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Computing the Capacity of Sum-networks with 

Dependent Sources 

 
Mehdi Ghiyasvand1,,  Sepideh Ghazvineh2 

A sum-network is a directed acyclic network with multiple sources and multiple sinks, where each 

sink demands the sum of the independent information generated at the sources. The coding capacity 

of sum networks with independent sources has been investigated in Tripathy and Ramamoorthy 

(2015). This paper shows that dependencies between the sources can change the upper bound of 

the coding capacity of sum-networks. We prove that the upper bound of the coding capacity of a 

sum network with dependent sources is greater than 1 which is different from the results in Tripathy 

and Ramamoorthy (2015). It is also shown that a non-solvable sum-network with independent 

sources can be converted to a solvable sum-network when the sources have arbitrary dependencies. 
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1. Introduction 

The work in the area of function computation over a communication network has been received 

attention in the last years [12, 13, 14, 18, 21]. In a function computation problem, each sink wants to 

compute some function of a subset of source messages. In recent years, the concept of network coding 

was proposed in the area of function computation problems [31, 32, 33]. The sum-network problems 

are a special kind of function computation problems because they need a simple function such as the 

sum [17, 30, 32, 34]. A sum-network is considered as a communication network with multiple sources 

and multiple sinks such that each sink requires the sum of all the messages generated at the source 

nodes. The first work in this area was done by Ramamoorthy in [32]. He showed that, for sum-

networks with at most two sources or two sinks, the sum of source messages can be communicated 

to the sinks if and only if each source-sink pair is connected. 

One of the fundamental problems in network coding problems is to characterize the capacity region 

of them. In [2], the weighted Hamming distance to measure the modification of the arc capacities is 

considered. Network routing capacity, network coding capacity and channel coding capacity were 

investigated in [4, 9, 11, 10, 15, 26]. In [1], it was shown that the network coding capacity of a 

multicast network is the minimum of the min-cuts from the source to the individual sinks. Li et 

al.(2003) showed that 1 the capacity of multicast networks is achieved by linear network codes. By 

the assumption that sources are independent, the network coding capacity of multi-source multi-

terminal networks was studied in [5, 20, 16, 38]. 

Some factors can change the coding capacity of communication networks. For multiple unicast 

networks, Cannons et al. (2006) proved that the coding capacity is independent of the using alphabet 

[4]. Also, the linear coding capacity of networks over ring and module alphabets has been considered 

in [6]. Furthermore, under the assumption that sources are dependent, the capacity region of multi-

 
1 Department of Mathematics, University of Bu-Ali Sina, Hamedan, Iran, Email: mghiyasvand@basu.ac.ir. 
 Corresponding Author. 
2 Department of Mathematics, University of Bu-Ali Sina, Hamedan, Iran, Email: s.ghazvineh@sci.basu.ac.ir. 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

31
 ]

 

                             1 / 15

http://iors.ir/journal/article-1-855-en.html


Computing the Capacity of Sum-networks with Dependent Sources 

 

61 

 

source multi-terminal network coding problems and line networks were investigated in [4, 19, 22]. In 

[23], the edge-removal problem and its connections to the δ-dependent problems is investigated. 

For sum-networks with independent sources, the capacity region has been studied extensively and 

some bounds on the network coding capacity of these networks were presented in [7, 24, 27, 28, 29, 

36, 37]. In [8, 27, 28, 37], sum-networks with arbitrary capacities were constructed. In [28], a ratio 

m/n (where m and n are non-negative integers) was considered and a sum-network with capacity m/n 

was constructed that has 2𝑛2 − 𝑛 sources and 2𝑛2 − 𝑛 + 1 sinks. In [27, 37], the work of [28] was 

generalized and sum-networks of smaller size was constructed that had capacity m/n. Tripathy et al. 

(2015) showed that the coding capacity of the sum-networks depends on the characteristic of finite 

field F used as the message alphabet [36]. Moreover, they constructed a sum-network with 

independent sources that the coding capacity of it is at most 1. 

 

Main contributions: 

 

This paper considers sum-networks whose capacities depend on the dependency or independence 

of information generated by the sources. It constructs a sum-network which the upper bound of its 

capacity is 1 as the sources are independent, and it can be (strictly) greater than 1 as the sources are 

dependent. Also, an example of a non-solvable sum-network with independent sources is presented, 

it becomes solvable when the sources are dependent. 

