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Computing the Capacity of Sum-networks with
Dependent Sources
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A sum-network is a directed acyclic network with multiple sources and multiple sinks, where each
sink demands the sum of the independent information generated at the sources. The coding capacity
of sum networks with independent sources has been investigated in Tripathy and Ramamoorthy
(2015). This paper shows that dependencies between the sources can change the upper bound of
the coding capacity of sum-networks. We prove that the upper bound of the coding capacity of a

sum network with dependent sources is greater than 1 which is different from the results in Tripathy
and Ramamoorthy (2015). It is also shown that a non-solvable sum-network with independent
sources can be converted to a solvable sum-network when the sources have arbitrary dependencies.
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1. Introduction

The work in the area of function computation over a communication network has been received
attention in the last years [12, 13, 14, 18, 21]. In a function computation problem, each sink wants to
compute some function of a subset of source messages. In recent years, the concept of network coding
was proposed in the area of function computation problems [31, 32, 33]. The sum-network problems
are a special kind of function computation problems because they need a simple function such as the
sum [17, 30, 32, 34]. A sum-network is considered as a communication network with multiple sources
and multiple sinks such that each sink requires the sum of all the messages generated at the source
nodes. The first work in this area was done by Ramamoorthy in [32]. He showed that, for sum-
networks with at most two sources or two sinks, the sum of source messages can be communicated
to the sinks if and only if each source-sink pair is connected.

One of the fundamental problems in network coding problems is to characterize the capacity region
of them. In [2], the weighted Hamming distance to measure the modification of the arc capacities is
considered. Network routing capacity, network coding capacity and channel coding capacity were
investigated in [4, 9, 11, 10, 15, 26]. In [1], it was shown that the network coding capacity of a
multicast network is the minimum of the min-cuts from the source to the individual sinks. Li et
al.(2003) showed that 1 the capacity of multicast networks is achieved by linear network codes. By
the assumption that sources are independent, the network coding capacity of multi-source multi-
terminal networks was studied in [5, 20, 16, 38].

Some factors can change the coding capacity of communication networks. For multiple unicast
networks, Cannons et al. (2006) proved that the coding capacity is independent of the using alphabet
[4]. Also, the linear coding capacity of networks over ring and module alphabets has been considered
in [6]. Furthermore, under the assumption that sources are dependent, the capacity region of multi-
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source multi-terminal network coding problems and line networks were investigated in [4, 19, 22]. In
[23], the edge-removal problem and its connections to the 3-dependent problems is investigated.

For sum-networks with independent sources, the capacity region has been studied extensively and
some bounds on the network coding capacity of these networks were presented in [7, 24, 27, 28, 29,
36, 37]. In [8, 27, 28, 37], sum-networks with arbitrary capacities were constructed. In [28], a ratio
m/n (where m and n are non-negative integers) was considered and a sum-network with capacity m/n
was constructed that has 2n? — n sources and 2n? — n + 1 sinks. In [27, 37], the work of [28] was
generalized and sum-networks of smaller size was constructed that had capacity m/n. Tripathy et al.
(2015) showed that the coding capacity of the sum-networks depends on the characteristic of finite
field F used as the message alphabet [36]. Moreover, they constructed a sum-network with
independent sources that the coding capacity of it is at most 1.

Main contributions:

This paper considers sum-networks whose capacities depend on the dependency or independence
of information generated by the sources. It constructs a sum-network which the upper bound of its
capacity is 1 as the sources are independent, and it can be (strictly) greater than 1 as the sources are
dependent. Also, an example of a non-solvable sum-network with independent sources is presented,
it becomes solvable when the sources are dependent.

2. Preliminaries

2.1. System model

We consider a communication network as a directed, acyclic, and finite graph ¢ = (V,E,S,T),
where V is the set of nodes, E € V X V is the set of links, S < V is the set of source nodesand T < V
is the set of sink nodes. For any link e = (u, v) € E, node u € V is called the tail of e, and node v € V
is called the head of e, and are denoted by u = tail(e) and v = head(e), respectively. Moreover, we
call e an incoming link of v and an outgoing link of u. For two links e, e' € E, link e is an incoming
link of e' (or e’ an outgoing link of e) if tail(e") = head(e). The edges are delay-free and the capacity
of each link is assumed to be one unit. For each v € V , the set of incoming edges of v is denoted by
In(v). We assume that each source process is uniformly distributed over the finite field F. Each source
node does not have any incoming edge and each sink node does not have any outgoing edge.

