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A modified hybrid three-term conjugate gradient method
and its applications in image restoration

Meysam Ranjbar!, Ali Ashrafi >*

This paper proposes a modified hybrid three-term conjugate gradient (CG) method for solving
unconstrained optimization problems. The search direction is constructed by combining the
Hestenes-Stiefel (HS) and Liu—Storey (LS) CG parameters in a hybrid three-term formula. We show
that the proposed method satisfies the sufficient descent condition independently of line search
strategies. A convergence analysis is provided under standard assumptions for general objective
functions. Numerical experiments on CUTETr test problems and image-denoising tasks indicate that
the proposed method outperforms existing approaches regarding efficiency, accuracy, and
robustness, particularly in the presence of high levels of salt-and-pepper noise.

Keywords: unconstrained optimization, three-term conjugate gradient, sufficient descent property,
global convergence, image restoration.

1. Introduction

The unconstrained optimization problem is as follows:

minf(x),
in which f:R"™ - R is a smooth function. In unconstrained optimization, particularly when
minimizing the differentiable function f(x), i.e. min,cgn f(x) CG methods have gained widespread
adoption. This surge in popularity can be attributed to several factors, notably the simplicity of the
iterations, minimal memory requirements, and rapid convergence rates. Among these techniques, the
three-term CG method stands out, and it is determined as follows:

d _{_gk: lf k=0, (1)
71— gk + Bedier + viche,  if k=1

In this framework, the parameters ), and y; are of significant importance. [ represents the CG
parameter, while y; is an arbitrary parameter, with various forms of both having been presented.
Moreover, several choices for h; have been proposed to ensure convergence alongside a sufficient
descent condition, i.e.

gzdkg —C”gkllz, k=01,..., (2)
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Where ¢ > 0 is constant, g, represents the gradient of the objective function, and |l. || denotes the
Euclidean norm [8, 17, 21, 22]. Currently, the three-term CG method has garnered significant
attention from researchers across multiple scientific disciplines. For instance, Liu et al. [14] developed
two sufficient descent CG three-term methods that achieve global convergence when applied with
Wolfe line search conditions. These methods were utilized to address the [, — al, regularization
problem in sparse signal decoding within the context of compressed sensing. Kim et al. [12] introduce
a variable three-term CG technique that uses an approximation of the Hessian matrix to improve
search direction, utilizing a variable step size to enhance convergence stability. To assess the efficacy
of their approach, they train various artificial neural networks (ANN) on standard datasets for image
classification and generation. Additionally, they carry out an analogous experiment involving a grasp
generation and selection convolutional neural network (CNN) designed for intelligent robotic
grasping. Following evaluations in an environment that is simulated, they also test the grasp
generation and selection CNN (GGS-CNN) with a physical gripping robot. Ibrahim and Khudhur [11]
created a CG algorithm featuring three limits based on the Dai-Liao conjugate condition. This new
algorithm offers global convergence and adequate sufficient descent conditions (2) under certain
assumptions and was applied to eliminate noise from images. Mousavi et al. [16] proposed two
effective three-term CG methods aimed at eliminating impulse noise. The approach begins with the
steepest descent direction, followed by the inclusion of three components: the steepest descent
direction, the previous direction, and the gradient difference between the preceding and current points.
The second and third components are adjusted using two distinct step sizes, referred to as CG
parameters. This adjustment ensures that all components contribute without any of them
overwhelmingly dominating the others, except in the vicinity of the optimizer, where the first term
takes precedence. The authors applied these methods to remove noise from medical images to
demonstrate the effectiveness of their proposed techniques. Recent research by Abubakr et al. [13]
has advanced by developing three-term formulas for conjugate gradient (CG) methods through a
reformulation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) direction formula. They went on to
propose a novel three-term CG formula that meets the necessary descent condition for global
convergence without relying on a line search.

Motivated by the ideas presented in [13, 15, 23], we introduce a hybrid three-term CG method for
solving unconstrained optimization problems. The direction combines the three-term HS and LS
directions, and to achieve better numerical results than several other methods, we include an
additional term. Moreover, the direction closely resembles that of the memoryless Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton method and possesses descent properties.