 

2.  Preliminaries 

 

2.1. System model 

 

We consider a communication network as a directed, acyclic, and finite graph 𝐺 = (𝑉, 𝐸, 𝑆, 𝑇), 
where V is the set of nodes, 𝐸 ⊆ 𝑉 × 𝑉 is the set of links, 𝑆 ⊂ 𝑉 is the set of source nodes and 𝑇 ⊂ 𝑉 

is the set of sink nodes. For any link 𝑒 = (𝑢, 𝑣) ∈ 𝐸, node 𝑢 ∈ 𝑉 is called the tail of e, and node 𝑣 ∈ 𝑉 

is called the head of 𝑒, and are denoted by 𝑢 = 𝑡𝑎𝑖𝑙(𝑒) and 𝑣 = ℎ𝑒𝑎𝑑(𝑒), respectively. Moreover, we 

call 𝑒 an incoming link of 𝑣 and an outgoing link of 𝑢. For two links 𝑒, 𝑒ʹ ∈ 𝐸, link 𝑒 is an incoming 

link of 𝑒ʹ (or 𝑒ʹ an outgoing link of 𝑒) if 𝑡𝑎𝑖𝑙(𝑒ʹ) = ℎ𝑒𝑎𝑑(𝑒). The edges are delay-free and the capacity 

of each link is assumed to be one unit. For each 𝑣 ∈ 𝑉 , the set of incoming edges of 𝑣 is denoted by 

𝐼𝑛(𝑣). We assume that each source process is uniformly distributed over the finite field ℱ. Each source 

node does not have any incoming edge and each sink node does not have any outgoing edge.  

By [36], a network code is an assignment of a local encoding function to each edge and a decoding 

function to each sink. A (𝑟, 𝑙) fractional network code is described as follows: 

 

(1) For an edge e with 𝑡𝑎𝑖𝑙(𝑒) = 𝑣, a local encoding function is defined as 

 

𝜙̅𝑒: ℱ𝑟 → ℱ𝑙,               𝑖𝑓 𝑣 ∈ 𝑆, 

and  

𝜙̅𝑒: ℱ𝑙|𝐼𝑛(𝑣)| → ℱ𝑙 ,               𝑖𝑓 𝑣 ∉ 𝑆. 

 

(2) For a sink 𝑡𝑖 a decoding function is defined as  

 

𝜓𝑡𝑖 
: ℱ𝑙|𝐼𝑛(𝑡𝑖)  → ℱ𝑟. 
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 In a sum-network each sink wants to recover the sum of the 𝑟-length vectors produced at the sources. 

If 𝑟 source symbols can be transferred to the sinks in 𝑙 units of time, then a network has a (𝑟, 𝑙) fractional 

network code solution over ℱ. The ratio 𝑟 𝑙⁄  is called as rate of the (𝑟, 𝑙) fractional network code. A rate 

𝑟 𝑙⁄  is achievable if there is a (𝑟, 𝑙) fractional network code solution for the network. Moreover, the 

supremum of all achievable rates is called the capacity of the network. Also, a network is solvable if it 

has a (1, 1) network coding solution. 

   

2.2.  Constructing a sum-network 

 

 Constructing a sum-network using balanced incomplete block designs (BIBDs) was illustrated in 

[36]. In this section, we briefly explain this procedure. First, by [35], we define a 2 − (𝑣, 𝑘, 𝜆) balanced 

incomplete block design as follows: 

 

Definition 2.1 [35] A 2 − (𝑣, 𝑘, 𝜆) balanced incomplete block design (BIBD) is a set system 𝒟 =
(𝑃, ℬ) with the following two components. 

(1) A set P is formed from 𝑣 elements that are indexed in arbitrary order as P 

={𝑝1, 𝑝2, … , 𝑝𝑣}, where these 𝑣 elements are called points. 

(2) A set ℬ of size b whose elements are k-subsets of P such that ℬ = {𝐵1, 𝐵2, … , 𝐵𝒃}. 𝓑 has 

the following regularity property. For 𝑝𝑖, 𝑝𝑗 ∈ 𝑃, 𝑖 ≠ 𝑗, 

|{𝓑 ∈ 𝑩 ∶  𝒑𝒊 ∈ 𝑩, 𝒑𝒋 ∈ 𝑩}| = 𝝀. 

 

For any 𝑝 ∈ 𝑃 and 𝐵 ∈ 𝓑, by [35], two sets < 𝑝 > and < 𝓑 > are defined as follows: 

< 𝑝 >= {𝐵 ∈ 𝓑 ∶ 𝒑 ∈ 𝑩}, < 𝑩 >=∪𝒑∈𝑩< 𝒑 >=∪𝒑∈𝑩 {𝑩′ ∈ 𝓑: 𝒑 ∈ 𝑩′}. 

 

By [36], a sum-network 𝐺 = (𝑉, 𝐸) can be constructed from any BIBD 𝓓. At first, the vertex set 𝑉 

is described as 𝑉 = 𝑆 ∪ 𝑇 ∪ 𝑀𝐻 ∪ 𝑀𝑇, where  𝑆 = {𝑠𝑝 ∶ 𝑝 ∈ 𝑃} ∪ {𝑠𝐵 ∶ 𝐵 ∈ ℬ}, 𝑇 = {𝑡𝑝 ∶  𝑝 ∈ 𝑃} ∪

