D m3(X3)),
and

M = m;(X1) D m(X3) D m3(X3).

Example 2.2. Let G be the depicted network in Fig. 2. G is a three-pair network with (v4,v;) €


http://iors.ir/journal/article-1-841-en.html

[ Downloaded from iors.ir on 2025-08-03 ]

126 Ghazvineh and Ghiyasvand

A(1,2,3) # @. Also, there exist permutations 1y, 5, ..., Tg and edges (vs, vg), (V4, V7), (Vs, Vg) such that
(v3,V6) = T4 (1 (X1) D m2(X2)),
(4, v7) = m5(1m1(X1) D 13(X3)),
(vs,vg) = M6 (2 (X2) D 13(X3)),

(v1,v2) = 1 (Xq) @ m(X2) D m3(X3).

and

Thus, G satisfies Property P.

Figure 1. An example of a two-pair network with A(1,2)z0.

Lemma 2.1. /8] A code over an alphabet F is a solvable solution for three-pair network G with
common bottleneck links if and only if it satisfies Property P.

In [7], to diagnose the solvability of a class of n-pair networks with A(1,2,...,n) # @, Property
P is generalized as the next definition.

Definition 2.3. /7] (Property P') Let G is a single rate n-pair network with A(1,2,...,n) # @



http://iors.ir/journal/article-1-841-en.html

[ Downloaded from iors.ir on 2025-08-03 ]

A Polynomial Time Algorithm to Diagnose the Solvability of Single Rate 127
n-Pair Networks with Common Bottleneck Links

such that each source s; generates message X; € F for i € {1,2,...,n}. A code over an alphabet F has
Property P', if there exist n + 1 edges Y1,Y,,...,Y,,M in G, permutations T,,T,, ..., Ty, of F and a
mapping @ F X F = F such that (F,@®) is an Abelian group and

Vi = Tk Bjur (X)), k=12,.,m,
and

M = m1(X1) © 12(X2) D ... © 1 (Xp).

1
|
Y V

Figure 2. An example of a network satisfies Property P.

Lemma 2.2. [7] A code over an alphabet F is a solvable solution for n-pair network G if and
only if it satisfies Property P'.

Lemma 2.3. Property P’ can be checked in factorial time.

Proof. According to definition 2.3, a code over an alphabet F has Property P’, if there exist n +
1 edges of all the edges in G (i.e. |E|) and 2 X n permutations of F such that edges and permutations
satisfy in the mentioned conditions. In the worst case, |F|! permutations of |F| and

|E]!
(m+D!IX(|E|-(n+1))!

edges of |E| should be checked. Therefore, Property of P’ can be checked in factorial time, which means
the method of [7] is a non-polynomial time algorithm.
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3 A new sufficient and necessary condition

In this section, based on Lemmas 2.1 and 2.2, a new sufficient and necessary condition to diagnose
the solvability of n-pair networks with common bottleneck links is presented.

Lemma 3.1. Let G be a n-pair network such that A(1,2, ...,n) # @. Suppose that for each
distinct i,j € {1,2,...,n}, there is an s; — t; path Psi,t]. such that Psi_t]. NA(2,..,n) =Q. Then G

satisfies Property P'.

Proof. Let e € A(1,2,...,n) # @.If e € A(1,2, ..., n), by the definition of A(1,2, ...,n), then,
there exists an s; — t; path Py, that passes through e, for each i € {1,2, ..., n}. Thus, message X; can

be send to edge e from each source s;, for i € {1,2, ..., n}. By defining permutation m;(x;) = x;, for
each i € {1,2,...,n}, we conclude that there are permutations 7,7, ..., T, of F and a mapping
@ F X F - A such that (F,@) is an Abelian group and

e =my(x1) D m2(x2) D ... © 1y (xn).

On the other hand, by the assumption of the lemma, there is an s; —t; path Psi,tj such that Psi,tj N

A(1,2,...,n) = @ for each distinct i,j € {1,2, ..., n}, so, there are permutations 7,1, Tpy2, -, Ty Of F
and e, € Py, ¢, such that

ex = Tnik (Zj:tk (T[j(xj))); k=1.2,..,n
Thus, G satisfies Property P'.