The main contributions of this paper are:
(1) Based on the LBFGS method, we propose a new hybrid three-term CG method for solving
unconstrained optimization problems.
(2) The search direction of the proposed method satisfies the sufficient descent property without the
need for any line search.
(3) The global convergence of the proposed method is proved using the weak Wolfe line search.
(4) The computational performance of the new method is evaluated on several standard test problems.
(5) Numerical experiments are conducted to test the proposed method on unconstrained problems,
including applications in image restoration.
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The structure of this paper is outlined below. The subsequent section details the derivation of the
three-term method and discusses its convergence. In Section 3, we showcase various numerical
experimental results. In Section 4, we present Challenges in Existing CG Methods and Our
Contributions. Finally, a conclusion is given in Section 5.

2. Results from theory and algorithms

The hybrid CG approach proposed by Abubakar et al [13] is presented in the following manner:

8, = giVk-1 N yk-1 I gkdi-
¢ ¢ ¢2 ’
¢ =max{p l dg—q Wl Ye—q I, df—1V—1, — dim19k—1},  u >0,
ngdk_l
Ve =te——
Ck
- y}f—1(}’k—1 — Sk-1)
tr = min{t, max10, 5 .
| yie—1 Il

This approach, independent of the line search, meets the sufficient descent property and
incorporates a trust region. It achieves global convergence for a broad class of functions when using
either Wolfe-type or Armijo-type line search. Drawing inspiration from the approach of Abubakr et
al [1], we present a three-term CG method with a general structure of (1), defined by the following
parameters:

I U

3
¢ =max{u Il d—y M yis 1, dF_1Vecr, — dfo1Gioa} + A0 geoa 12, mA>0, ()
T
Gicdi—
Vi =t =, (5)
¢
hy = Yi-1- (6)

To determine the parameter t;, we require solving the univariate minimal problem as follows:
min | (V-1 = Se-1) = V-1 I

Assuming Ay = Yx_y — Sig—» and By, = Ay — ty,_,, we find that
ByBj, = (Ax — tyr—1) (A — tyr-1)",
= t?Yg-1Vk-1 — tlAkVi-1 + Ye-14k] + Ak,
and
tr(BxBi) = % Il yi—q 12— t[tr(Aryi_1) + tr(ve—1 A7) |+ Ay 112
=2 | y—q 12— 2ty 1 Al A 17

By differentiating the expression above concerning t and setting it equal to zero, we acquire
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_ yl:—l(yk—l — Sk-1)
Il yi—1 II?

) ()

Afterward, we select t;, as

t, = min {f, max {0, Vi1 O = Sk_l)}} (8)

Il Yie—1 II2

indicating that 0 < t;, <t < 1. In (8),  is a positive constant.

The new algorithm can be shown as follows, based on the analysis above.
Algorithm 1: MTTHSLS algorithm

Step 0: Given a starting point x, € R"™, parameters € >0, u > 0,1> 0,0 < § < 0 < 1. Calculate
fo=f(xo) and go = Vf(x0). Set dy = —go, k = 0.

Step 1: If || gk |l < €, then stop. Otherwise, proceed to step 2.

Step 2: Compute the step-length a;, by the Wolfe line search conditions.

Step 3: Let x4 1 = X3 + ay dy, calculate gi11, f(Grs1)-

Step 4: Determine ty, vy, and By, by (8), (5), and (3) respectively. Compute the search direction by
(1)

Step 5: Set k = k + 1, then proceed to step 1.

The MTTHSLS method calculates the search direction dj.,, and we will now demonstrate its
sufficient descent property.

Lemma 2.1 The search direction (1) defined in equation (3) fulfills condition (2) with c =1 +
(1+tg)?

4
Proof. We have,

Ik V-1 Il yi—q I 9iYVk—1
grdi = — I gx 1P+ Ihdr—1 ———=—(grdr-1)* + ty Irdr—1
Ck 7
II 112
e o/ = y’}—l( Tdy_1)?
k
1+t V-1 Il ye—q1 I?
= — g 1P+ 2 (550 ) 2 gldie s — =S (gE i)
2 Ck {7
(1 + t,)? Il Y- II? I yge—q1 I?
< — 1l gk ||2+T|| i P+ ——(gkdr-1)* ———5— (9k dr-1)?
6 {7
1+ t,)?% 1+t,)?
=—|l gk ||2+% Il gx 2= —<1 +%> I gr 112

=—cllggl?®.

