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Utilizing Fuzzy Linear Programming for Addressing Ecological 

Decision-Making Under Uncertainty 

Narjes Amiri*1, Seyed Hadi Nasseri2, Davood Darvishi3 

This article examines and analyzes fuzzy linear programming models and techniques. Since its 

emergence in the 1970s, fuzzy linear programming has addressed the growing complexity of 

decision-making problems in uncertain and dynamic environments. This study proposes a solution 

method based on Yager's linear ranking function for solving fuzzy linear programming problems 

with inequality constraints. Quantitative results from solving a production planning case study 

show that the proposed method achieves an optimal total profit, where only the production of the 

third product is economically justified. The sensitivity analysis performed on the model's fuzzy 

parameters indicates that the optimal solution remains stable within a range of possible values for 

profit and machine availability. The scope of this method encompasses decision-making problems 

under uncertainty with trapezoidal or triangular fuzzy parameters and can be applied in various 

fields, including supply chain management, production planning, and natural ecosystems. This 

research is a step towards developing efficient and practical methods for decision-making in 

complex and imprecise environments. 
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1.  Introduction 

    Optimization under uncertainty represents a highly compelling area of contemporary research, as 

real-world scenarios are inherently characterized by varying degrees of uncertainty. This uncertainty 

can be examined from multiple perspectives and addressed through a diverse array of methodological 

approaches. This study focuses on the Fuzzy Linear Programming (FLP) model pioneered by [64], 

which developed a methodology for solving Linear Programming (LP) problems involving fuzzy 

constraints. This seminal work profoundly influenced subsequent research and facilitated the 

integration of fuzzy reasoning into optimization, making it imperative to acknowledge associated 

fuzzy mathematical models and methods. Following Zimmermann's groundbreaking publications in 

1977, a substantial body of related literature emerged. Numerous scholars have contributed to the 

evolution of Fuzzy Mathematical Programming (FMP), building upon the foundational principles 

established by [12], who created a coherent framework for fuzzy Decision-Making (DM). 

The literature features several notable reviews on FLP. For instance, Baykasoglu et al. [10] introduced 

15 distinct types of FMP models categorized by their fuzzy components, while Schryen et al. [53] 

conducted a survey on duality in fuzzy linear programming, identifying 31 potential classes of FLP. 

More focused reviews include the work of [20], which examined various FLP solution methods based 

on the classification proposed by [55] who provided a concise overview of several FLP models and 

suggested only three categories. Furthermore, [25] recently published a comprehensive review of 

models and methods for solving fuzzy linear programming, classifying them into five groups based 
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on Fuzzy Parameters (FPs) and variables. In contrast, [59] offered a critical analysis highlighting 

certain limitations and mathematical inaccuracies in fuzzy operations research methods, including 

FLPs. 

The principal contribution of this study, in contrast to the aforementioned reviews, is the 

establishment of a classification framework for fuzzy linear programming based on two key criteria: 

the number of incorporated Fuzzy Parameters (FPs) and the nature of the resulting solution. This 

research provides an analysis of the influence exerted by the most frequently cited scholarly articles, 

evaluating their impact through two metrics: the number of non-self-citations and the year of 

publication. Additionally, it delineates the connections between fuzzy linear programming and other 

methodological approaches while also visualizing emerging trends, future perspectives, and novel 

solution techniques. 

The paper is structured as follows: Section 1 provides an introduction; Section 2 covers 

fundamental concepts related to FLPs; Section 3 offers a review of the existing literature; Section 4 

presents a classification based on modeling and solution techniques; Section 5 highlights emerging 

trends, future research directions, and suggested topics in FLP; Section 6 is devoted to the proposed 

approach, which utilizes Yager's Linear Ranking Functions (LRFs); and finally, Section 7 concludes 

the paper. 

2.  Fuzzy Linear Programming 

 
    In this section, we begin by explaining the concepts of Fuzzy Numbers (FNs), Trapezoidal Fuzzy 

Numbers (TrFN), and LR-type FNs. To keep the paper concise, we will not include the arithmetic 

operations for FNs. A real FN A  is defined as any fuzzy subset of the real line  , characterized by 

its membership function A
  , which is: 

▪ A continuous function that maps from the real numbers   to the closed interval  

▪ [0, 1], 

▪ constant on ( , ] : ( ) 0, ( , ]
A

e x x e− =   − , 

▪ increasing consistently on [ , ],e f  

▪ constant on [ , ] : ( ) 1, [ , ],
A

f g x x f g =    

▪ consistently declining on [ , ],g h and 

▪ constant on [ , ] : ( ) 0, [ , ];
A

h x x h+ =   +  

e f g h    are real numbers. Furthermore, we might have e = − or f g= or e f= or g h=

or h = + . We represent the collection of all FNs as ( )F  . 