Corollary 3.1. (The sufficient condition) Let G be a n-pair network such that A(1,2, ...,n) # Q.
Suppose that for each distinct i,j € {1,2,...,n}, thereis an s; —t; path Psl.,t]. such that Psi'tj n

A(1,2,...,n) = Q. Then G is solvable.
Proof. By Lemmas 2.1 and 3.1, the result is concluded.

Lemma 3.2. Let G be a n-pair network such that A(1,2, ...,n) # @ and e be an edge of
A(1,2,...,n). For two distinct indexes 1,] € {1,2,...,n}, if each s; — t; path Psi,tj is not disjoint with

A(L,2,...,n), then there is no s; — t; pathin G\{e}.

Proof. Consider two distinct indexes i,j € {1,2,...,n}. Let each s; —t; path Psi'tj is not disjoint
with A(1,2, ...,n). For the sake of contradiction, suppose that there is an s; — t; path Psi,t]. in G\{e}. By
the assumption, path Psi’tj passes through e’ € A(1,2, ...,n). We have the following two cases:

(a) Edge e is an up-link of edge e’. Then, Ps,t; st e'] — P, [e',t;] isan s; — t; path that
does not pass through e which is contradiction with e € 4; ;.
(b) Edge e is a down-link of edge e’. Then, P, ¢; [sj,e'] — Psi,tj[e’, tj] isan s; —t; path
that does not pass through e which is contradiction with e € 4; ;.
Lemma 3.3. Let G be a n-pair network such that A(1,2, ...,n) #= @ and e be an edge of
A(L1,2,...,n). If there are two distinct indexes i,j € {1,2, ...,n} such that Psi,tj NA(L2,..,n) #0 for
each s; — tj path Ps. ¢ then {e} ' t(i) U t(j).

Proof . Suppose that there are two distinct indexes i,/ € {1,2,...,n} such that each s; —t; path
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Psi,tj is not disjoint with A(1,2,...,n). Then, by Lemma 3.2, there is no s; — t; path in G\{e}. On the
other hand, by e € A(1,2, ...,n) € A; ;, there isno s; — t; path in G\{e}. Thus, t(j) is a down-link of
{e} for j € {1,2,...,n}. Moreover, t(i) is a down-link of {e} Us(1)Us(2)U ..Us(i—1)Us(i+1)U
..U s(n). So, we have

e} wit(), jef1,2,...nk (1)

and

{e}Us()UsR)U..Us(i—1)Us(i+1)U..Us(n) » t@{), i€{1,2..,n}. 2)

By the first property of Definition 2.1, t(j) w! s(j), for j € {1,2,...,n}. Thus, by (1) and third property
of Definition 2.1, we conclude

ey ' s(), jef12 ..,n} B

On the other hand, according to Property 2 of Definition 2.1, we have {e} =’ {e}, for each edge e € E.
So, by (3) and Property 4 of Definition 2.1, we have

[(e} »i {e}us(DUs@)U..Uus(i—1)Us@i+1)U..Us(n). (4)

Then, by (2), (4) and Property 3 of Definition 2.1, we conclude that {e} ws! t(i). Thus, by (1) and Property
4 of Definition 2.1, we conclude that {e} w' t(i) U t(j).

Corollary 3.2. (The necessary condition) Let G be a n-pair network such that A(1,2, ...,n) # Q.
If there are two distinct indexes i,j € {1,2, ...,n} such that P;; N A(1,2,...,n) # @ for each s; — t; path
Psi_t]. , then G is not solvable.

Proof. For the sake of contradiction, suppose that G is solvable. If there are two distinct indexes
i,j € {1,2,...,n} such that Psi,t]. NA(L2,..,n) # @ foreach s; — t; path Psi,t]., then, by Lemma 3.3,

there is edge e € A(1,2,...,n) such that {e} = t(i) U t(j), which contradicts to that edge e has unit
capacity.

By Corollaries 3.1 and 3.2, we get the next theorem, which is a new sufficient and necessary
condition for the solvability of single rate n-pair networks with common bottleneck links.