Assumptions 2.1 The level set H = {x: f(x) < f(x¢)} is bounded. Then, the function f is bounded,
and its gradient is Lipschitz continuous on H. This indicates that a constant L > 0 exists such that
forallx andx € H, | g(x) — g IS LIl x—x |l

Based on Assumptions (2.1), we can conclude that for every x € H, there are constants by > 0 such
that || g(x) II< by. Furthermore, the sequence {x } is contained within H because the values {f (xj)}
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are non-increasing. Thus, we will assume that Assumptions (2.1) are satisfied. We will now proceed
to demonstrate the convergence result.

Theorem 2.1 . Assume that the step size ay, is acquired through the Wolfe line search conditions[17].

If
e , )
2=
=i I dp |l
then
likminf Il gx lI=0. (10)
Proof. From (3) and (5), we have
C|gEVi—1 N yieeq 12 gidies
|Br| = - 72
I gx Ml Yi—q Il I V=1 120 gi M dje—q |l
Tulldg— g MY AN g—qa 12 (el dig—q N Yi—q | +A 1 gge—q 12)?
I gx NI yr—1 |l I V-1 120 gie M dje—q |l
Tulldp—q M Ye—1 I (@l d—q 1 yg—q 1)?
1 1 { Ik I
= (4 ) 11
([l Ilz I dk—l I ( )
Also
el = Jidr—1 oy g Il d—q |l <F I gr Il dy—q |l
Vi Ck N Ck wll dk_1 M ye—q | 4+ 1 Irk-1 12
_ gkl dg—q |l t gl
< Ik k—1 _ Ik 12)

fldp—y MYy Il yp—g I

Now, from (1), (11), and (12), we have

II dk 1=l -9 + ﬁkdk_1 + ViVi-1 1<l Ik [+ ﬁk [l dk_1 [+ Yk [l Yik-1 Il
1 1\ lgel t llggll
<l ||+(—+—)—|| H4——25 0
R V) T T e L B R
—<1+1+E+ 1)II < <1+1+E+ 1>b
w )9t woop2)r

Then, we get || dy IS M where M = (1 + ﬁ + —)b1 This signifies the formation of a relationship

(10) due to
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Il dp IS M 1 .1
_)_ )
e i= M~ ldg |l
1 < 1
_>_——)
M2 = | dy, |12
1 g l* Ngel*
- < :
Il de 12 M2 = |l d II?

1+ 1l g 1%

S—) llgeli< :

MZE i I d 112
k=1 k=1

1 © \
_’WZ I gy 1< oo,
k=1

- lim |l g, I*=0,
k—>oo

- Ill—>r1;>10 Il gr I=0.

3. Numerical experiments

This section includes numerical experiments that assess the effectiveness of MTTHSLS,
HTTHSLS[13], HTTWYL[23], and HTHP [15]. Details about the test problems, which include 92
functions from [7], can be found in Tables 1-2. All implementations were carried out using MATLAB
7.14.0.739 (R2012a) on a desktop equipped with an AMD Ryzen 7 PRO 5850U with Radeon
Graphics 1.90 GHz, 16 GB of RAM, and the CentOS 6.2 Linux operating system.

In our implementations, we chose § = 0.0001 and o = 0.99 for the strong Wolfe line search
conditions [17]. Furthermore, we set the method parameters to the values of t = 0.2, A = 0.8, and
1 = 0.02. Furthermore, the algorithms were terminated when either k > 10000 or ||gg|]| <
107%(1 + |fi|) met certain termination criteria. Additionally, the algorithm’s efficiency was
evaluated using the performance profile introduced by Dolan and Mor¢ [5], focusing on the total
number of function and gradient evaluations (TNFGE), as defined in [9], along with CPU time
(CPUT), by the nomenclature from [3]. The findings are shown in Figures 1 and 2; it is clear that
MTTHSLS surpasses the three other methods.