By [36], a network code is an assignment of a local encoding function to each edge and a decoding
function to each sink. A (7, l) fractional network code is described as follows:

(1) For an edge e with tail(e) = v, a local encoding function is defined as

d_)el?r—)?l, ifvES,
and
(]-'_)e: FlUm®)| Fl ifvées.

(2) For asink t; a decoding function is defined as

Py, FUHMED — FT,
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In a sum-network each sink wants to recover the sum of the r-length vectors produced at the sources.
If r source symbols can be transferred to the sinks in [ units of time, then a network has a (r, [) fractional
network code solution over F. The ratio /1 is called as rate of the (7, 1) fractional network code. A rate
r/l is achievable if there is a (r,[) fractional network code solution for the network. Moreover, the
supremum of all achievable rates is called the capacity of the network. Also, a network is solvable if it
has a (1, 1) network coding solution.

2.2. Constructing a sum-network

Constructing a sum-network using balanced incomplete block designs (BIBDs) was illustrated in
[36]. In this section, we briefly explain this procedure. First, by [35], we define a 2 — (v, k, 1) balanced
incomplete block design as follows:

Definition 2.1 [35] A 2 — (v, k, 1) balanced incomplete block design (BIBD) is a set system D =
(P, B) with the following two components.
(1) A set P is formed from v elements that are indexed in arbitrary order as P
={p1, D2, ..., Py}, where these v elements are called points.
(2) A set B of size b whose elements are k-subsets of P such that B = {B;, B,, ..., Bp}. B has
the following regularity property. For p;, pj € P,i # J,
|{BEB: piEB,p]-EBH = A

Forany p € P and B € B, by [35], two sets < p > and < B > are defined as follows:
<p>={BE€EB:p€EB}, <B>=U,p<p >=Uycp{B' €B:p € B'}.

By [36], a sum-network G = (V, E) can be constructed from any BIBD D. At first, the vertex set I/
is describedas V. =SUT UM* UMT, where S={s,:p€P}U{sz: BE€BLT ={t,: p€P}U
{tg : B € B}, M = {my,, myp, ..., myp} and MT = {my,, mye, ..., my,}. Also, the edge set E is
denoted as E = M U D, where M contains v unit-capacity bottleneck edges e; = (m;;, m;), i €
{1, 2, ..., v} and the following edges for all p; € P

o (sp, M) and (sBj,mit) forall B; € <p; >,
. (ml-h, tpi) and (mih, tBj) forall B; € <p; >.
Moreover, D contains the following four groups of unit-capacity direct edges for every p; € P and
B; € B,
o (sp,tp) forallp, # p;,
* (sp,ty) forall B € <p; >,
o (Spl,tBj)for all p, € B;,
o (SBl,tB].)for all By € < Bj >.

The next example constructs a sum-network from a given 2 — (3, 2, 1) design.
Example 2.1. Consider a 2 — (3, 2, 1) design D = ({1, 2, 3}, {A, B, C}), where A = {1, 2}, B= {2, 3}

and C = {1, 3}. We can construct a sum-network G = (V, E) by defining the following sets:
S ={51,52,53,54,58,5c},
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u . T = {t, t3, t3, ta, tg, tch
M7 UM" = {myp, Map, Map, My, Myp, My},

M = {e; = (my¢, myp), €3 = (Mye, Myp), €3 = (M3, M3p)}

Also, there are direct edges that connect sources to bottleneck edges and some other direct edges that
connect bottleneck edges to terminals. A part of the constructed sum-network is depicted in Figure 1.

Figure 1. A part of the constructed sum-network from a 2 — (3, 2, 1) design.