Theorem 3.1. Let G be a single rate n-pair network such that A(1,2,....n) # @. Then G is
solvable if and only ifPsi,t]. NA(L2,...,n) = Q foreach distinct i,j € {1,2, ...,n}.

Proof. By Corollaries 3.1 and 3.2, the result is obtained.

By Theorem 3.1, the following algorithm for diagnosing the solvability of a n-pair network with
common bottleneck links is obtained.

Algorithm 1. Solvability of ¢ with A(1,2,...,n) # @ ;
Begin
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(1) Find bottleneck links A = A(1,2,...,n);

(2) For each distinct i, € {1,2,...,n}, check the connectivity of s; to t; in G' = G\A;

(3) If there is not an s; — t; path foran i,j € {1,2,..,n} in G', then write G is not solvable;
(4) If there is an s; — t; path for each distinct i,j € {1,2,...,n} in G’, then write G is solvable;
End.

The next theorem computes that the running time of Algorithm 1.

Theorem 3.2 Algorithm 1 diagnoses the solvability or unsolvability of a single rate n-pair
network with A(1,2, ...,n) # @ in polynomial time.

Proof. In Algorithm 1, by [5] and [3], Step (1) can be finished in time O(|V||E|?). Also, by the
search algorithm, Step (2) can be done with time O(|V|?). Therefore, the solvability or unsolvability of a
n-pair network with common bottleneck links can be determined in polynomial time.

4 Conclusion

Bottleneck links play a crucial role in diagnosing the solvability of single rate two- and three-pair
networks [5,6]. Necessary and sufficient conditions have been established for determining the solvability
of two-pair and three-pair networks with common bottleneck links, leading to polynomial-time algorithms
for these problems. According to [6], checking the solvability of a single rate two-pair network with
A(1,2) # @ can be done using a polynomial time algorithm with time complexity O(|V||E|?) (see [6],
Page 131, Algorithm 4.5). Moreover, for three-pair networks with A(1,2,3) # @, [5] provides a polynomial
time algorithm with a time complexity of O(|E|3). In [10], based on the region decomposition method, an
O(|E|)-time algorithm is presented for diagnosing the solvability of single rate two-pair network with
A(1,2) # @, which is faster than the presented algorithm in [6]. In [8], researchers focused on a specific
class of single rate three-pair with common bottleneck links. They presented a new sufficient and necessary
condition for characterizing the solvability of these networks. It was shown that presented condition in [§],
can be generalized to single rate n-pair networks with common bottleneck links, where n is an arbitrary
integer. However necessary and sufficient conditions were provided in [7,8], they resulted in non-
polynomial-time algorithms. See Tablel for details.

Tablel. Algorithms for n-pair networks with common bottleneck links.

Communication networks Running time off method to| Contribution

proposed diagnose

problem is presented.

algorithm solvability

2-pair networks with common bottlenecklPolynomial time :subnetwork INecessary and sufficient
links [6]. O(|V||E|?) decomposition/c condition and an efficient cut
ombination based algorithm to determine the
approach solvability of a two-pair unicast
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2-pair networks with common bottleneck |Polynomial time
links [10]. O(|E])

{|Region

decomposition
method.

[Necessary and sufficient]
condition presented using region
decomposition method.

3-pair networks with common bottleneck| |Polynomial time:
links [5]. 0(IE1®)

The solvability]
of a single rate]
3-pair network]
is determined|
by specific link
subsets.

[Necessary and sufficient]
condition to diagnose the
solvability of these networks has|
been presented.

A class of 3-pair networks with common||Factorial time. Checking [Necessary and sufficient]
bottleneck links [8]. Property P. condition to diagnose the
solvability of these networks has|

been presented by Property P.
A class of n-pair networks with common|| Factorial time. Checking [Necessary and sufficient]
bottleneck links [7]. Property P'. condition to diagnose the
solvability of these networks has|

been presented by Property P’.
A class of n-pair networks with common||Polynomial time. ||Merging Necessary  and  sufficient
bottleneck links [This paper]. specific ~ link||condition to diagnose the
subsets and| [solvability of these networks has
Property P'. been presented based on previous

works.
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