Table 1. Numerical results for all methods.


http://iors.ir/journal/article-1-850-en.html

[ Downloaded from iors.ir on 2025-11-28 ]

A modified hybrid three-term conjugate gradient method and

Function |n MTTHSLS HTTHSLS HTTWYL HTHP
TNF |TIME TNF TIME TNF TIME TNF |TIME
ARGLINA 2 12 1.24E-01 |12 7.65E-02 |12 7.68E-02 |12 9.58E-02
BDEXP 6 16 6.76E-02 |16 5.71E-02 |16 5.45E-02 |16 5.30E-02
BDQRTIC |7 40129 |1.27E+01]17561 4.06E+00| 25805 6.14E+00 | 18651 |4.45E+00
BIGGSB) 8 40157 |6.94E+00 | 40400 4.79E+00[40332 5.28E+00 38743 |4.63E+00
BQPGABIM 150 |219 2.04E-02 |272 3.19E-02 [427 3.82E-02 [424 |3.10E-02
BQPGASIM |151 |219 2.81E-02 [272 2.76E-02 [427 3.20E-02 [424 |3.21E-02
BROWNAL |11 18127 |2.64E+00 7946 1.07E+00 | 8942 1.20E+00 |5123 |7.37E-01
BROYDNVYD [12 ]40076 |3.07E+01|40132 2.89E+01 [40141 2.93E+01 140392 |2.90E+01
BRYBND 13 |1161 |5.52E-01 [3239 1.35E+00|3066 1.57E+00 |3647 |1.50E+00
CHAINWOO |14 140085 |1.05E+01 40588 8.82E+00 41658 9.31E+00 [42051 |9.07E+00
CHENHARK |155 14577 |2.59E+00|11636 2.05E+00]4152 7.95E-01 |528 |1.35E-01
CHNROSNB |57 31544 |1.37E+0039810 1.62E+00 42221 1.79E+00 |31030 | 1.27E+00
CLPLATEB |157 |40093 |1.35E+01 40293 1.17E+01 [ 40408 1.21E+01 |40199 |1.16E+01
COSINE 15 |57 1.32E-01 |53 1.21E-01 |60 1.31E-01 |55 1.20E-01
CRAGGLVY 59 803 5.05E-01 |953 5.71E-01 |854 5.33E-01 1306 |7.59E-01
CURLY): o1 5055 |2.27E+00|6720 2.93E+00(5291 2.35E+00 40189 |1.27E+01
CURLYY: 62 |16693 |9.67E+00]27368 1.28E+01 | 18875 9.19E+00 |5472 |2.75E+00
CURLYY: 63  |40090 |2.63E+01]40668 2.49E+01 [40436 2.55E+01 35652 |2.18E+01
DECONVU 64 40117 |1.90E+00 40892 1.91E+00 [40780 1.95E+00 |15649 |7.13E-01
DIXMAANA 16 |36 5.03E-02 |36 4.58E-02 |36 4.52E-02 |36 5.07E-02
DIXMAANB |17 |37 5.10E-02 |32 5.13E-02 |32 5.15E-02 |32 4.21E-02
