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I1Q Estimation from fMRI Images Using GCNN Model

Sara Motamed"", Mahboubeh Yaqubi bijarboneh?

Intelligence has long been a compelling and significant topic in psychology and cognitive
science. 1Q is considered a fundamental measure of an individual’s cognitive abilities,
encompassing various aspects such as reasoning, problem-solving, memory, and overall
intellectual capacity. Given the importance of 1Q in cognitive and psychological evaluations,
the main goal of this study is to propose a novel and effective approach to enhance the
accuracy of 1Q estimation through the processing of complex brain data. In this paper, we
develop and analyze a hybrid model combining the Grey Wolf Optimization (GWO)
algorithm and a Convolutional Neural Network (CNN), referred to as the GCNN model, to
estimate 1Q using brain fMRI images from the ABIDE dataset. Experimental results
demonstrate that the proposed model significantly outperforms traditional techniques,
achieving an estimation accuracy of 93.10%, which is an improvement of approximately 10%
over previous methods. Sensitivity analysis was conducted to evaluate the robustness of the
model against variations in input features and hyperparameters, confirming its stability and
generalizability across different data subsets. These findings highlight the strong capabilities
of the GCNN model in interpreting complex medical data and its potential applicability in
clinical and research settings.

Keywords: 1Q, Deep learning, Brain fMRI images, Grey Wolf Optimization (GWO) algorithm,
Convolutional Neural Network (CNN).

1. Introduction

1Q is a commonly used metric for measuring human intelligence and reflects an individual's ability
to understand, learn, and think. In other words, it is a numerical indicator of cognitive capacity. Over
the past few decades, intelligence has been one of the most widely discussed topics in cognitive
science and psychology, often generating debate and controversy. Scientists have continuously sought
accurate methods to measure IQ—from standardized tests administered in institutions and schools to
puzzles designed to assess cognitive performance. Typically, 1Q is assessed using a series of
standardized tests and subtests, with scores following a normal distribution. Most IQ values cluster
around the median, while only a small percentage of individuals score above 140 or below 70 [1].
Recent studies have shown that brain volume has only a limited impact on IQ, with brain structure
and integrity playing a more significant role in explaining cognitive performance [25]. These findings
suggest that the biological basis of intelligence is more closely linked to structural characteristics of
the brain than to its size. The cerebrum comprises the right and left hemispheres of the brain, each
divided into four lobes: frontal, temporal, occipital, and parietal. Research has shown that in children
and young adults, the frontal and temporal lobes are most associated with 1Q, while in middle-aged
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individuals, the parietal and occipital lobes play a more prominent role [15]. Given this correlation
between brain structure and intelligence, it is feasible to estimate 1Q using brain fMRI images. Studies
have demonstrated that if intelligence levels can be determined through neuroimaging, the results
could enhance artificial intelligence systems and aid in the understanding and treatment of conditions
such as depression and schizophrenia [11, 15]. In recent years, many efforts have been made to predict
1Q from fMRI images. With the advent of deep learning, research in this area has increasingly turned
to neural networks to tackle the problem. Deep learning involves the use of neural networks with
many hidden layers that learn hierarchical representations of data. For example, in image analysis,
deep networks break down the image into multiple layers—mimicking the way human neurons
respond to visual stimuli. Convolutional Neural Networks (CNNs) are one of the most widely used
architectures in deep learning, successfully applied in tasks such as object recognition and image
classification.

Although deep learning has significantly advanced the field of computer vision, 1Q prediction
from fMRI remains in its early stages, with much room for development. Based on the above, this
study proposes leveraging the powerful capacity of deep neural networks to estimate 1Q from brain
images [2]. This is a complex and evolving research area, with potential implications for
understanding the neural basis of intelligence as well as clinical applications. However, several
challenges remain. Predicting 1Q from fMRI data raises methodological and ethical issues. 1Q is a
multifaceted trait influenced by genetic, environmental, and neurological factors [13, 20]. Therefore,
the relationship between brain structure and intelligence must be carefully studied, and ethical
concerns such as data privacy must be addressed. Researchers must ensure anonymization and
responsible use of sensitive medical data. In this context, the objective of this study is to develop a
hybrid model combining Grey Wolf Optimization (GWQO) and CNNs—rteferred to as the GCNN
model—to estimate 1Q from brain fMRI images. We hypothesize that this combination will improve
the accuracy and efficiency of automated 1Q estimation systems.