{𝑡𝐵 ∶ 𝐵 ∈  𝓑}, 𝑀𝐻 = {𝑚1ℎ, 𝑚2ℎ , … , 𝑚𝑣ℎ} and 𝑀𝑇 = {𝑚1𝑡, 𝑚2𝑡 , … , 𝑚𝑣𝑡}. Also, the edge set 𝐸 is 

denoted as 𝐸 = 𝑀 ∪ 𝐷, where 𝑀 contains 𝑣 unit-capacity bottleneck edges 𝑒𝑖 = (𝑚𝑖𝑡 , 𝑚𝑖ℎ), 𝑖 ∈
{1, 2, … , 𝑣} and the following edges for all 𝑝𝑖 ∈ 𝑃 

 

• (𝑠𝑝𝑖
, 𝑚𝑖𝑡) 𝑎𝑛𝑑 (𝑠𝐵𝑗

, 𝑚𝑖𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑗 ∈ < 𝑝𝑖 >, 

• ( 𝑚𝑖ℎ , 𝑡𝑝𝑖
) 𝑎𝑛𝑑 (𝑚𝑖ℎ , 𝑡𝐵𝑗

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑗 ∈ < 𝑝𝑖 >. 

Moreover, 𝐷 contains the following four groups of unit-capacity direct edges for every 𝑝𝑖 ∈ 𝑃 and 

𝐵𝑗 ∈ 𝓑, 

• (𝑠𝑝𝑙
, 𝑡𝑝𝑖

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑙 ≠ 𝑝𝑖,  

• (𝑠𝐵𝑙
, 𝑡𝑝𝑖

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑙 ∉ < 𝑝𝑖 >, 

• (𝑠𝑝𝑙
, 𝑡𝐵𝑗

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑙 ∉ 𝐵𝑗 , 

• (𝑠𝐵𝑙
, 𝑡𝐵𝑗

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑙 ∉ < 𝐵𝑗 >. 

 

The next example constructs a sum-network from a given 2 − (3, 2, 1) design. 

 

Example 2.1. Consider a 2 − (3, 2, 1) design D = ({1, 2, 3}, {A, B, C}), where A = {1, 2}, B = {2, 3} 

and C = {1, 3}. We can construct a sum-network G = (V, E) by defining the following sets: 

𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠𝐴, 𝑠𝐵, 𝑠𝐶}, 

 [
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𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡𝐴, 𝑡𝐵, 𝑡𝐶}, 
𝑀𝐻 ∪ 𝑀𝑇 = {𝑚1ℎ, 𝑚2ℎ, 𝑚3ℎ , 𝑚1𝑡, 𝑚2𝑡, 𝑚3𝑡}, 

𝑀 = {𝑒1 = (𝑚1𝑡, 𝑚1ℎ), 𝑒2 = (𝑚2𝑡 , 𝑚2ℎ), 𝑒3 = (𝑚3𝑡, 𝑚3ℎ)}. 
 

Also, there are direct edges that connect sources to bottleneck edges and some other direct edges that 

connect bottleneck edges to terminals. A part of the constructed sum-network is depicted in Figure 1. 

 

 

Figure 1. A part of the constructed sum-network from a 2 − (3, 2, 1) design. 

 

2.3.  Dependent sources 

This section introduces some definitions and notations about dependent random variables. We show 

that the upper bound of the coding capacity of constructed sum-networks from BIBDs is increased when 

the sources are dependent. Let 𝓓 be a 2 − (𝑣, 𝑘, 1) design and 𝐺 be the constructed sum-network from 

it.   Suppose that there exists a (𝑟, 𝑙) fractional network code solution with rate 𝑟 𝑙⁄  for constructed sum-

network 𝐺 over ℱ. Then, 𝑟-length vector 𝑋𝑖 = (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑟) is generated at the source 𝑠𝑖, where 

𝑋𝑖,𝑗 ∈  𝓕 for 𝑗 = 1,2, … , 𝑟. We assume that, 𝑋𝑖 is uniformly distributed over ℱ𝑟 and 𝐻(𝑋𝑖) =

𝑟 log2 |ℱ|, where 𝐻(𝑋𝑖) is the entropy function for a random variable 𝑋𝑖 . For a subset A⊂ S, the 

notation 𝑋𝐴 is the vector of source random variables and is denoted as follows: 

𝑋𝐴 = (𝑋𝑠 ∶ 𝑠 ∈ 𝐴). 
Moreover, let 𝑋 be the set of all source processes, 𝜙𝑒 is the corresponding global encoding function 

for edge 𝑒 and 𝜙𝑒(𝑋) is a 𝑙-length vector that is transmitted on edge 𝑒. So, for all 𝑣 ∈ 𝑉 𝑆⁄ , the set 

𝜙𝐼𝑛(𝑣)(𝑋) is defined as follows: 

𝜙𝐼𝑛(𝑣)(𝑋) = {𝜙𝑒(𝑋): 𝑒 ∈ 𝐼𝑛(𝑣)}. 

 

The definition of 𝛿-dependent sources is presented as follows: 
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Definition 2.2. [19] For coding at block length 𝑚, information sources 𝑋𝑆 are said to be 𝛿-dependent if 
∑ 𝐻(𝑋𝑠) − 𝐻(𝑋𝑆) ≤ 𝛿𝑟𝑠∈𝑆 . Independent random variables are 0-dependent. 