A specific kind of FN is the TrFN, which is defined by its membership function as follows: 

( ) ( )

( ) ( )

/        e x f

1                               f x g
( )

/        g x h

0                               

A

x e f e

x
h x

otherwis

h g

e



− −  


 
= 

− −  





 

and is represented by ( ), , ,A e f g h= . It is evident that when f g= , a TrFN simplifies to a 

triangular FN (TFN). In [19] presented the LR-type representation of fuzzy numbers by examining 
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the left and right reference functions, denoted as L and R, respectively. L is considered a reference 

function if it satisfies a condition 

(1) ( ) ( )

(2) (0) 1

L x L x

L

= −

=
 

(3)L is nonincreasing on[0, )+ . 

    An LR-type fuzzy number is represented symbolically ( ), , ,
LR

A f g  =  , and its membership 

function is expressed in a specific form 

 

(( ) /          x f

( ) (( ) /          x g

1                             

A

ot

L f x

x R x

herwise

g



 

− 


= − 



  

In this context, α and β represent the left and right spreads of the variable A , respectively. If 

 ( ) ( ) max 0,1L x R x x= = − , in that case, the LR-type FN A  simplifies to a TrFN 

( ), , ,A e f g h= , where e f = − and h g = + . We can also express it as ( ), ,A e f h= when 

mentioning a TFN, and ( ), ,
LR

A f  = R in the context of LR-type fuzzy numbers without a flat 

section. Figure 1 illustrates the graphical representation of an LR-type fuzzy number and a triangular 

fuzzy number. 

 

 
Figure 1. Visual depiction of a LR-type FN and a TrFN 

 

3.  Review of existing literature 

 

    The approach employed to construct a timeline and conduct a review of Fuzzy Linear Programs 

(FLPs) involves the retrieval of published scholarly articles characterized by the following criteria:   

- Search Terms: fuzzy, linear, and programming  

- Relevant Fields: article titles, abstracts, and keywords  

- Subject Areas: theoretical frameworks, applications, and associated challenges 

    Numerous advancements in the theory and applications of Fuzzy Sets (FSs) emerged following 

Zadeh's introduction of FSs as a mathematical approach for analyzing uncertainty. We categorized 

FMP problems into two distinct groups: fuzzy linear constrained models and fuzzy ranked models. 

    The completely FLP issue discussed in this paper is:  : ,z Max c x Ax b x +=   . 
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where ( )nc F  , ( )mnA F  , ( )mb F   and ≲ represent the fuzzy max-order binary 

relation. 

 

3.1. Chronology of Fuzzy ranked models and Fuzzy general models 

 

    Fuzzy ranked models: encompass the applications and theory of the fuzzy linear 

programming as outlined. This involves utilizing ranking measures like 𝑟(⋅) to determine a 

set of precise parameters (A, b, c) and subsequently address a crisp linear programming 

problem based on the provided ranked values: 

( )
( )

( )
.

*, , , ,
r

A b c A b c z→ →   

    Fuzzy general models: This category encompasses both the theoretical frameworks and 

the practical implementations of transformations, along with the relevant methodologies 

associated with them to fuzzy logic programming, including functions like h(.), chance, possibilistic, 

interval, and others: 

( )
( )

( )
.

*, , , ,
h

A b c A b c z→ →   

   A range of hybrid methodologies combining random, stochastic, and fuzzy elements have been 

developed to address diverse forms of uncertainty. Luhandjula [18] pioneered the field of fuzzy-

random linear programming, a framework that was subsequently expanded by other researchers. 

Building on this, fuzzy chance-constrained models were introduced in [38]. The same author [18] 

also advanced models based on fuzzy-random sets, which were later formalized into a comprehensive 

fuzzy stochastic framework by [40], enabling the application of stochastic optimization techniques. 

Further extending the spectrum of uncertainty modeling, Luhandjula [39] proposed fuzzy-

possibilistic linear programming. Angelov [4] contributed to the field by formulating optimization 

problems using Intuitionistic Fuzzy Sets (IFS) and later developing IFS-based LP models. More 

recent innovations include Neutrosophic linear programming models [1], which incorporate degrees 

of truth and belief beyond traditional FSs, and Pythagorean fuzzy linear programming models 

introduced in [16]. 

The application of fuzzy methodologies to classical problems is also well-established. The work in 

[13] applied fuzzy number ranking to solve crisp Linear Programming problems and introduced a 

technique for possibilistic LPs. Shih et al. [22] employed fuzzy sets to resolve a multi-level 

programming problem. Research in [41] addressed LPs involving fuzzy variables and uncertainty, 

applying fuzzy models to establish priorities in analytic hierarchy processes. Furthermore, [28] 

suggested a perceptual approach for challenges in fuzzy Data Envelopment Analysis (DEA), while 

[36] proposed the novel concept of possibilistic DEA. 