The Grey Wolf Optimization algorithm is a bio-inspired meta-heuristic method modeled after the
social hierarchy and hunting behavior of grey wolves. The hierarchy includes alpha, beta, delta, and
omega wolves, and the algorithm simulates the three main stages of hunting: searching, encircling,
and attacking prey. In this study, GWO is employed to optimize the fuzzy parameters of the deep
neural network, aiming to enhance detection accuracy. The reason for selecting this class of
algorithms lies in their derivative-free nature and stochastic structure, which allow them to solve
complex problems without requiring gradient information. Meta-heuristic algorithms are particularly
suited for real-world problems with high dimensionality and unknown derivatives. Their ability to
perform both local and global searches helps prevent premature convergence to local optima and
enables broad exploration of the search space. As the size and complexity of optimization problems
increase, finding the global optimum becomes computationally expensive. By incorporating GWO
into the training of the deep neural network, this study aims to improve both solution quality and
convergence speed.

2. Related Work

Intelligence is a critical factor in psychological evaluations, and brain fMRI -based intelligence
prediction offers an objective complement to traditional psychological tests. This approach has the
potential to improve the accuracy and reliability of cognitive assessments. Moreover, it holds valuable
clinical applications. Understanding the relationship between brain structure and intelligence can aid
in diagnosing and treating various neurological and psychiatric disorders, and may inform the
development of more targeted therapeutic interventions [17]. The fMRI is a non-invasive, radiation-
free imaging technique, making it safe for repeated use in both research and clinical environments. It
produces high-resolution images of the brain’s anatomy, allowing for detailed analysis of structural
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features. Predicting intelligence from fMRI scans not only minimizes bias compared to traditional 1Q
tests but also provides the potential to identify biomarkers related to cognitive function and
neurological disorders. This opens up new avenues for interdisciplinary collaboration among
neuroscientists, psychologists, educators, and medical professionals [17]. The fMRI-based 1Q
prediction is particularly useful in cases involving conditions that affect cognitive function, such as
traumatic brain injury or neurodegenerative diseases. It can help guide treatment strategies and
monitor therapeutic outcomes. As intelligence is a multifaceted trait influenced by genetic,
environmental, and neurological factors, advanced imaging techniques like fMRI are essential for
understanding its complexity. In the era of precision medicine, matching interventions to individual
neurological profiles is crucial, and fMRI -based intelligence estimation contributes significantly to
this personalized approach [5].

Increasing our understanding of how brain structure relates to intelligence could lead to
breakthroughs across neuroscience, psychiatry, and education. Thus, fMRI -based IQ prediction has
strong potential in cognitive research, early diagnosis of cognitive impairments, personalized
education, and clinical applications. While challenges and ethical considerations remain, this
approach represents a promising frontier in interdisciplinary science. Despite significant progress,
many aspects of human intelligence remain poorly understood, and current IQ assessment methods
have notable limitations. Over the years, numerous studies have investigated the link between the
human brain and intelligence, emphasizing the importance of brain networks and overall brain
structure. Given the regulatory role of various brain regions in cognitive performance, brain fMRI
has emerged as a useful tool for estimating intelligence. For example, research at the NYU School of
Medicine suggests that specific areas of gray matter, particularly in the parietal and frontal lobes, are
more strongly associated with 1Q than total brain volume [9]. With advances in technology, machine
learning and deep learning methods have become central to brain image analysis, aiding in the
diagnosis and classification of neurological diseases, tumors, psychiatric disorders, and even traits
like gender identity. In this context, Wang et al. proposed a method for 1Q prediction using fMRI
data. Their approach framed IQ estimation as a regression problem, focusing on gray and white matter
features. Using multiple support vector regression (SVR), they identified several critical brain
regions, including the left and right thalamus, parahippocampal gyrus, hippocampus, anterior
cingulate gyrus, amygdala, lingual gyrus, superior and inferior parietal lobules, angular gyrus,
paracentral lobule, and caudate nucleus. Their study also indicated a relationship between age, brain
tissue volume, and 1Q [6].