We assume that the source random variables of sum-network 𝐺 are 𝛿-dependent. Similar to [19], for 

𝛿-dependent sum-networks, we can define the probability of decoding error 𝑃𝑒𝑟𝑟 as follows: 

Definition 2.3.  For sum-network 𝐺 with 𝛿-dependent sources information, decoding error 𝑃𝑒𝑟𝑟 is 

defined as follows: 

𝑃𝑒𝑟𝑟 ≜ Pr {∃𝑡 ∈ 𝑇 ∶  𝜓𝑡 (𝜙𝐼𝑛(𝑡)(𝑋)) ≠ 𝑍}. 

 

By Definition 2.3, all the decoding functions 𝜓𝑡 can recover the sum of sources indicated by 𝑍 =
∑ 𝑋𝑝 + ∑ 𝑋𝐵𝐵∈ℬ𝑝∈𝑃  with probability 1 −  𝜖, where 𝜖 is the upper bound of decoding error Perr. When 

the sources are independent, by [35], 𝑍 can be evaluated from 𝜙𝐼𝑛(𝑡)(𝑋), which means 

𝐻 (𝑍|𝜙𝐼𝑛(𝑡)(𝑋)) = 0. If the sources be δ-dependent, then 𝑍 can be evaluated from 𝜙𝐼𝑛(𝑡)(𝑋) with 

probability 1 − 𝟄 , which means 𝐻 (𝑍|𝜙𝐼𝑛(𝑡)(𝑋)) = 0, for all 𝑡 ∈  𝑇 with probability 1 − 𝞊 . Thus, we 

suppose that there exists a ((𝑟, 𝑙), 𝜖 , 𝛿) fractional network code solution for sum-network 𝐺, where 𝜖 is 
the upper bound of decoding error 𝑃𝑒𝑟𝑟. 

The next proposition and lemma present some properties of the entropy function.  

 

Proposition 2.1. [39] 

(1) For random variables 𝑋1, 𝑋2, … , 𝑋𝑛, the chain rule for entropy is described as 

𝐻(𝑋1, 𝑋2, … , 𝑋𝑛) = ∑ 𝐻(𝑋𝑖|𝑋1, … , 𝑋𝑖−1 , 𝑋𝑖+1, … , 𝑋𝑛).

𝑛

𝑖=1

 

(2) Conditioning decreases entropy, which means 𝐻(𝑌|𝑋) ≤ 𝐻(𝑌), where 𝑋 and 𝑌 are two 

random variables. 

(3)  For two random variables 𝑋 and 𝑌 , 𝐻(𝑋|𝑌) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌). 
(4)  For two random variables 𝑋 and 𝑌 , 𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌), where 𝐼(𝑋, 𝑌) is the 

mutual information between two random variables 𝑋 and 𝑌 . 

The next lemma is a trivial consequence of the definition of 𝛿-dependence. 

Lemma 2.1. Let 𝑋1 and 𝑋2 be two random variables at blocklength 𝑟. If 𝑋1 and 𝑋2 are 𝛿-dependent, 

then 𝐻(𝑋1) − 𝐻(𝑋1|𝑋2) ≤ 𝛿𝑟 and 𝐻(𝑋2) − 𝐻(𝑋2|𝑋1) ≤ 𝛿𝑟. 

Proof: By Definition 2.2, we get 

𝐻(𝑋1) + 𝐻(𝑋2) − 𝐻(𝑋1, 𝑋2) ≤  𝛿𝑟.             (1) 

By Part (3) of Proposition 2.1, we have 

𝐻(𝑋1, 𝑋2) =  𝐻(𝑋1|𝑋2) +  𝐻(𝑋2),              (2) 

 

also, 

𝐻(𝑋1, 𝑋2) =  𝐻(𝑋2|𝑋1) +  𝐻(𝑋1).              (3) 

 

Hence, by (1) and (2), 𝐻(𝑋1) − 𝐻(𝑋1|𝑋2) ≤ 𝛿𝑟. Moreover, by (1) and (3), we get 

                           𝐻(𝑋2) − 𝐻(𝑋2|𝑋1) ≤ 𝛿𝑟,  
which concludes the claim. 

 

Tripathy et al. (2015) showed that if all source random variables are independent, then certain partial 

sums can be computed by observing subsets of the bottleneck edges. For example, in Lemma 1 in [36], 

we have 

𝐻(𝑋𝑝𝑖 + ∑ 𝑋𝐵𝐵∈<𝑝𝑖> |𝜙𝑒𝑖
 (𝑋)) = 0, 
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where 𝜙𝑒𝑖
(𝑋) is a 𝑙-length vector that is transmitted on the bottleneck edge 𝑒𝑖 . The next lemma is 

for the case that the sources are not independent. 