A comprehensive analysis of the reliability of soft computing methodologies, including fuzzy 

optimization, was provided in [24]. The work in [61] introduced an interactive technique for solving 

fuzzy multiple attribute group decision-making problems. Interactive possibilistic programming 

models were employed by [37] to tackle multi-objective supply chain planning challenges. For multi-

attribute group decision-making, developed a model utilizing interval and Intuitionistic Fuzzy Sets 

(IFSs). Additionally, Kumar et al. [33] suggested a lexicographic approach for solving general fuzzy 

models incorporating fuzzy equality constraints. 
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3.2. Chronology of the use of FLPs 

The chronological development of Fuzzy Linear Programming (FLP) applications reflects its 

expanding scope. Narasimhan [43] provided an early discussion of fuzzy goal programming and 

proposed an initial solution method. Hannan [29] addressed the issue of fuzzy costs through the 

application of 𝛼-cuts. An interactive fuzzy satisfaction method for multi-objective linear 

programming, building on Zimmermann's concepts, was developed in [52]. Research in [15] 

examined the concept of optimality in transportation and focused on process planning under fuzzy 

uncertainty, while Roy and Maiti [51] explored a fuzzy Economic Order Quantity (EOQ) model that 

accounted for demand-dependent costs and storage capacity constraints. 

A seminal paper on possibilistic linear programming models for portfolio selection was 

introduced by [30], who also applied genetic algorithms to multi-objective fuzzy job shop scheduling. 

The application of FLP in supply chain management is evident in [34] and [35], both of which utilized 

fuzzy goal programming for vendor selection. Possibilistic linear programming was employed by 

[60] to address aggregate production planning issues. Supply chain planning under uncertainties in 

supplies, demand, and processes was tackled using fuzzy methods in [54]. The integration of fuzzy 

SWOT analysis with FLP for supplier selection and allocation was demonstrated in [3]. More 

recently, research has focused on sustainable supply chains, with [56] applying fuzzy multi-objective 

models for low-carbon supplier selection and addressing multi-criteria supplier selection through 

multi-objective programming. 

3.3.  Fuzzy Linear Assignment Problem 

 
    The Linear Assignment (LA) problem is a combinatorial optimization challenge where a DM aims 

to allocate n resources to n tasks in a one-to-one manner while minimizing costs. With n! possible 

assignments, exhaustive enumeration methods become highly inefficient. Kuhn [31] introduced a 

primal-dual algorithm called the Hungarian Method. This method enabled a more efficient approach 

to solving high-dimensional LA problems for the first time. 

Definition 1. Let 1 1 1 1( , , )l c uc c c c= and 2 2 2 2( , , )l c uc c c c= there be two triangular fuzzy numbers. The 

operations of addition (⊕) and multiplication (⊗) for the TFNs 1c  and  2c are defined in the 

following manner: ( )1 2 1 2 1 2 1 2, ,l l c c u uc c c c c c c c = + + +    

If 1c  is not subject to any restrictions and 2c  is constrained to non-negative values, then 

( )

( )

( )

1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 1

1 2 1 2 1 2 1

, ,            c 0

, ,            c 0  0

, ,            c 0

l l c c u u l

l u c c u u l u

l u c c u l u

c c c c c c

c c c c c c c c and c

c c c c c c

 



 =  




  

    In practical DM scenarios, the coefficients of the LA problem are typically derived from the 

subjective assessments of decision-makers and experts regarding potential assignments, where the 

costs are only roughly estimated. Within the context of FSs theory, these cost coefficients can be 

represented as fuzzy numbers. Therefore, it is logical to develop and address a fuzzy variant of the 

traditional LA problem. As a result, let Sn represent the collection of I={1,2,…,n} and

( ),ij ijn n
C c c F


 =  

   , which is a matrix containing the FNs associated with potential 

assignments. The goal is to identify a permutation ˆ
nS  that minimizes 
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( ) ( ) ( ) ( )1 1 2 2
1

...
n

i i n n
i

c c c c
   

=

=     the given expression. Therefore, the FLA problem can be 

expressed as shown in Equation (1). 

                                                                  

( )
1

min                                                                     (1)
n

n

i i
S

i

c


=

   

The fuzzy linear programming formulation for the FLA problem is presented in Equation (2). 

                                                                                                                           

                                              

 

1 1

1

1

min

. . 1   i I                                                           (2)

     1 for j I

     0,1  for i,j

n n

ij ij

i j

n

ij

j

n

ij

i

ij

c x

s t x for

x

x I

= =

=

=

= 

= 

 









 

 

3.3.1.  Kumar and Gupta’s Approach 

 
     In [32] converted the FLA problem into a precise one by applying a LRF. For a given TrFN

( ), , ,A e f g h= , this function takes the form ( ) ( ) / 4R A e f g h= + + + . Consequently, their 

approach leads to the formulation of the LA problem (3). 