Deep learning, inspired by the architecture of the human brain, is now a key area of research
worldwide. These models are especially useful because they can automatically extract relevant
features during training, eliminating the need for manual feature engineering. Consequently, deep
learning has been widely applied in IQ classification tasks [6, 9]. Building on these developments,
the present study proposes an improved deep learning-based model for predicting IQ from fMRI data.

3. Proposed Model

Neuroimaging studies have proposed several theories about the mapping between brain structure
and function underlying human intelligence. In fact, intelligence is related to changes in different
brain structures and neural parameters. The cerebrum consists of the right and left hemispheres, each
containing four lobes: frontal, temporal, occipital, and parietal. The temporal and frontal lobes are
generally associated with IQ in children and youth, while the parietal and occipital lobes are more
associated with 1Q in middle age. Gray matter in specific brain regions, particularly in the parietal
and frontal lobes, plays a significant role in human intelligence relative to the size of the whole brain.
Therefore, it is possible to estimate individuals’ IQ based on physiological factors by extracting and
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classifying IQ-related features from fMRI images. For example, the Parieto-Frontal Integration
Theory (P-FIT) is a popular model which suggests that sensory information is first collected and
processed mainly in the occipital and temporal regions. The next stage involves structural
symbolization, abstraction, and elaboration of sensory information in the angular gyrus,
supramarginal gyrus, and superior parietal lobule. Finally, interaction between parietal regions and
frontal lobes supports higher-order cognitive functions such as problem solving, evaluation, and
hypothesis testing. In this study, we expect the Long Short-Term Memory (LSTM) network to focus
on salient brain regions extracted from fMRI images.

Given the correlation between brain structure and intelligence, it is feasible to estimate intelligence
from brain fMRI scans. Studies have shown that such imaging-based intelligence estimation can
enhance the capabilities of artificial intelligence systems. However, since fMRI images may suffer
from quality issues and various types of noise, preprocessing steps are necessary to achieve optimal
results. These steps include image corrections such as contrast adjustment and resizing to improve
segmentation accuracy. Subsequently, a hybrid deep learning model is applied for IQ detection from
brain images [16, 22]. Intelligence is one of the most complex traits in humans, and despite extensive
research by scientists and philosophers, it remains incompletely understood [7]. Currently, 1Q tests
are commonly used to measure individuals' reasoning speed and problem-solving ability, but they do
not capture the full spectrum of intellectual capacities. Consequently, with the advancement of
artificial intelligence and machine learning, recent studies have focused on estimating 1Q directly
from brain fMRI images. In this article, we propose a hybrid model combining the Grey Wolf
Optimization (GWO) algorithm and a Convolutional Neural Network (CNN) to detect IQ from brain
images. The GWO is a population-based metaheuristic algorithm inspired by the social hunting
behavior of gray wolves. It has a simple yet effective process and can be easily generalized to large-
scale optimization problems. In each pack, the hunting hierarchy is modeled as a pyramidal structure
consisting of four levels, as shown in Figure 1.

/N
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Figure 1. Pyramid structure of GWO model

The wolves in the pack leadership hierarchy are called alpha wolves, which can be either male or
female. These wolves dominate the pack. Beta wolves assist alpha wolves in the decision-making
process and can potentially replace them. Delta wolves rank below beta wolves and include older
wolves, hunters, and those caring for pups. Omega wolves occupy the lowest rank in the hierarchy
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pyramid, having the fewest rights compared to the rest of the pack; they eat last and do not participate
in decision-making.