2.3. Dependent sources

This section introduces some definitions and notations about dependent random variables. We show
that the upper bound of the coding capacity of constructed sum-networks from BIBDs is increased when
the sources are dependent. Let D be a 2 — (v, k, 1) design and G be the constructed sum-network from
it. Suppose that there exists a (7, [) fractional network code solution with rate r /1 for constructed sum-
network G over F. Then, r-length vector X; = (X; 1, X; 5, ..., X; ;) is generated at the source s;, where
X;; € F for j=12,..,7. We assume that, X; is uniformly distributed over F" and H(X;) =
rlog, |F|, where H(X;) is the entropy function for a random variable X; . For a subset AC S, the
notation Xy is the vector of source random variables and is denoted as follows:

X, = (X : s €A).

Moreover, let X be the set of all source processes, ¢, is the corresponding global encoding function
for edge e and ¢, (X) is a [-length vector that is transmitted on edge e. So, for all v € V/S, the set
P mw)(X) is defined as follows:

¢In(v)(X) = {¢p.(X):e € In(v)}.

The definition of §-dependent sources is presented as follows:
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Definition 2.2. [19] For coding at block length m, information sources X5 are said to be §-dependent if
Yises H(Xs) — H(Xs) < 6r. Independent random variables are 0-dependent.

We assume that the source random variables of sum-network G are §-dependent. Similar to [19], for
§-dependent sum-networks, we can define the probability of decoding error P,,.,- as follows:
Definition 2.3. For sum-network G with §-dependent sources information, decoding error P, is
defined as follows:

P,, & Pr {at €T+ P (pmewy®)) = Z}.

By Definition 2.3, all the decoding functions ¥t can recover the sum of sources indicated by Z =
Ypep Xp + Xpes Xp With probability 1 — €, where € is the upper bound of decoding error Perr. When

the sources are independent, by [35], Z can be evaluated from ¢, (X), which means
H (Z |qu(t) 0:¢ )) = 0. If the sources be 6-dependent, then Z can be evaluated from ¢, ) (X) with

probability 1 — € , which means H (Z |q§ X )) = 0, forallt € T with probability 1 — €. Thus, we

suppose that there exists a ((7, ), €, §) fractional network code solution for sum-network G, where € is
the upper bound of decoding error P,,.,..
The next proposition and lemma present some properties of the entropy function.

Proposition 2.1. [39]
(1) For random variables X1, X5, ..., X,, the chain rule for entropy is described as
n

H(Xy, Xy, o, X)) = Z HXGIX s oy Xy s Xty oo X
i=1

(2) Conditioning decreases entropy, which means H(Y|X) < H(Y), where X and Y are two
random variables.
(3) For two random variables X and Y , H(X|Y) = H(X,Y) — H(Y).
(4) For two random variables X and Y , I(X,Y) = H(X) + H(Y) — H(X,Y), where I(X,Y) is the
mutual information between two random variables X and Y .
The next lemma is a trivial consequence of the definition of §-dependence.
Lemma 2.1. Let X; and X, be two random variables at blocklength r. If X; and X, are §-dependent,
then H(X,) — H(X,|X,) < 6r and H(X,) — H(X,|X,) < 6.
Proof: By Definition 2.2, we get

HX,)+H(X,) — H(X,,X,) < 6r. (D
By Part (3) of Proposition 2.1, we have

H(X,X;) = H(Xq11X2) + H(Xy), (2)
also,

H(X1,X;) = H(X;1X) + H(Xy). 3)

Hence, by (1) and (2), H(X;) — H(X;|X3) < &r. Moreover, by (1) and (3), we get
H(Xz) - H(leXl) S 67',
which concludes the claim.

Tripathy et al. (2015) showed that if all source random variables are independent, then certain partial
sums can be computed by observing subsets of the bottleneck edges. For example, in Lemma 1 in [36],
we have

H(Xp; + Xpe<p;>Xp |¢e; (X)) =0,
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where ¢, (X) is a l-length vector that is transmitted on the bottleneck edge e; . The next lemma is
for the case that the sources are not independent.