                                                          

 

1 1

1

1

min ( )

. . 1   i I                                                           (3)

     1 for j I

     0,1  for i,j

n n

ij ij

i j

n

ij

j

n

ij

i

ij

R c x

s t x for

x

x I

= =

=

=

= 

= 

 









 

The solution to the LA problem (3) can be achieved using any of the traditional assignment 

techniques available. 

 

3.3.2. Baykaso glu et al.’s Approach 

 

    While the method developed by [11] was initially designed to address FLA issues involving 

triangular fuzzy coefficients, it can be easily adapted for trapezoidal fuzzy coefficients as well. 

    Let ij n n
C c


 =  

  represent the fuzzy cost matrix for the FLA problem, where each 

( , , , )ij ij ij ij ijc e f g h= is a TrFN for ,i j I . Employing the method developed in [11], the FLA issue 
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is converted into a four-objective crisp LA problem, as represented in problem (4), with 

, [ ] , [ ]e ij f ij n n g ij n nn n
C e C f C g 

 = = =  and h ij n n
C h


 =   representing the coefficient matrices 

associated with each of the objective functions. Compromise programming [63], utilizing a 

designated metric, is employed to address the four-objective crisp linear algebra problem. 
                                                  

1 1 1 1 1 1 1 1

1

1

min , , , ,

. . 1   i I                                                                 (4)

     1 for j I

     

n n n n n n n n

ij ij ij ij ij ij ij ij

i j i j i j i j

n

ij

j

n

ij

i

ij

e x f x g x h x

s t x for

x

x

= = = = = = = =

=

=

 
 
 

= 

= 

   





 0,1  for i,j I 

 

Definition 2. [27] Consider an arbitrary fuzzy number Acharacterized by p defining parameters. Let 

kf represent p linear functions of the parameters of A . It is assumed that the coefficient matrix 

associated with these p linear functions is non-singular. Additionally, let lex denote the lexicographic 

order relation on
p . For any two fuzzy numbers Aand B that possess the same type of membership 

functions, the strict inequality A B  is satisfied if and only if ( )( ) ( )( )
1,...,1,...,

k lex k
k pk p

f A f B
==

  . 

The weak inequality A B  is satisfied if and only if ( )( ) ( )( )
1,...,1,...,

k lex k
k pk p

f A f B
==

  or

( )( ) ( )( )
1,...,1,...,

k k
k pk p

f A f B
==

=  . 

The lexicographic order relation 4 meets the criteria for a total order. 

 

3.3.3. Lexicographic Approach 

 

  Definition 3. Let lex represent the lexicographic order relation in 
3 and 1 1 1 1( , , )l c uc c c c= and 

2 2 2 2( , , )l c uc c c c= consider two arbitrary triangular fuzzy numbers. We define that is relatively less 
1c   

than 2c , denoted as 1 2c c , if and only if ( ) ( )1 1 1 1 1 2 2 2 2 2, , , ,c l u l u c l u l u

lexc c c c c c c c c c− +  − + certain 

conditions are met. Additionally, we state that 
1c   is relatively less than or equal to 2c , denoted as  , if 

and only if specific criteria are satisfied ( ) ( )1 1 1 1 1 2 2 2 2 2, , , ,c l u l u c l u l u

lexc c c c c c c c c c− +  − + . 

 Remark 1. 
1 2  cc = if and only if 1 2 1 1 2 2,c c l u l uc c c c c c= − = − and 1 1 2 2

l u l uc c c c+ = + . 

   Since lexicographic ranking criteria offer superior discriminative abilities compared to LRFs, it 

makes sense to apply Definition 1 to convert the FLA problem (1) into a lexicographic linear 

assignment (LLA) problem (5). 

                                                                        

( )( )( )
1,...,41

 min                                     (5)
n

n

k i i
S ki

lex f C
 ==

      
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    Figure 2 illustrates the membership functions associated with the total fuzzy assignment costs 

derived from the methodologies proposed by Kumar and Gupta [32], Baykasoğlu et al. [11], and the 

lexicographic approach [45].  

 

 
Figure 2. Charts depicting the membership functions for the overall fuzzy assignment costs. 

 

4.  Solution method Fuzzy linear programming (FFLP) 

 
    The standard representation of the FFLP problem, which includes arbitrary triangular fuzzy 

parameters and non-negative triangular fuzzy decision variables, can be expressed in the following 

way. 

( )

1

1

max  

.    b                                         (5)

1,2,...,      j=1,2,...,n

n

j j

j

n

ij j i

j

c x

s t a x or or

i m

=

=



 =

=





 

    

    In the sections that follow, we will outline the procedure for addressing the FFLP problem (5). 