The Grey Wolf Optimization (GWO) algorithm models the hunting behavior of gray wolves and
consists of three main steps:

e Tracking and chasing the prey.
¢ Approaching, encircling (surrounding) the prey, and leading it astray until it stops moving.
e Attacking the prey.

In this algorithm, the hierarchical structure and social behavior of wolves during hunting are

mathematically modeled to design an optimization method. Optimization is primarily guided by the
alpha, beta, and delta wolves. One wolf is considered the main leader (alpha), with beta and delta
wolves also influencing the search, while the rest are followers. Gray wolves have the ability to
estimate the prey's location.

When the prey is surrounded and stops moving, the attack begins, led by the alpha wolf. This
process is modeled by reducing the vector a. Since A is a random vector within the interval [-2a, 2a],
decreasing a reduces the range of A. If |A| < 1, the wolf moves toward the prey (and other wolves);
if |A| > 1, the wolf moves away from the prey. In the GWO algorithm, all wolves update their positions
based on the positions of the alpha, beta, and delta wolves [3].

In this article, we improve the GWO algorithm by combining it with a deep neural network and
fuzzy control of key parameters to enhance IQ detection accuracy. Deep neural networks are widely
used models in deep learning applied across various fields. The sequence of steps in the proposed
model is as follows:

Preprocessing: Two-dimensional slices are first extracted from three-dimensional fMRI images.
This stage includes three parts:

¢ Cranial removal: The process of separating brain tissue from surrounding non-brain areas
[19].
e Creating 2D slices from 3D images: Brain slices are extracted from three anatomical
planes: sagittal, coronal, and transverse.
o The sagittal plane divides the brain into left and right halves.
o The coronal (frontal) plane divides the brain into anterior and posterior parts.
o The transverse (horizontal) plane divides the brain perpendicular to the longitudinal
axis.
These slices are then passed to the feature extraction stage for more precise analysis.

Optimization and Training: After initializing the population, all parameters are input to a deep
neural network to optimize the positions of alpha, beta, and delta wolves. The deep neural network
consists of two convolutional layers and one fully connected layer that learns the data patterns.

The GWO algorithm requires initializing only two parameters: a and C, and it can be extended to
n-dimensional search spaces. In this approach, a and C are controlled using fuzzy logic. According
to the equations provided, parameter a directly influences coefficient A and controls the wolves’
behaviors dynamically. The coefficient A models the attack and hunting process, known as
exploitation. Because A varies within [-1, 1], the wolves' next positions oscillate between their current
locations and the prey location. Therefore, parameter a affects both exploitation (local search) and
exploration (global search). The mathematical modeling of the encircling process is represented by
equations (1) and (2) [4].
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Where C and A are the vectors of coefficients, X, is the location vector of hunting and X is the
location vector of each of the wolves, and t is the repetition number. Two vectors A and C are
calculated by equations (3) and (4) [4].

A=2amr—a 3)
C =2, (4)

The parameter a decrease linearly from 2 to 0 during the iteration process, and 7y and 1, represent
random vectors within the interval [0, 1]. Vector C models obstacles in nature that slow down the
wolves’ approach to the prey; in fact, C adds weight to the hunting process, making it more
challenging for the wolves to reach the prey. In this article, different ranges are considered for the
variations of coefficient A. In “(4)”, the value of C represents these natural obstacles. It is a random
and variable value within the range [0, 2], which directly affects the position of the prey. Unlike the
parameter a, this value does not decrease linearly but is selected entirely at random, thus assigning
random weights to the hunting process. The purpose of presenting the proposed model is that it
automatically extracts features from the input data and provides more accurate classification results
[10].