DIXMAANC |18 |37 5.02E-02 |37 4.51E-02 |32 5.09E-02 |37 5.16E-02
DIXMAAND |19 |47 5.41E-02 |42 5.75E-02 |42 4.75E-02 |46 4.56E-02
DIXMAANE P0  [12402 |2.15E+00|16866 2.78E+00 | 34644 5.74E+00 | 10953 | 1.36E+00
DIXMAANF 21 19420 |1.65E+00]16395 2.73E+00[21890 3.48E+00 |13072 | 1.64E+00
DIXMAANG P2 [12431 |2.18E+00|14780 2.43E+00|30800 4.54E+00 29220 |3.68E+00
DIXMAANH 23 [7796 | 1.45E+00)20027 3.40E+00|23933 3.60E+00 |5314 |6.74E-01
DIXMAANI 24 140074 |6.80E+00 42794 5.36E+00| 43932 5.65E+00 141215 |5.15E+00
DIXMAANJ 25 11773 |2.06E+00|11251 1.90E+00 | 28908 4.48E+00 6647 |8.45E-01
DIXMAANK 26 8506 |1.51E+00)7765 1.32E+00| 7473 1.32E+00 |31574 |4.65E+00
DIXMAANL 27 3339 |6.28E-01 | 7586 1.30E+00 [40614 6.54E+00 | 13287 | 1.69E+00
DIXONYDQ [71 40100 |9.94E+00]40701 8.15E+00|40312 8.74E+00 141774 | 8.31E+00
DMN15102 |163 [40102 |7.07E+01 40828 7.11E+01 [41474 7.23E+01 41054 |7.15E+01
DMNI15103 |164 |40064 |9.03E+01 40084 8.98E+01 [40374 9.06E+01 [42663 |9.50E+01
DMN37142 |165 [40135 |7.07E+01 40188 7.00E+01 {40390 7.13E+01 [42018 |7.31E+01
DMN37143 166 |40080 |9.02E+01 44103 9.79E+01 [ 40366 9.04E+01 [43588 |9.96E+01
DQDRTIC 28 |641 2.56E-01 [3224 9.83E-01 |3427 1.10E+00 |3789 |1.14E+00
DQRTIC 29 |4 3.86E-02 |4 3.74E-02 |4 3.67E-02 |4 3.95E-02
DRCAVILQ |167 |4 7.54E-02 |4 8.05E-02 |4 8.46E-02 |4 8.69E-02
DRCAV2LQ |168 |4 7.72E-02 |4 8.05E-02 |4 7.13E-02 |4 7.65E-02
DRCAV3LQ |169 |4 1.03E-01 |4 8.05E-02 |4 7.08E-02 |4 7.18E-02
EDENSCH [73 522 1.37E-01 [474 1.20E-01 |82 5.60E-02 [310 |9.96E-02
EG2 30 |23 2.51E-02 |23 1.69E-02 |23 2.34E-02 |23 2.61E-02
EIGENALS [74 40067 |5.59E+01 40395 5.43E+01 [40540 5.49E+01 |40485|5.43E+01
EIGENBLS [75 40057 |5.57E+01 40527 5.46E+01 40396 5.47E+01 [41800 |5.62E+01
EIGENCLS [76 140329 |5.99E+01 41052 5.92E+01 42405 6.13E+01 44153 |6.33E+01