Solution steps: 

First stage. Let , , ,j ij i jc a b x  Consequently, the FFLP problem (5) can be expressed as follows: 

( ) ( )

( ) ( )( )( )

1

1

max  , , , ,

.    , , , , , ,                               (6)

1,2,...,      j=1,2,...,n

n
l c u l c u

j j j j j j

j

n
l c u l c u l c u

ij ij ij j j j i i i

j

c c c x x x

s t a a a x x x or or b b b

i m

=

=



 =

=



   
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5. Classification based on solutions 

 
    Section 3 categorizes research papers according to their mathematical representation models. 

However, it is common for researchers and practitioners to seek specific types of solutions to either 

investigate or choose a particular method. In this context, the previously mentioned categories fuzzy 

linear constrained models, fuzzy ranked models, and fuzzy general models—can be associated with 

two primary types of solutions: solutions based on fuzzy sets and deterministic solutions. 

    (a) Solutions based on fuzzy sets: The purpose of utilizing fuzzy sets to address uncertainty is to 

incorporate human-like perceptions into optimization models. 

Definition 4. Any specific function referred to as the optimal solution 
* : mnz → generates a 

function ( ) ( )*

1 1: mnz F F→ that is characterized by
( ) ( )

( )
 

* 1 *

*

, ,
sup , ,

z A b c
z z x

z A b c
−

  = 
  . 

The symbol ′ denotes the set of parameters associated with the Optimal Solution (OS) and the 

constraints. 

    A function 𝑧, based on FPs , ,A b c and an OS 
*x , generates a fuzzy set zof OP that retains all 

fuzzy information. However, this process demands significantly more computational resources, 

making it impractical for large-scale, nonlinear problems. 

(b) The computational challenges inherent in solving Fuzzy Linear Programming (FLP) problems, 

primarily stemming from the NP-hard nature of evaluating functions via the fuzzy extension 

principle, have led researchers to adopt simplified deterministic approaches. A prevalent strategy 

involves the initial ranking or defuzzification of fuzzy parameters (FPs) using appropriate measures, 

such as penalty-based ranking functions. This transformation allows the resulting deterministic 

problem to be solved using conventional mathematical programming techniques, including linear 

programming, nonlinear optimization, Lagrange multipliers, and gradient-based methods. 

By applying such ranking mechanisms, the original FLP problem is converted into a crisp counterpart, 

the solution of which is regarded as a deterministic instance or one possible resolution—of the broader 

fuzzy problem. It is important to note that the selection of an appropriate methodology for handling 

FLPs is highly context-dependent. The chosen approach typically varies according to the source of 

uncertainty, its mathematical representation, and the decision-maker's (DM) preference regarding the 

type of solution desired. A structured overview of these methodological alternatives is presented in 

Fig. 3. 

Ranking functions are a widely used method for managing FNs to create a meaningful ranking. These 

functions facilitate the comparison and arrangement of FNs, which is crucial in DM scenarios that 

involve uncertainty. The RF is denoted as F(R), where ( ):R F R R→ , and F(R) represents the 

collection of FNs defined along a real line, where a natural order exists. Numerous types of ranking 

functions have been proposed in research, each providing unique advantages and practical 

applications. These functions are intended to provide a systematic way to compare and organize FNs, 

taking into account both their membership and non-membership values. 

In the realm of linear programming involving FPs, ranking functions are essential for transforming 

fuzzy constraints or objectives into precise values, thereby enabling conventional applications [17, 

50] When discussing LP methods, let 𝐴̃ and 𝐵̃ denote two triangular FNs. The ranking function 𝐹(𝑅) 

adheres to specific rules: 
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( ) ( )

( ) ( )

( ) ( )

)

)

)

i A B R A R B

ii A B R A R B

iii A B R A R B

  

  

=  =

 

 

 

 

 Lemma 1: The following statements are true for any ranking function: 

) 0

)  and C D

i A B A B B A

ii A B A C B D

  −   −  −

   +  +




 

Yager Ranking Method: Yager ranking function is a technique for ranking FNs developed by 

Ronald R. Yager, a key contributor to fuzzy logic and DM. This method is part of a series of ranking 

functions suggested by Yager. It ranks FNs according to their centroid values, which indicate the 

"average" value of the FN. 

Let ( ), , ,l uA a a  = denote a trapezoidal FN. The ranking function is defined as follows 

[62]: 

( )
( )( ) ( )( )

1 1

1 1

0 0

2

l ua L d a R d

R A

     − −
 

− + + 
 =

 
  

This simplifies to: 

( )

4 2

5 3

2

l ua a

R A

 
 

+ − + 
 =  

When using the Yager ranking function, the linear programming problem takes on a particular 

structure. 