4. Results and Discussion

Based on the literature review, it was observed that existing models for artificial and natural image
classification are either too complex or cannot be scaled effectively for multi-domain image sets.
Moreover, the accuracy of these models directly depends on the type of dataset and features used for
training and validation, which further limits their scalability. To overcome these limitations, this
section proposes the design of a hybrid GWO-CNN model for artificial image recognition in big data
applications [18, 28]. All implementations in this article were done using Python. The dataset is
divided into training and testing subsets. Next, the dataset and the main phases of the proposed
model’s implementation are described.

4.1. ABIDIE Dataset

The ABIDE (Autism Brain Imaging Data Exchange) fMRI brain image dataset provided by
NITRC (Neuroimaging Informatics Tools and Resources Clearinghouse) was used in the experiments
of this thesis. The dataset contains 3D brain images in the NIFTI (Neuroinformatics Informatics
Technology Initiative) file format. Phenotypic information also includes age, gender, and IQ scores
of different individuals. The phenotypic file lists three types of IQ scores: Full IQ (FIQ), Performance
Intelligence Quotient (P1Q), and Verbal Intelligence Quotient (VIQ). In this thesis, FIQ is considered
as the measure of intelligence. FIQ scores for many subjects were not listed in the dataset; therefore,
FIQ for those subjects was calculated from PIQ and VIQ values using equation (5) [21]:

FIQ=-11.611 + 0.551VIQ + 0.566PIQ (5)
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4.2. Evaluation Results

A review of previous work in this field shows that recent studies on individual IQ prediction have
mostly focused on predicting fluid intelligence (the ability to solve new problems). However, there
are no studies that predict crystallized intelligence (the ability to accumulate knowledge) or general
intelligence (a combination of fluid and crystallized intelligence). In this paper, we test whether deep
learning can predict total IQ, which depends on both functional 1Q and verbal 1Q, thus reflecting both
fluid and crystallized intelligence, using fMRI images. Recent studies have started using machine
learning—especially deep learning—to predict intelligence, but many questions remain unanswered.
In more than 20 relevant studies, the predicted fluid intelligence had a mean squared error ranging
from 86 to 103. This relatively low accuracy suggests the need for more sophisticated deep learning
algorithms or indicates that some fMRI images may not contain enough information to predict
problem-solving abilities, which peak at younger ages. Therefore, we used the ABIDE dataset, which
includes a wide range of data from multiple centers, to achieve the best possible results.

Most research on general intelligence has been based on stylistic reviews as well as experimental
and practical studies. One notable related study focused on machine learning methods, specifically
support vector machines. In contrast, deep learning research in this area has typically used smaller
datasets for training and testing, often relying solely on convolutional neural networks (CNNs) for
classification, which has resulted in weaker predictive performance. Table 1 presents 1Q estimation
accuracy using different brain region slices and various models.

Table 1. Comparison of the accuracy criteria by the models implemented on the ABIDE dataset

Transversal image Sagittal image accuracy | Coronal image accuracy
Models
accuracy
ResNet-50 66.80% 61.00% 58.75%
VGG16 54.50% 73.00% 68.80%
CNN 70% 85.90% 76.40%
Proposed Model 78% 91.00% 81.20%

As shown in Table 1, the proposed model achieved the highest accuracy compared to previous
models. Table 2 presents a comparison of various evaluation metrics for the proposed model on the
ABIDE dataset.

Table 2. Comparison of different criteria using the proposed model on the ABIDE dataset

Evaluations Accuracy F\—score Precission Recall

Proposed Model 93.10% 88.00% 90.00% 86.77%



http://iors.ir/journal/article-1-847-en.html

Iranian Journal of Operations Research
Vol. x, No. x, XXXX, pp. XX-XX

Figure 2 shows the error rate for the training and testing data over 30 executions. According to
Figure 2 and Table 2, the detection rate reached an accuracy of 93.10% after thirty iterations.
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Table 3 provides a comparative overview of recent works on 1Q prediction, highlighting the key
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Figure 2. Error rate by the proposed model

strengths and limitations of the approaches presented in these studies.