Lemma 2.2. Let D and G be a 2 — (v,k,1) BIBD and the constructed sum-network from it,
respectively. If all source random variables are §-dependent and there exists a ((r, 1), €, §) fractional
network code solution for G, then

H(Xpi + ZBepiXB |¢ei (X)) < ér,

where ¢, (X) is a n-length vector that is transmitted on the bottleneck edge e;.

Proof: There exists a ((r,1),€,6) fractional network code solution, so, Z can be computed from
(,‘bm(t )(X), forany p; € Pandalli = 1,2, ..., v with probability 1 — €, which means
pi

H(Z|¢p m(tp.)(X )) = 0 with probability 1 — €, where

Z= Xpi + Zp:/:piXp + ZBE<pi>XB + ZBe<pi>XB’
and
Pin(e,)X) = {¢e,(X) : pi € P} U {Xp: p#pi} U {XB: B €<p; >}

Let
Zy = Zp:#piXpr Zy = ZBE<p,~>XB and Zz = ZBE<pi>XBa

we have H(Xp, +Z;+Zy +Z3|pe, X),{Xp: p # p},{Xg: B €<p;>}))=0 with

probability 1 — €. Since Z; and Z5 are a subset of ¢ m( ; )(X ), we get
pi

H(Xp, + 22 | e, X0, (Xp p # p}{XB: B &<p;>}) =0, )
with probability 1 — €. Since all source random variables are §-dependent, by Lemma 2.1, we have
H(Xp, + Zal e, (X)) = HXp, + Zoley (X, (X p # P}, (Xp: B €<p; >)) < o
Thus, by (4),
H(Xp, + Z3| e, (X)) < 6r.

The next example describes Lemma 2.2.

Example 2.2. Consider the constructed sum-network depicted in Figure 1. Since all source random
variables are §-dependent and there exists a ((7, 1), €, &) fractional network code solution for G, we get
H(Z|¢p In(tpl)(X )) = 0 with probability 1 — €, where
Z=X+X,+Xc+ X, +Xp+ X3,
and
(e, X) = {de,(X) : p1 € P}U{X;, X3} U {Xp}.

By the definition of set < p >, we have < p; >= {4,C}.So0,Z, =X, + X;,Z3 = Xg and Z; =
Yp=p, Xp =Xz + X3. Thus, H(X; + X4 + Xc|de, (X), {X2, X3}, {X5}) = 0 with probability 1 — €. All
source random variables are §-dependent, so

H(Xy + Xg + Xc|de, (X)) — H(Xy + Xy + Xc|de, (X), {X2, X3}, {Xp}) < 67

Hence,

H(X; + X4 + Xc|de, (X)) < 6r.

Let H(A) be the entropy function for a random variable A and define, forany v > 1,
H(A1, Az, ..., Ay) = H{A1, A, Ap}) = H({A}D).
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Lemma 2.3. For each i € {1,...,v}, assume H(4;|A;) < 8r, where A; and A; i are § —dependent
random variables. Then H ({4;}] [{A;}}) < vér.

Proof: We proof the lemma by induction on v. For v = 1, it is obtained by the assumption. Suppose
that it holds for v = k. We show that it is also true for v = k + 1. Then,

HA{AZTTHABTY = HH{ADY, Api AT, = HAADY {ADT™) + H(Ap 41 [{ADY LAY,
< H{A}T {AD) + H(Ap111Av41),
< vér + Or,
= (v + 1)dr.

Note that by Parts (1) and (2) of Proposition 2.1, the second equality and first inequality are
concluded.

Corollary 2.1. Let D be a 2 — (v, k,1) BIBD and G be the constructed sum-network from it. If all
source random variables are §-dependent and there exists a ((r,1),€,8) fractional network code
assignment for G, then

H({Xp, + Xpe<p;> Xp}T {de,(X)}T) < vér.

Proof: By Lemmas 2.2 and 2.3, the claim is concluded.