 

Lemma 2.2. Let 𝒟 and 𝐺 be a 2 − (𝑣, 𝑘, 1) BIBD and the constructed sum-network from it, 

respectively. If all source random variables are 𝛿-dependent and there exists a ((𝑟, 𝑙), 𝜖, 𝛿) fractional 

network code solution for 𝐺, then 

𝐻(𝑋𝑝𝑖
+ ∑ 𝑋𝐵𝐵𝜖𝑝𝑖

|𝜙𝑒𝑖
 (𝑋)) ≤ 𝛿𝑟, 

where 𝜙𝑒𝑖
(𝑋) is a 𝑛-length vector that is transmitted on the bottleneck edge 𝑒𝑖. 

 

Proof: There exists a ((𝑟, 𝑙), 𝜖, 𝛿) fractional network code solution, so, 𝑍 can be computed from 

𝜙
𝐼𝑛(𝑡𝑝𝑖

)
(𝑋), for any 𝑝𝑖 ∈ 𝑃 and all 𝑖 = 1,2, … , 𝑣 with probability 1 − 𝜖, which means 

𝐻(𝑍|𝜙𝐼𝑛(𝑡𝑝𝑖
)(𝑋)) = 0 with probability 1 − 𝜖, where 

 

𝑍 = 𝑋𝑝𝑖
+ ∑ 𝑋𝑝 +  ∑ 𝑋𝐵𝐵∈<𝑝𝑖>𝑝≠𝑝𝑖

+ ∑ 𝑋𝐵𝐵∉<𝑝𝑖> ,  

and 

𝜙𝐼𝑛(𝑡𝑝𝑖
)(𝑋) = {𝜙𝑒𝑖

(𝑋) ∶  𝑝𝑖  ∈  𝑃}  ∪ {𝑋𝑝 ∶  𝑝 ≠ 𝑝𝑖}  ∪  {𝑋𝐵 ∶  𝐵 ∉ < 𝑝𝑖 >}. 

 

Let 

𝑍1 = ∑ 𝑋𝑝,𝑝≠𝑝𝑖
  𝑍2 = ∑ 𝑋𝐵𝐵∈<𝑝𝑖>  𝑎𝑛𝑑  𝑍3 = ∑ 𝑋𝐵𝐵∉<𝑝𝑖> , 

 

we have 𝐻(𝑋𝑝𝑖
+ 𝑍1 + 𝑍2 + 𝑍3|𝜙𝑒𝑖

 (𝑋), {𝑋𝑝 ∶  𝑝 ≠  𝑝𝑖}, {𝑋𝐵 ∶  𝐵 ∉ < 𝑝𝑖 >}) = 0 with 

probability 1 − 𝜖. Since 𝑍1 and 𝑍3 are a subset of 𝜙
𝐼𝑛(𝑡𝑝𝑖

)
(𝑋), we get 

𝐻(𝑋𝑝𝑖
+ 𝑍2│𝜙𝑒𝑖

 (𝑋), {𝑋𝑝 ∶  𝑝 ≠  𝑝𝑖}, {𝑋𝐵 ∶  𝐵 ∉ < 𝑝𝑖 >} ) =  0,                       (4) 

with probability 1 − 𝜖. Since all source random variables are 𝛿-dependent, by Lemma 2.1, we have 

𝐻(𝑋𝑝𝑖
+ 𝑍2|𝜙𝑒𝑖

 (𝑋)) − 𝐻(𝑋𝑝𝑖
+  𝑍2|𝜙𝑒𝑖

(𝑋), {𝑋𝑝 ∶  𝑝 ≠  𝑝𝑖}, {𝑋𝐵 ∶  𝐵 ∉ < 𝑝𝑖 >}) ≤ 𝛿𝑟. 

Thus, by (4), 

𝐻(𝑋𝑝𝑖
+ 𝑍2|𝜙𝑒𝑖

(𝑋)) ≤ 𝛿𝑟.  

 

The next example describes Lemma 2.2. 

 

Example 2.2. Consider the constructed sum-network depicted in Figure 1. Since all source random 

variables are 𝛿-dependent and there exists a ((𝑟, 𝑙), 𝜖, 𝛿) fractional network code solution for 𝐺, we get 

𝐻(𝑍|𝜙𝐼𝑛(𝑡𝑝1)(𝑋)) = 0 with probability 1 − 𝜖, where 

𝑍 = 𝑋1 + 𝑋𝐴 + 𝑋𝐶 + 𝑋2 + 𝑋𝐵 + 𝑋3, 
and  

𝜙𝐼𝑛(𝑡𝑝1)(𝑋) = {𝜙𝑒1
(𝑋) ∶  𝑝1 ∈ 𝑃} ∪ {𝑋2,  𝑋3} ∪ {𝑋𝐵}. 