Table 3. Methods used to diagnose 1Q

References Title Method Accuracy Advantages Disadvantages
[14] Accounting Bi- ~75% Utilizing time | The need for
for directional series high-quality
Temporal LSTM structure and | data and large
Variability dynamic data volumes
in fMRI connectivity
Improves 1Q
Prediction
[29] Alternating Diffusion ~70% Integration of High
Diffusion Map Fusion multiple brain | computational
Map Based data sources to complexity
Fusion improve
performance
[30] Multi-Task Multi-task ~72% Simultaneous Requires
Learning Learning multi-task precise
Model for learning while | hyperparameter
1Q preserving the tuning
Prediction geometric
(Chen et al., structure of
2019) data
[12] Deep CNN, Deep ~78% Ability to Ability to
Learning on Learning extract extract
Structural complex complex
MRI (Cao et features features from
al., 2022) without structural MRI
data without
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manual manual
engineering engineering
[26] Connectome | Connectome- ~73% Model based Limited to
Signatures based on brain resting-state
from Predictive connectomes data, making
Resting- Modeling interpretation
state fMRI (CPM) more
(Sui et al., challenging
2022)
[23] Voxel-Level Swin Learned Accurate High accuracy
Brain States | Transformer high- prediction of
Prediction + CNN resolution brain states
Using Swin fMRI with
Transformer reduced scan
(2025) time
[27] Prediction Machine R=0.71 Accurate Suitable for
of IQ from Learning prediction of | children using
Resting- performance resting-state
state fMRI 1Q data
(2024)
[24] Choosing Explainable | "The Pearson Moderate Clarity in brain
Explanation ML + correlation | accuracy with analysis
Over Connectome | coefficients high
Performance for interpretability
(2024) crystallized
intelligence
(gC) and
fluid
intelligence
(gF) 1Q
scores were
0.71 and
0.63,
respectively."

As can be seen from Table 3, the proposed model demonstrates superior performance compared
to the other methods presented.
The key contributions and novel aspects of this research are summarized as follows:

Proposed a hybrid GCNN model that integrates the Grey Wolf Optimization (GWO)
algorithm with a Convolutional Neural Network (CNN) to enhance feature extraction and
parameter optimization for improved IQ prediction accuracy.

Focused on predicting full-scale 1Q (FIQ), incorporating both fluid and crystallized
intelligence components, using brain fMRI images—an area underexplored in prior studies.
Utilized the ABIDE dataset, which includes a diverse range of individuals from multiple
sites, enhancing the robustness and generalizability of the proposed model.

Achieved 93.10% accuracy, outperforming existing methods and demonstrating the
effectiveness of the GCNN architecture in capturing complex neuroimaging features.
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¢ Conducted sensitivity analysis to evaluate the model's stability under variations in input and
parameters, ensuring the reliability of the results.

5. Conclusions

Neuroimaging (brain imaging) refers to the techniques used to visualize the structure and
function of the human central nervous system. Various methods are employed directly or
indirectly to map brain anatomy and its activities. Neuroimaging studies help us understand
both normal and abnormal brain functions, such as disease prediction, brain region failures,
intelligence estimation, and other vital processes. These studies are crucial for identifying
structural abnormalities in the brain and safeguarding future generations from neurological
diseases. Since all human behavior is guided by the brain’s anatomical structure, and
neuroimaging has shown that individual differences in brain anatomy correspond to
variations in behavior, it becomes possible to categorize people’s abilities. Intelligence is one
of the key parameters underlying these abilities, varying from person to person, and its
measurement allows classification into higher or lower intelligence groups. Research has also
demonstrated that many central regions in the nervous system significantly contribute to
intelligence. One of the established metrics for measuring intelligence is the Intelligence
Quotient (IQ). The model proposed in this article combines the Grey Wolf Optimization
(GWO) algorithm with a Convolutional Neural Network (CNN). CNNs are capable of
extracting intermediate-level features through filters applied to the input data. The goal of
this model is to classify brain fMRI images and estimate IQ improvements accurately.
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