Lemma24.LetDbea?2 — (v, k, 1) BIBD and G be the constructed sum-network from it. If all random
variables in {{Xp, }7 U {X B}.}i’ } are §-dependent, then there exists a §' such that the random variables

X{ = Xp, + Xpe<p,>Xp are §' -dependent, fori € {1,...,v}.

Proof: Since all random variables in {{X,, }7 U {X B; 12} are § —dependent and

X{ = Xp, + Xpe<p,>Xps
fori € {1,..., v}, we conclude that the random variables X; are dependent for i € {1,...,v}. Thus,

HAXR) < D HOED.
i=1

Then, under ((r, 1), €, §) fractional network code, there exists a §' such that

D HED - HXOD <o,
i=1

which concludes the claim.
In the following, we show that how does &' depend on 6.

Corollary 2.2.
1. By [36], when all source random variables are independent and uniformly distributed over F7,
then X; are also independent and uniformly distributed over F". Thus, if § = 0, then §'= 0.

2. Since X; are uniformly distributed over ", by Lemma 2.4, we get §' can not be large. Then, we
have not a loose upper bound.

Example 2.3. Consider three binary random variables
X1 = (b, b1), Xz = (by, b) and X3 = (by, by),
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such that they are uniformly distributed over F?2 , where |F| = 2.

We see that X; and X, are 1/2 —dependent. Similarly, we can show that X, and X5 are also
1/2 —dependent. Let X; = X; + X, and X; = X; + X3, 50 X; = (by + by, by + by) and X; = (b, +
by, by + b,). Thus, X; and X; are dependent because H(X;) = H(X}) = 2 and H(X{,X;) = 3. Hence
HX{)+HX;)—HX{,X3)=4-3=1< %(2) which concludes §' = 2/3.

Lemma 2.5. Let D = (P, B) be a set system of a BIBD and
Xi, = Xpi + ZBE<pi> Xp,

where i € {1,...,v}. If all random variables in {{X}, }7 U {X Bj}i’} are §-dependent, then there exists

a &' such that H({X;}¥) > r(vlog, q — §").
Proof : Since all random variables in {{X}, }7 U {X B}.} b3 are §-dependent, by Lemma 2.4, there exists
ad'suchthat },7_; H(X;) — H{X{}Y) < 8'r. Moreover, under a (r, 1) fractional network code, we get
H(X{) =rlog,q, foralli € {1,..., v}, which means
=1 HX{) = vr log, q.
Hence,
H{X})) > vrlog,q —8'r =r(vlog,q — &").

3. The coding capacity of sum-networks with dependent sources

In this section, we obtain an upper bound on the coding capacity of sum-networks when the sources
are §-dependent. Let D be a2 — (v, k, 1) design and G be the constructed sum-network using the given
construction D. Under the assumption that sources are independent, the capacity of the sum-network G
is at most 1 [36]. In the following theorem, we obtain an upper bound for the network coding capacity
of the sum-networks when the sources are §-dependent.

Theorem 3.1. Let D be a 2 — (v, k, 1) design and G be the constructed sum-network using the given
construction D. Supposing that all random variables in {{Xp, }7 U {X B].}’l’ } are § —dependent and X; =

Xp, + Xpe<p;>Xp - Then, the upper bound of the network coding capacity of G is at most A =

vlogaq

I . . ,
108, - (05707}’ where 6’ is used to quantify the dependency among the random variables X; .

Proof: Since ¢, (X) is a l-length vector that is transmitted on the bottleneck edge e; , under a
((r, D), €, 6) fractional network code, we have H(¢,, (X)) < llog, q. Thus,
v

H({e,00),) = > H($,00) < vilog, g. ©
By (3) and (4) of Proposition 2.1, wle get

I({pe, ), X037) = H ({be,(0},) = H ({9, (X))
Also, we have
[({¢e, X371 {Xi}]) = HAX{} 1) — HEX3 TH{e, (D). (7)
Hence, by (6) and (7),

xR ®

H({¢e,(X)}7) = I({pe,(X)}7 . {Xi37) + H({Pe, (XD}T {X{3D),
= H({X{} 1) — HAX{3}T {e,(X)37) + H({Pe, (XD}T I{Xi3D),
So, by (5),
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HX{) = HEXDY 1{be, DY) + H({e, (D). XY < wllog, q.
Also, by Lemma 2.5 and Corollary 2.1,
r(vlog,q — &) —vré + H({e, (XD} [{X{}1) < vllog; q.
By H({he; (XD} {Xi }7) = 0, we get
r(vlog,q —6') —vmd < vllog, q.
Thus,