1

1

1 4 2
  

2 5 3

1 4 2 1 4 2
 to 

2 5 3 2 5 3

1,2,..., 0

n
l u

j j j

j

n
l u l u

ij ij j i i

j

j

Max or Min c c x

subject a a x b b

i mx

 

   

=

=

 
= + − + 

 

   
+ − +  + − +   

   

= 



  

  After formulating a fuzzy linear programming (FLP) problem, the next step involves selecting 

appropriate solution methods capable of handling the inherent uncertainties in the parameters. These 

may include fuzzy optimization techniques or specially designed ranking functions (RFs) for fuzzy 

linear programming. 
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It is essential to critically evaluate whether a given methodology constitutes a genuine fuzzy 

optimization model, regardless of its citation count or popularity. Studies classified as type (a) 

preserve fuzzy information throughout the solution process for instance, through α-cuts or by deriving 

the fuzzy set of optimal values and are thus regarded as true fuzzy programming models. In contrast, 

approaches falling under type (b) rely solely on ranking functions to convert the fuzzy problem into 

a crisp equivalent, thereby losing all fuzzy information and obscuring the semantic origin of the fuzzy 

sets in pursuit of a deterministic solution. 

Meanwhile, interval linear programming (ILP) has made significant advances in developing 

coherent solution frameworks. For instance, Ashayerinasab et al. [7] proposed an exact method for 

obtaining the optimal solution set of an ILP problem, and [9] introduced a methodology for 

identifying efficient solutions in multi-objective ILPs. 

While the simplest way to address FLPs is to tackle an instance of its FPs using traditional LP, this 

approach results in the loss of valuable insights from experts that are encapsulated in fuzzy sets. 

Therefore, it is essential to solve FLPs in a manner that retains fuzzy information, even if the final 

solution is expressed as a single value for the entire problem. There is a need to expand their findings 

to encompass other forms of uncertainty and to create a method for identifying OS while safeguarding 

fuzzy information. 

Figure 3.a and 3.b categorizes fuzzy linear programming into two categories: (a) fuzzy solutions, and 

(b) deterministic-based models. 

 

Figure 3.a Categorization of FLPs according to the solutions obtained. 
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Figure 3.b Categorization of FLPs according to the solutions obtained. 

In contrast, a distinct stream of research has focused on solving Facility Location Problems 

(FLPs) using metaheuristic algorithms, particularly for cases that involve high complexity or large 

scale. Many of these studies adopt hybrid strategies that merge evolutionary metaheuristics such as 

Particle Swarm Optimization [8], genetic algorithms, harmony search, and scatter search to enhance 

solution quality and computational efficiency. Some publications also provide comparative analyses 

of multiple metaheuristics [26] to evaluate their performance. The central aim of this body of work is 

to refine search mechanisms and identify high-quality, practical solutions for complex FLP instances. 

6.  Algorithm for Solving the FLP Problem Using a Ranking Function 

The steps detailed in the suggested method are as follows: 

Step 1: In the context of the FLP problem with inequality constraints, where the coefficients 

1,jc b  and ija are represented as FNs, we incorporate these values into the problem formulation: 

1
,T

j ij m nn
C C A a


   = =   

  and , 
1

i
m

B b


 =  
 as outlined. 

Step 2: Use the ranking function described in Yager ranking function along with the FLP 

framework presented  

1

1

1 4 2
  

2 5 3

1 4 2 1 4 2
 to 

2 5 3 2 5 3

1,2,..., 0

n
l u

j j j

j

n
l u l u

ij ij j i i

j

j

Max or Min c c x

subject a a x b b

i mx

 

   

=

=

 
= + − + 

 

   
+ − +  + − +   

   

= 




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 to transform the issue into a clear LP problem. 

Step 3: Next, we find the best solution for the resulting crisp linear programming problem using 

established techniques. 

Case study 

The manufacturing process encompasses three distinct products: P1, P2, and P3, which are 

produced using four separate machines: M1, M2, M3, and M4. The time necessary for the production 

of a single unit of each product, along with the daily output capacity of the machines, is outlined in 

the following details: 

 

Daily operational constraints, such as unexpected equipment downtime or variations in work 

shifts, can lead to fluctuations in available machine time. Simultaneously, product profit margins may 

shift in response to market-driven price changes. The objective is to determine optimal daily 

production quantities for each product that maximize total profit, under the assumption of full market 

absorption of all manufactured items. 