By the definition of set < 𝑝 >, we have < 𝑝1 > =  {𝐴, 𝐶}. So, 𝑍2 = 𝑋𝐴 + 𝑋𝐶 , 𝑍3 = 𝑋𝐵 and 𝑍1 =
∑ 𝑋𝑝 =𝑝≠𝑝1

𝑋2 + 𝑋3. Thus, 𝐻(𝑋1 + 𝑋𝐴 + 𝑋𝐶|𝜙𝑒1
(𝑋), {𝑋2, 𝑋3}, {𝑋𝐵}) = 0 with probability 1 − 𝜖. All 

source random variables are 𝛿-dependent, so 

𝐻(𝑋1 + 𝑋𝐴 + 𝑋𝐶|𝜙𝑒1
(𝑋)) − 𝐻(𝑋1 + 𝑋𝐴 + 𝑋𝐶|𝜙𝑒1

(𝑋), {𝑋2, 𝑋3}, {𝑋𝐵}) ≤ 𝛿𝑟. 

Hence, 

𝐻(𝑋1 + 𝑋𝐴 + 𝑋𝐶|𝜙𝑒1
(𝑋)) ≤ 𝛿𝑟. 

 

Let 𝐻(𝐴) be the entropy function for a random variable 𝐴 and define, for any 𝑣 >  1, 

𝐻(𝐴1, 𝐴2, . . . , 𝐴𝑣) = 𝐻({𝐴1, 𝐴2, . . . , 𝐴𝑣}) = 𝐻({𝐴𝑖}1
𝑣). 
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Lemma 2.3. For each 𝑖 ∈ {1, . . . , 𝑣}, assume 𝐻(𝐴𝑖|𝐴𝑖
′) ≤ 𝛿𝑟, where 𝐴𝑖 and 𝐴𝑖

′  i are 𝛿 −dependent 

random variables. Then 𝐻({𝐴𝑖}1
𝑣  |{𝐴𝑖

′}1
𝑣) ≤ 𝑣𝛿𝑟. 

 

Proof: We proof the lemma by induction on 𝑣. For 𝑣 = 1, it is obtained by the assumption. Suppose 

that it holds for 𝑣 = 𝑘. We show  that it is also true for 𝑣 = 𝑘 + 1. Then, 

 

𝐻({𝐴𝑖}1
𝑣+1|{𝐴𝑖

′}1
𝑣+1) = 𝐻({𝐴𝑖}1

𝑣 ,  𝐴𝑣+1|{𝐴𝑖
′}1

𝑣+1), = 𝐻({𝐴𝑖}1
𝑣  |{𝐴𝑖

′}1
𝑣+1) + 𝐻(𝐴𝑣+1|{𝐴𝑖}1

𝑣 , {𝐴𝑖
′}1

𝑣+1),
≤ 𝐻({𝐴𝑖}1

𝑣  |{𝐴𝑖
′}1

𝑣) + 𝐻(𝐴𝑣+1|𝐴𝑣+1
′ ), 

 ≤ 𝑣𝛿𝑟 + 𝛿𝑟,  
= (𝑣 + 1)𝛿𝑟. 

 

Note that by Parts (1) and (2) of Proposition 2.1, the second equality and first inequality are 

concluded. 

 

Corollary 2.1. Let D be a 2 − (𝑣, 𝑘, 1) BIBD and 𝐺 be the constructed sum-network from it. If all 

source random variables are 𝛿-dependent and there exists a ((𝑟, 𝑙), 𝜖, 𝛿) fractional network code 

assignment for 𝐺, then  

𝐻({𝑋𝑝𝑖
+ ∑ 𝑋𝐵𝐵∈<𝑝𝑖> }1

𝑣 |{𝜙𝑒𝑖
(𝑋)}1

𝑣) ≤ 𝑣𝛿𝑟.  

 

Proof: By Lemmas 2.2 and 2.3, the claim is concluded. 

 

Lemma 2.4. Let 𝐷 be a 2 − (𝑣, 𝑘, 1) BIBD and 𝐺 be the constructed sum-network from it. If all random 

variables in {{𝑋𝑝𝑖
}1

𝑣 ∪ {𝑋𝐵𝑗
}1

𝑏} are 𝛿-dependent, then there exists a 𝛿′ such that the random variables 

𝑋𝑖
′ = 𝑋𝑝𝑖

+ ∑ 𝑋𝐵 𝐵∈<𝑝𝑖>   are 𝛿′ -dependent, for 𝑖 ∈ {1, . . . , 𝑣}. 

 

Proof: Since all random variables in {{𝑋𝑝𝑖
}1

𝑣 ∪ {𝑋𝐵𝑗
 }1

𝑏} are 𝛿 −dependent and 

 𝑋𝑖
′ = 𝑋𝑝𝑖

+ ∑ 𝑋𝐵𝐵∈<𝑝𝑖> , 

for 𝑖 ∈ {1, . . . , 𝑣}, we conclude that the random variables 𝑋𝑖
′ are dependent for 𝑖 ∈ {1, . . . , 𝑣}. Thus, 

𝐻({𝑋𝑖
′}1

𝑣) < ∑ 𝐻(𝑋𝑖
′)

𝑣

𝑖=1

. 

Then, under ((𝑟, 𝑙), 𝜖, 𝛿) fractional network code, there exists a 𝛿′ such that 

 

∑ 𝐻(𝑋𝑖
′)

𝑣

𝑖=1

− 𝐻({𝑋𝑖
′}1

𝑣) < 𝛿′𝑟, 

which concludes the claim. 