' < __vlogg  _ A
1~ vlog,q—(vé+68")

Corollary 3.1. Let D be a 2 — (v, k, 1) design and G be the constructed sum-network using the given
construction D. Supposing that all random variables in {{Xp, }7 U {X B}.}ll’ } are § —dependent and X; =

Xp, + Xpe<p;> Xp- Then, the upper bound of the network coding capacity of G is increased by the factor
(v8+8')

vlog, qg—(v6+6')
i=1,...,v.

where &' is used to quantify the dependency among the random variables X;, for

Proof: If the sources are independent, then the coding capacity of the constructed sum-network is at
most 1 [36]. On the other hand, according to Theorem 3.1, if the sources are § —dependent, then the

. . . 1
coding capacity of the constructed sum-network is upper bounded by% .
S d—

v log, q

7108, - (w5487 the claim is concluded.
-

Thus, by subtracting the value 1 of

Therefore, by Corollary 3.1, if the sources are d-dependent, then the coding capacity upper bound of
sum-networks is increased.

3.1. Numerical results

In this section, we present some examples of communication networks with dependent sources. We
calculate the coding capacity of communication networks with dependent sources, then we compare the
obtained results with previous works (the coding capacity of communication networks with independent
sources). We show that a special kind of dependency among the sources can increase the capacity region
of communication networks. The next two examples show that how dependent sources can increase the
routing capacity of communication networks.

Example 3.1. Consider network N shown in Figure 2, in which two sources s; and s, produce messages
X and Y, respectively. Also, two sinks t; and t, demand the both of two messages. By [4], the routing
capacity of this network is 1/2 (for more detail see Example II1.2 in [4]). Supposing that the sources
are dependent such that X =Y. Then, t; and t, can receive X and Y through two edges (sq,t,) and
(s, t1), respectively. Since sinks t; and t, demand both of two messages X and Y, it is sufficient that
only one of those two messages is passed through the edge (v4, v,). Thus, the routing capacity of N is
1, which means it is increased by the factor of 1/2.
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Figure 2. The network N, where only one of the two messages X and Y passes through the edge
(1, V).

e The previous example demonstrates a trivial statement. In the following, a much simpler
example is presented.

Example 3.2. Consider a “Y” network with two sources s; and s, on top and one sink t at the bottom
such that these two sources are connected to the sink through a shared link. Let messages X and Y be
produced with s; and s,, respectively. Moreover, sink ¢ demands the both of two messages. Then, the
routing capacity of this network is 1/2. Now, supposing that the sources are linear dependent such that
X =Y . Then, the routing capacity of this network is 1.

In the next example, we consider a sum-network with dependent sources. We show that the capacity
region of a sum-network change when the sources be linearly dependent. This result is shown by the
following example.

Example 3.3. Consider a network with two sources s; and s, and two sinks t; and t,. Let two messages
X and Y be produced by s; and s,, respectively. Supposing that this network only has 10 two edges
(s1,t1) and (s;, t). When the sources are independent, then the sum-capacity is zero. If X =Y, then
the sum-capacity is 1. Moreover, if X = —Y, then the sum-capacity is infinite.

By [28], the linear coding capacity of sum-network S5, depicted in Figure 3, is at leastg . We show

that a special kind of dependency among the sources can increase the capacity lower bound of this sum-
network.