Table 2. Numerical results for all methods.
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Function |n MTTHSLS HTTHSLS HTTWYL HTHP
TNF |TIME TNF TIME TNF TIME TNF |TIME

ENGVAL) (31 |71 9.60E-02 |67 8.57E-02 |63 9.35E-02 |76 9.66E-02
ERRINROS [78 40064 |1.71E+00|40325 1.69E+00 | 40295 1.75E+00 [41730 | 1.63E+00
EXTROSNB [32 140090 |3.02E+00|40594 3.02E+00 40997 3.15E+00 [40865 |2.25E+00
FLETCBVY 33 |4 8.21E-02 |4 7.09E-02 |4 6.97E-02 |4 7.05E-02
FLETCBVY 171 |160 1.69E-01 | 160 1.63E-01 | 160 1.68E-01 160 |1.58E-01
FLETCHBV [172 |156 1.62E-01 | 160 1.55E-01 | 156 1.55E-01 |156 |1.52E-01
FLETCHCR [80 [31141 |2.80E+00|41372 3.65E+00 40990 2.88E+00 |14995]9.60E-01
FMINSRFY 81 9853 [2.94E+00|12765 3.65E+00 | 18069 4.14E+00 |11693|2.53E+00
FMINSURF 82 38713 |1.06E+01]41636 9.45E+00 40270 9.56E+00 [40342 |9.12E+00
FREUROTH |83 [3938 |1.47E+00|5849 2.11E+00|5402 1.98E+00 3624 |1.22E+00
GENHUMPS B4 4 4.41E-02 4 4.06E-02 4 4.76E-02 4 4.88E-02
GENHUMPS [175 4 5.73E-02 4 5.87E-02 4 4.57E-02 4 5.57E-02
GENROSE 34 40043 [2.63E+00 40325 2.63E+00 40114 2.69E+00 140462 |1.96E+00
LIARWHD 35 140233 |1.01E+01 46752 8.14E+00 |50130 9.30E+00 49122 9.08E+00
MANCINO 104 458 1.06E+00 458 1.05E+00 453 1.05E+00 @453  |1.04E+00
MANCINO 104 458 1.06E+00 458 1.05E+00 453 1.05E+00 @453  |1.05E+00
MOREBV 107 367 1.51E-01 1878 4.71E-01 26548 6.31E+00 36207 |6.63E+00
MSQRTALS [108 40078 |1.43E+01 40391 1.27E+01 40114 1.28E+01 140294 |1.26E+01
MSQRTBLS (109 40158 |1.43E+01 41043 1.29E+01 40371 1.28E+01 141285 |1.29E+01
NCB20 110 393 5.15E-01 1053 1.13E+00 [1220 1.29E+00 2362 2.37E+00
NCB20B 111 221 3.57E-01 873 9.60E-01 867 9.71E-01 913  |[1.00E+00
NONCVXU2 112 4 4.56E-02 4 4.89E-02 4 5.35E-02 4 4.27E-02
NONDIA 36 140017 [8.79E+00 [20858 2.95E+00 103746 |1.61E+01 [25306 3.63E+00
NONDQUAR 113 40092 6.96E+00 40289 5.49E+00 40609 5.52E+00 40915 |5.15E+00
PENALTY1 [37 3197 [R.59E-01 2468 1.92E-01 |1100 1.11E-01 2561 2.07E-01
PENALTY2 38 4 9.92E-03 4 9.21E-03 4 1.56E-02 4 1.29E-02
POWELLSG |125 40097 [6.64E+00 45446 5.30E+00 |50498 6.07E+00 41411 4.95E+00
POWER 126 40103 [8.46E+00 43750 6.90E+00 140322 6.12E+00 40618 |6.62E+00
QUARTC 40 4 3.98E-02 4 3.80E-02 4 3.73E-02 4 3.58E-02
SCHMVETT 41 92 1.31E-01 [77 1.16E-01 |73 1.14E-01 81 1.19E-01
SENSORS  [129 109 2.60E-01 97 2.10E-01 97 2.08E-01 113  2.34E-01
SINQUAD  [131 221 2.75E-01 85 2.10E-01 208 2.68E-01 169 2.57E-01
SPARSINE [134 40030 R.11E+01 41393 1.96E+01 42081 2.01E+01 140274 |1.91E+01
SPARSQUR @42 605 4.87E-01 597 4.66E-01 1602 4.84E-01 597  4.66E-01
SPMSRTLS @43 6773  [2.42E+00 9215 3.16E+00 (10202 3.42E+00 8237 [2.13E+00
SROSENBR 44 15410 [2.85E+00 |13790 2.05E+00 [11476 1.75E+00 [10335 |1.40E+00
TESTQUAD |[135 40039 [5.42E+00 40357 4.26E+00 53869 5.08E+00 41714 3.99E+00
TOINTGOR |136 [970 6.05E-02 [1563 8.74E-02 1420 7.97E-02 1905 [1.04E-01
TOINTGSS 45 [169 1.60E-01 356 2.72E-01 [147 1.42E-01 212 |1.78E-01
TOINTPSP  [138 [1027  [6.09E-02 [2448 1.14E-01 477 1.22E-01 2589 |1.19E-01
TOINTQOR |137 [146 1.69E-02 143 2.43E-02 [144 1.84E-02 [138  [2.21E-02
TQUARTIC [139 140036 [8.56E+00 41574 6.60E+00 40005 6.66E+00 40485 [6.35E+00
TRIDIA 46 140053 |6.53E+00 42796 5.32E+00 40261 5.25E+00 41756 4.88E+00
VARDIM 47 8 3.94E-03 8 7.77E-03 8 8.56E-03 |8 9.52E-03
VAREIGVL 48 |175 2.02E-02 [141 2.53E-02 133 2.14E-02  [142  [2.40E-02
WOODS 49 117 7.43E-02 244 9.57E-02 41860 8.21E+00 24181 3.44E+00
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0.4 MTTHSLS | -
- — —HTTHSLS
- HTTWYL
o3t === HTHP |-
1 1.5 2 2.5 3 35 4 4.5 5

MTTHSLS
e LITTHSLS
+ HTTWYL |

Figure 2. Comparison based on CPUT (B) with the strong Wolfe line search.