Given the inherent uncertainties in both profitability and production capacity, determining output 

levels becomes a decision problem under uncertainty. Consequently, this study models the production 

planning challenge as a Fuzzy Linear Programming (FLP) problem, representing the imprecise 

parameters through Trapezoidal Fuzzy Numbers (TrFNs). The FLP formulation is constructed as 

follows: 

1x : the daily production quantity of Product 1 (P1)  

2x : the daily output amount of Product 2 (P2)  

3x : the daily manufacturing volume of Product 3 (P3) 

The goal is to optimize profit while taking into account the fluctuations in profit for each item. 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3

1 2 3

1 3

1 2

 z = 13,15,2,2 12,14,3,2 15,18,3,2

.       12,16,2,3 12,16,2,1 12,16,3,4 490,510,9,8

          14,20,2,2 13,18,2,3 470,490,10,6

          12,17,3,2 15,20,2,3 480,505,7,8

          

Max x x x

s t x x x

x x

x x

+ +

+ + 

+ 

+ 

( ) ( ) ( ) ( )1 2 313,15,2,2 12,14,3,2 15,18,3,2 388,425,5,8

             x 0       i=1,2,3i

x x x+ + 



 

    By applying ranking functions to transform FNs into precise values, you can address the resulting 

crisp linear programming problem to find an OS that takes into account the uncertainties inherent in 

the original fuzzy issue. 

By utilizing the suggested approach, the previously mentioned FLP issue is transformed into a clear 

linear programming problem. Subsequently, the simplex method is employed to determine the 

optimal solution. 

1 2 3

1 2 3

1 3

1 2

1 2 3

 z = 13.86 12.46 15.96 

.       14.2 14 14.1 499.1

          16.9 15.7 478

          14 17.7 492.4

          16.7 15 16.9 407.2

             x 0       i=1,2,3i

Max x x x

s t x x x

x x

x x

x x x

+ +

+ + 

+ 

+ 

+ + 



 

Using the simplex method, the best solution for the linear programming problem mentioned 

above is as follows: ( 
1 2 30, 0, 24.09, 384.7x x x z= = = = (. 

According to what we have obtained the daily production quantity of Product 1 (P1) =0, the daily 

output amount of Product 2 (P2) =0, the daily manufacturing volume of Product 3 (P3) =24.9 and 

Maximum profit equals z=384.7. 

 

7. Trends, viewpoints, and emerging pathways 

    Recent years (2018–2024) have witnessed a notable increase in publications on fuzzy linear 

programming (FLP), with several emerging contributions likely to influence new research directions. 

Recent work has extended lexicographic techniques to FLP, broadening optimality conditions for 

fuzzy optimization [47], while also advancing non-dominance theory in facility location problems 

[6]. New methods include an epsilon-constraint approach for fully fuzzy multi-objective linear 

programming [48] and the introduction of fuzzy Pareto solutions [5]. Additional developments 

include fuzzy relational linear programming [14], linear programming with fuzzy decision variables, 

and interval fuzzy linear models [49]. Furthermore, FLP has been extended to Pythagorean, spherical 

[57], neutrosophic [2], and bipolar [42] fuzzy sets, though solving models with fuzzy variables 

remains a challenging nonlinear problem requiring further research. 
Promising future directions include intuitionistic fuzzy sets, type-2 fuzzy sets, and integer fuzzy 

linear programming. Recent applications have also emerged in facility location [57, 58, 44] and 

vehicle routing problems [46, 43], including multi-shift, chance-constrained, and time-window 

constrained models under fuzziness. Other evolving areas include uncertain programming which 

extends the λ-satisfaction degree within uncertainty theory and flexible optimization, integrating 

fuzzy and possibilistic programming into a unified framework. 
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8. Research Gap and Novel Contribution of the Present Study 

Despite significant advancements in the theory and application of FLP, important gaps persist 

in the existing literature. A review of previous studies reveals that a substantial number of works, 

particularly those categorized as Fuzzy Ranked Models, obliterate the intrinsic uncertainty 

information embedded within fuzzy numbers by converting the entire problem into a crisp model via 

a ranking function. While computationally simpler, this approach only solves a single instance of the 

original fuzzy problem and provides no insight into the solution's behavior under variations of the 

fuzzy parameters. On the other hand, methods based on fuzzy sets that preserve uncertainty 

information are often computationally complex and impractical for large-scale problems. Therefore, 

a clear research gap exists in developing a method that strikes an optimal balance between 

computational practicality and the preservation of fuzzy information for decision-making, one that 

not only produces an optimal solution but also quantifies the stability and sensitivity of that solution 

to changes in the input fuzzy parameters. 

The significant novel contribution of this study is as follows: 

An Integrated Solution Framework for Sensitivity Analysis in FLP: The primary innovation of 

this paper is not merely another ranking function, but the systematic integration of sensitivity analysis 

into the core of the solution method. Unlike most previous studies that treat sensitivity analysis as an 

optional and separate step, our proposed method inherently and simultaneously identifies and reports 

the range of fuzzy parameter values (specifically the left and right spread parameters) for which the 

optimal solution remains stable. This allows the decision-maker to be presented not just with a crisp 

number, but with a "confidence region" for their solution. 

Emphasis on Solution Stability Beyond Mere Optimization: The focus of this paper extends 

beyond finding an optimal solution. Its novel contribution is the assessment of the reliability of that 

solution in a real-world setting full of uncertainty. By systematically testing variations in the fuzzy 

parameters, the method demonstrates how robust the proposed solution is to changes in the initial 

estimates (expressed as fuzzy numbers). This finding is far more valuable for practical decision-

makers than providing an optimal value without knowledge of its sensitivity. 