Example 3.4. Consider network S3 shown in Figure 3. Supposing that X; = (X; ;,X;,) is generated at
source si, for i = 1, 2, 3. Consider the following dependency among the sources:

X11=X21, X12=X31, X22 = X3
We define two sums Sum, and Sum,, as follows:

Sum1 = Sumz = Xl,l + lez + erz.
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o If Sum, + Sum,; is transmitted to terminals £; and t, in the first time slot and Sum4 +
Sum, is transmitted to terminal £3 in the second time slot, then Sum; and Sum, can be
transmitted to all the terminals in two time slots. Thus, the linear coding capacity of the sum-
network S3 is at least 1.

Figure 3. The network S5.

By Example 3.4, the lower bound of the network coding capacity of the sum-network S5 is increased
from g to 1 because the sources are dependent. Thus, by Corollary 3.1, we conclude that the dependency

between the sources can change the capacity region of sum-networks. In the next example, we show
that dependency among the sources can convert a non-solvable sum-network to a solvable one.
According to [31], if the sources are independent, then the coding capacity of the network S5 (depicted

in Figure 3) is g Moreover, by [31], the network S5 is non-solvable, which means all the terminals can
not receive the sum of sources at rate 1.

Example 3.5. Consider the network S; depicted in Figure 4. By [31], the network S3 has a (2, 3)
fractional network coding solution which means it is not solvable. Supposing that the sources are

dependent such that X; = X3, where X; and X5 are the generated messages at two sources S; and S,
respectively. Then, there exists a network coding scheme for S5 such that all terminals can receive the
sum of the sources at rate 1. Figure 4 shows this network coding solution. The depicted coding scheme
in Figure 4 shows that two terminals ¢; and t, can receive the sum of the source messages through their
incoming edges. Also, the terminal ¢5 can receive X3 and X, + X5 through incoming edges. Since X; =
X3, the terminal t5 can receive the sum of the source messages. Thus, the network S3 is solvable.
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Figure 4. The network S3 and its corresponding coding scheme. Terminal t5 can
receive message X; through the incoming edge (vq, t3).

4. Conclusion

This work considers a sum-network with § —dependent sources. It evaluates the upper bound of the
coding capacity of this network for the case where § # 0. We conclude that the dependency between
the sources can alter the capacity region of sum-networks. By Theorem 3.1, if the value of § is increased,
the capacity upper bound of the sum-network also increases. In more detail, the relationship between &
and A (the upper bound obtained in Theorem 3.1) is as follows:

*If § = 0, then A = 1. In other words, when the sources are independent, the upper bound of the
coding capacity is 1, which coincides with the upper bound presented in [36] (see Theorem 1 in [36]).

«If§ > 0and |F| = q = 2,thenvlog, g > vlog, g — (v6 + &'). Therefore, by Theorem 3.1, we
have A > 1. Hence, when the sources of the considered sum-network are & —dependent, the upper
bound of its coding capacity is greater than 1.

This work has investigated the coding capacity of a sum-network employing § —dependent sources.
Our primary contribution is the characterization of an upper bound on the capacity for the general case
where § # 0, demonstrating that statistical dependency between sources can significantly alter the
capacity region of such networks.

The key insight, formalized in Theorem 3.1, is that the upper bound A4 is a non-decreasing function
of the dependency parameter §. Specifically, our analysis reveals the following precise relationship:

e Independent Sources (§ = 0): The upper bound simplifies to A = 1. This result
perfectly coincides with and reinforces the established bound for independent sources
given in [35], serving as a sainty check for our generalized model.
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e Dependent Sources (8§ > 0): For any finite field size g = 2, the derived upper bound
yields A > 1. This establishes that any positive source dependency strictly increases
the upper bound on the coding capacity compared to the independent case.

These findings imply that the correlation between sources introduces a new dimension to the network
coding problem, potentially enabling higher achievable rates. This challenges the conventional design
principle based on the assumption of independent sources and suggests the leveraging source
dependency could be a powerful tool for enhancing network performance.

For future research, several directions emerge naturally. First, the tightness of this upper bound
should be investigated by constructing achievable coding schemes that match it for specific value of §.
Second, it would be valuable to explore whether similar dependency-exploiting gains in other types of
network problem beyond sum-networks. Finally, analyzing more complex, non-linaer dependency
structures between sources presents a challenging but fruitful for the further study.
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