We demonstrate applying the suggested techniques to an image reconstruction problem in the
sections that follow, offering a practical case study. Images frequently suffer from impulse noise
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caused by faulty sensors or transmission channels. This type of noise is one of the most prevalent
models, where only a subset of the pixels is affected, resulting in a complete loss of information for
those specific pixels. To reliably recover the original image, various image-related applications
typically require effective noise suppression techniques. These issues are often viewed as complex
optimization challenges due to their nonsmooth structures. Recently, researchers have focused on
developing nonlinear CG algorithms to tackle such nonsmooth optimization problems; see, for
instance, [4, 10, 18, 19, 20]. In this section, we address the problem of smooth image reconstruction
presented in [10]:

miny(u),

where

1
Y = z z (pa(uij = mn) + E 2 (pa(uij — Umn) ¢
EGHeN \(mn)evi\V (mn)evinyv
in which

N={{) €A {j#j{ij = Smin OT Smax}-

The index set for the noise candidate is denoted as follows: let X represent the true image
composed of M X N pixels, where X;; indicates the gray level at the pixel location (i, j) for all (i, ) €
A={12,..,M}x{1,2, .., N}. The neighborhood around the pixel (i, ) is given by V;; = {(i,j —
1),@,j+1),{—1,)), @ +1,j)} The observed image, ¢, reflects the true image X but it is affected
by salt-and-pepper noise. The image { is derived by applying an adaptive median filter to the noisy
image {. Additionally, sy,i, and sy, represent the minimum and maximum values of a noisy pixel,
respectively. We utilize the edge-preserving functional ¢, defined as ¢, (t) = Vt? + a, based on
the recommendation in [10]. In our experiments, we set @ = 1 due to the satisfactory numerical results
observed across various choices of « in the set {0.5k}32 ;.
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(@) () (s) ®

Figure 3: The noisy images corrupted by 25% salt-and—pepper noise: (a)—(d), the restored images
via HTTHSLS: (e)—(h), HTTWY: (1)—~(1), HTHP : (m)—(p), and MTTHSLS: (q)—(t)
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(a) (b) (© (d)

(@) W) (k) M

(@ () (s) (®)

Figure 4: The noisy images corrupted by 50% salt—and—pepper noise: (a)—(d), the restored images
via HTTHSLS: (e)—(h), HTTWY: (1)—(1), HTHP : (m)—(p), and MTTHSLS: (q)—(t)

[
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Figure 5: The noisy images corrupted by 75% salt—and—pepper noise: (a)—(d), the restored images
via HTTHSLS: (e)—(h), HTTWYL: (i)—(1), HTHP : (m)—(p), and MTTHSLS: (q)—(t)
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In this analysis, the images of Lena, Cameraman, and Goldhill, each with dimensions of
256 x 256 pixels and represented in grayscale, have been used as test cases. Additionally, the Wolfe
line search condition and the methods' stopping criteria have been upheld by those established in the
first part of our numerical tests. As illustrated in Figures 3-5, all three methods appear to effectively
reconstruct the images. To quantitatively evaluate the results, we analyze the computation time
(CPUT in seconds), the relative error (RelErr) [6] expressed as a percentage, and the peak signal-to-
noise ratio (PSNR) [10] measured in decibels (dB) of the restored image. These metrics are defined
as follows:

X = X|| 2552
RelErr = 100 ——, PSNR = 10 log,, 1 )
1X* = X|1Z

111 I
M x N
Where X* represents the recovered image. The results can be found in Tables 3—5. As seen in Tables

4 and 5, MTTHSLS is better than the other (image reconstruction) methods from the viewpoints of
RelErr and PSNR.

Table 3. Image restoration outputs based on CPUT

Noise Method ILena Cameraman |Goldhill  [Bird
MTTHSLS 8.1460 8.1256 8.0166 5.5352

25% |HTTHSLS 6.5480 6.5470 5.0066 5.1289
HTTWYL 6.5337 6.4952 5.0044 5.0952
HTHP 6.5017 6.5451 5.0392 5.1363

MTTHSLS 16.5842 16.4290 13.3039 10.4418
50% |HTTHSLS 13.1580 13.0136 9.9261 10.0028
HTTWYL 13.1383 13.1547 9.9237 10.0369
HTHP 12.9794 13.0835 9.9152 10.0384
MTTHSLS  24.2626 28.4363 19.4133 15.0536
75% |HTTHSLS 23.9058 23.9368 19.5078 14.9095
HTTWYL 24.0137 24.4501 19.5736 14.9533
HTHP 23.9225 23.9974 19.6339 14.9803