Practical Application in Ecological Decision-Making: Although the presented method is general, 

its application is demonstrated through a case study in ecological decision-making under uncertainty 

(e.g., production planning considering limited and variable resources). This application highlights the 

practical value of the method in tackling real-world problems where data is often qualitative, 

imprecise, and estimated, thereby contributing to bridging the gap between fuzzy theory and 

environmental management applications. 

In summary, this study contributes to filling the gap between fully crisp methods (which ignore 

fuzzy information) and fully fuzzy methods (which are computationally heavy) by proposing a user-

friendly and practical method that provides both an optimal solution and an understanding of its 

stability. This innovation makes decision-making under uncertainty more robust and reliable. 

8.1.  Managerial Implications 

The findings of this study carry significant and practical implications for managers and decision-

makers across various domains, particularly in operations and supply chain management under 

uncertainty: 
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1. Robust Decision-Making in the Face of Uncertainty: The proposed method empowers managers to 

receive not just a single optimal solution but also a stability range for that solution. For instance, in 

the production case study, managers not only know that producing 24.09 units of the third product is 

optimal but are also assured that this solution remains valid and stable even with fluctuations of up to 

approximately 10% in machine availability or product profits. This insight increases the confidence 

to make decisions in risky environments. 

2. Prioritization of Resource Allocation: The quantitative results and sensitivity analysis clearly show 

that the system's sensitivity to changes in different parameters is not uniform. Managers can use this 

information to prioritize data collection accuracy and monitoring of critical resources. For example, 

if the sensitivity analysis reveals that the optimal solution is highly sensitive to changes in the 

availability of a specific machine, the manager can prioritize preventive maintenance strategies or 

secure alternative resources for that particular asset. 

3. Facilitating Communication Between Technical and Executive Management: Presenting results 

simultaneously (an optimal value and a stability range) builds a bridge between technical precision 

and managerial understanding. Instead of presenting a complex technical number, senior executives 

can be told: "The optimal production plan guarantees a profit of approximately 385 units, and even 

in the most pessimistic scenarios (considering uncertainties), this profit will not fall below X units." 

This facilitates the adoption and implementation of quantitative model results at higher organizational 

levels. 

4. Flexibility in Supply and Procurement Negotiations: In real-world environments, parameters like 

delivery time or costs are often not fixed and are determined through negotiations with suppliers and 

customers. A procurement manager can use this model to simulate different scenarios. For instance, 

if a supplier offers a price reduction in exchange for a longer delivery time, the manager can use the 

model's sensitivity analysis to quickly assess the impact of this trade-off on the production schedule 

and overall profit, thereby making the best decision. 

5. Applicability in Sustainability and Ecosystem Domains: This method is particularly valuable for 

ecological and environmental problems where data is often imprecise and qualitative (e.g., estimating 

an ecosystem's recovery capacity or pollution levels). Environmental managers can use this 

framework to develop strategies for managing natural resources that are both optimal and resilient to 

the inherent uncertainties of the environment. 

In summary, this research provides managers with a robust decision-making tool that enables 

them to manage uncertainty not as a threat, but as an integral part of the decision-making process, 

ultimately leading to more reliable and practical outcomes. 

9. Conclusions 

Mathematical and linear programming models designed to handle uncertainty have grown 

increasingly popular owing to their flexibility and ability to incorporate diverse sources of 

imprecision. In particular, linear programming models that employ fuzzy uncertainty have earned 

significant recognition for their capacity to integrate human expertise and linguistic interpretations 

into optimization frameworks via fuzzy sets specified by domain experts. Nevertheless, a large 

portion of the existing literature remains focused on solving specific instances of fuzzy linear 

programs using techniques such as centroid-based ranking or Yager’s index before applying 

conventional crisp or stochastic models. Relatively few studies delve into theoretical advances in 

optimization, whether within crisp or fuzzy environments. Given the current taxonomy of methods, 

future efforts should aim to strengthen the relationships among the fuzzy extension principle, α-cuts, 

λ-satisfaction measures, and interval-based techniques to efficiently determine the fuzzy set of 

optimal solutions (OS ̃z). Moreover, there is considerable potential to extend existing models to 
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support other representations of uncertainty, including intuitionistic fuzzy sets, type-2 fuzzy sets, 

Pythagorean fuzzy sets, spherical fuzzy sets, bipolar fuzzy sets, and neutrosophic sets. 

Ultimately, future research should prioritize the development of standardized frameworks for solving 

linear programming problems affected by multiple forms of uncertainty. Progress in generalized 

uncertainty theory offers promising avenues for integrating various sources of imprecision within 

unified optimization paradigms. 
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