In the following, we show that how does 𝛿′ depend on 𝛿. 

 

Corollary 2.2. 

 1. By [36], when all source random variables are independent and uniformly distributed over ℱ𝑟, 

then 𝑋𝑖
′ are also independent and uniformly distributed over ℱ𝑟. Thus, if 𝛿 = 0, then 𝛿′= 0. 

 

2. Since 𝑋𝑖
′ are uniformly distributed over ℱ𝑟, by Lemma 2.4, we get 𝛿′ can not be large. Then, we 

have not a loose upper bound. 

 

Example 2.3. Consider three binary random variables  

                     𝑋1 = (𝑏0, 𝑏1), 𝑋2 = (𝑏0, 𝑏2) and 𝑋3 = (𝑏1, 𝑏2),  
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such that they are uniformly distributed over ℱ2 , where |ℱ| = 2. 

We see that 𝑋1 and 𝑋2 are 1 2⁄ −dependent. Similarly, we can show that 𝑋2 and 𝑋3 are also 

1/2 −dependent. Let 𝑋1
′ = 𝑋1 + 𝑋2 and 𝑋2

′ = 𝑋1 + 𝑋3, so 𝑋1
′ = (𝑏0 + 𝑏0,  𝑏1 + 𝑏2) and 𝑋2

′ = (𝑏0 +
𝑏1,  𝑏1 + 𝑏2). Thus, 𝑋1

′  and 𝑋2
′  are dependent because 𝐻(𝑋1

′ ) = 𝐻(𝑋2
′ ) = 2 and 𝐻(𝑋1

′ , 𝑋2
′ ) = 3. Hence 

𝐻(𝑋1
′ ) + 𝐻(𝑋2

′ ) − 𝐻(𝑋1
′ , 𝑋2

′ ) = 4 − 3 = 1 <
2

3
(2) which concludes 𝛿′ = 2/3. 

Lemma 2.5. Let 𝒟 = (𝑃, 𝐵) be a set system of a BIBD and 

                              𝑋𝑖
′ = 𝑋𝑝𝑖

+ ∑ 𝑋𝐵𝐵∈<𝑝𝑖> ,  

where 𝑖 ∈ {1, . . . , 𝑣}. If all random variables in {{𝑋𝑝𝑖
}1

𝑣 ∪ {𝑋𝐵𝑗
}1

𝑏} are 𝛿-dependent, then there exists 

a 𝛿′ such that 𝐻({𝑋𝑖
′}1

𝑣) > 𝑟(𝑣 log2 𝑞 − 𝛿′). 

Proof : Since all random variables in {{𝑋𝑝𝑖
}1

𝑣 ∪ {𝑋𝐵𝑗
} 1

𝑏} are 𝛿-dependent, by Lemma 2.4, there exists 

a 𝛿′ such that ∑ 𝐻(𝑋𝑖
′)𝑣

𝑖=1 − 𝐻({𝑋𝑖
′}1

𝑣) < 𝛿′𝑟. Moreover, under a (𝑟, 𝑙) fractional network code, we get 

𝐻(𝑋𝑖
′) = 𝑟 log2 𝑞, for all 𝑖 ∈ {1, . . . , 𝑣}, which means 

                          ∑ 𝐻(𝑋𝑖
′)𝑣

𝑖=1 = 𝑣𝑟 log2 𝑞.  

Hence, 

𝐻({𝑋𝑖
′}1

𝑣) > 𝑣𝑟 log2 𝑞 − 𝛿′𝑟 = 𝑟(𝑣 log2 𝑞 − 𝛿′). 
 

3.  The coding capacity of sum-networks with dependent sources 

 

In this section, we obtain an upper bound on the coding capacity of sum-networks when the sources 

are 𝛿-dependent. Let 𝒟 be a 2 − (𝑣, 𝑘, 1) design and 𝐺 be the constructed sum-network using the given 

construction 𝒟. Under the assumption that sources are independent, the capacity of the sum-network 𝐺 

is at most 1 [36]. In the following theorem, we obtain an upper bound for the network coding capacity 

of the sum-networks when the sources are 𝛿-dependent. 

 

Theorem 3.1. Let 𝓓 be a 2 − (𝑣, 𝑘, 1) design and 𝐺 be the constructed sum-network using the given 

construction 𝓓. Supposing that all random variables in {{𝑋𝑝𝑖
}1

𝑣 ∪ {𝑋𝐵𝑗
}1

𝑏} are 𝛿 −dependent and 𝑋𝑖
′ =

𝑋𝑝𝑖
+ ∑ 𝑋𝐵𝐵∈<𝑝𝑖>  . Then, the upper bound of the network coding capacity of 𝐺 is at most 𝐴 =
𝑣 log2 𝑞

𝑣 log2 𝑞−(𝑣𝛿+𝛿′)
 , where 𝛿′ is used to quantify the dependency among the random variables 𝑋𝑖

′ . 