Table 4. Image restoration outputs based on RelErr

Noise Method Lena Cameraman |Goldhill  [Bird
MTTHSLS 0.7950 0.9598 0.7690 0.3114
25% |HTTHSLS 0.7996 0.9637 0.7666 0.3177
HTTWYL 0.7995 0.9637 0.7666 0.3177
HTHP 0.7995 0.9636 0.7666 0.3177
MTTHSLS 1.4214 1.7816 1.4153 0.5281
50% [HTTHSLS 1.4240 1.7726 1.4053 0.5507
HTTWYL 1.4239 1.7722 1.4043 0.5508
HTHP 1.4240 1.7716 1.4032 0.5507
MTTHSLS 2.2273 2.7163 2.2201 0.8430
75% |HTTHSLS 2.3435 2.7330 2.3133 0.9136
HTTWYL 2.3426 2.7316 2.3096 0.9138
HTHP 2.3440 2.7345 2.3122 0.9136
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Table 5. Image restoration outputs based on PSNR

Noise [Method Lena Cameraman |Goldhill  [Bird
MTTHSLS 34.7438 31.6461 33.1316  142.2355
25% HTTHSLS 34.7114 31.6200 33.1398 142.1594
HTTWYL 34.7126 31.6201 33.1398 142.1594
HTHP 34.7129 31.6217 33.1417  142.1593
MTTHSLS 30.2496 27.6687 29.4931 37.5014
50% |HTTHSLS 30.2551 27.6842 29.4380 [37.2263
HTTWYL 30.2582 27.6864 29.4422 37.2258
HTHP 30.2577 27.6879 29.4488 37.2265
MTTHSLS 26.9772 29.4016 26.9604  [34.4020
75% |HTTHSLS 26.7281 29.4380 26.6662 33.8104
HTTWYL 26.7293 24.4501 26.6780  [33.8093
HTHP 26.7255 24.4426 26.6714  [33.8110

4. Challenges in Existing CG Methods and Our Contributions

The findings of this study offer several key insights for practitioners and decision-makers
involved in computational optimization and image restoration applications:

MTTHSLS: A Reliable Solution for Noisy Image Restoration:

The proposed MTTHSLS algorithm demonstrates superior performance in high-noise
environments, especially in restoring images with up to 75% salt-and-pepper corruption. This makes
it a reliable choice for applications where data degradation occurs often, such as surveillance, medical
imaging, or remote sensing systems. Managers overseeing these systems can consider MTTHSLS a
dependable preprocessing tool to enhance downstream analytics or decision-making quality.

Reduced computational cost:

Numerical results on the CUTEr benchmark set show that MTTHSLS outperforms existing three-
term CG methods in terms of convergence speed and total function evaluations. For operations teams
managing large-scale optimization tasks—such as resource allocation, machine learning training, or
logistics modeling—this results in lower computational cost, energy consumption, and turnaround
time.

Flexibility in implementation:

Since the proposed method maintains the sufficient descent property independently of line search
techniques, it allows greater flexibility in tuning or integrating with existing solvers. Managers or
engineers can deploy this method with minimal structural changes, reducing adoption barriers and
enabling seamless integration into existing software ecosystems.

Scalability and reliability:

The algorithm’s strong theoretical foundations, combined with consistent empirical performance
across a wide variety of test functions, suggest its applicability to many problems beyond image
restoration. This positions MTTHSLS as a versatile optimization tool capable of supporting robust
decision-making in various fields, such as finance, engineering design, and data science.

In summary, the proposed MTTHSLS method offers a blend of theoretical rigor and practical
effectiveness. Its adoption can improve both the efficiency and reliability of systems that depend on
large-scale optimization or sensitive image data reconstruction.
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5. Conclusions

Motivated by the research conducted by Abubakr et al. on the creation of three-term formulas for
CG methods through a reformulation of the BFGS direction formula, we introduce a new three-term
CG method that guarantees sufficient descent conditions without relying on line search. The global
convergence characteristics of this method were examined under Wolfe line search conditions. To
assess the method’s performance in comparison to similar techniques, we carried out numerical
experiments using the CUTER benchmark problems, as well as for salt and pepper noise reduction.
The outcomes of these experiments demonstrate that our method delivers notable efficiency.
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