 

Proof: Since 𝜙𝑒𝑖
(𝑋) is a 𝑙-length vector that is transmitted on the bottleneck edge 𝑒𝑖 , under a 

((𝑟, 𝑙), 𝜖, 𝛿) fractional network code, we have 𝐻(𝜙𝑒𝑖
(𝑋)) ≤ 𝑙 log2 𝑞. Thus, 

𝐻 ({𝜙𝑒𝑖
(𝑋)}

1

𝑣
) ≤ ∑ 𝐻 (𝜙𝑒𝑖

(𝑋))

𝑣

1

≤ 𝑣𝑙 log2 𝑞 .                        (5) 

By (3) and (4) of Proposition 2.1, we get 

 

𝐼 ({𝜙𝑒𝑖
(𝑋)}

1

𝑣
, {𝑋𝑖

′}1
𝑣) = 𝐻 ({𝜙𝑒𝑖

(𝑋)}
1

𝑣
) − 𝐻 ({𝜙𝑒𝑖

(𝑋)}
1

𝑣
 |{𝑋𝑖

′}1
𝑣).              (6) 

Also, we have 

𝐼({𝜙𝑒𝑖
(𝑋)}1

𝑣  , {𝑋𝑖
′}1

𝑣) = 𝐻({𝑋𝑖
′} 1

𝑣) − 𝐻({𝑋𝑖
′} 1

𝑣|{𝜙𝑒𝑖
(𝑋)}1

𝑣).      (7) 

Hence, by (6) and (7), 

 

𝐻({𝜙𝑒𝑖
(𝑋)}1

𝑣) = 𝐼({𝜙𝑒𝑖
(𝑋)}1

𝑣  , {𝑋𝑖
′} 1

𝑣) + 𝐻({𝜙𝑒𝑖
(𝑋)}1

𝑣  |{𝑋𝑖
′}1

𝑣),

= 𝐻({𝑋𝑖
′} 1

𝑣) − 𝐻({𝑋𝑖
′}1

𝑣 |{𝜙𝑒𝑖
(𝑋)}1

𝑣) + 𝐻({𝜙𝑒𝑖
(𝑋)}1

𝑣  |{𝑋𝑖
′}1

𝑣), 

So, by (5), 
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𝐻({𝑋𝑖
′}1

𝑣) − 𝐻({𝑋𝑖
′}1

𝑣 |{𝜙𝑒𝑖
(𝑋)}

1

𝑣
) + 𝐻({𝜙𝑒𝑖

(𝑋)}
1

𝑣
 |{𝑋𝑖

′}1
𝑣) ≤ 𝑣𝑙 log2 𝑞. 

Also, by Lemma 2.5 and Corollary 2.1, 

𝑟(𝑣 log2 𝑞 − 𝛿′ ) − 𝑣𝑟𝛿 + 𝐻({𝜙𝑒𝑖
(𝑋)}1

𝑣  |{𝑋𝑖
′}1

𝑣) ≤ 𝑣𝑙 log2 𝑞. 

By 𝐻({𝜙𝑒𝑖
(𝑋)}1

𝑣  |{𝑋𝑖
′ }1

𝑣) ≥ 0, we get 

𝑟(𝑣 log2 𝑞 − 𝛿′ ) − 𝑣𝑚𝛿 ≤ 𝑣𝑙 log2 𝑞. 
Thus, 

 
𝑟

𝑙
≤

𝑣 log2 𝑞

𝑣 log2 𝑞−(𝑣 𝛿+𝛿′)
= 𝐴.  

 

Corollary 3.1. Let 𝓓 be a 2 − (𝑣, 𝑘, 1) design and 𝐺 be the constructed sum-network using the given 

construction 𝓓. Supposing that all random variables in {{𝑋𝑝𝑖
}1

𝑣 ∪ {𝑋𝐵𝑗
}1

𝑏} are 𝛿 −dependent and 𝑋𝑖
′ =

𝑋𝑝𝑖
+ ∑ 𝑋𝐵𝐵∈<𝑝𝑖> . Then, the upper bound of the network coding capacity of G is increased by the factor 

of 
(𝑣𝛿+𝛿′ )

𝑣 log2 𝑞−(𝑣𝛿+𝛿′)
,  where 𝛿′ is used to quantify the dependency among the random variables 𝑋𝑖

′, for 

𝑖 =  1, . . . , 𝑣. 
 

Proof: If the sources are independent, then the coding capacity of the constructed sum-network is at 

most 1 [36]. On the other hand, according to Theorem 3.1, if the sources are 𝛿 −dependent, then the 

coding capacity of the constructed sum-network is upper bounded by
𝑣 log2 𝑞

𝑣 log2 𝑞−(𝑣𝛿+𝛿′)
 . 

Thus, by subtracting the value 1 of 
𝑣 log2 𝑞

𝑣 log2 𝑞−(𝑣𝛿+𝛿′)
, the claim is concluded. 

 

Therefore, by Corollary 3.1, if the sources are δ-dependent, then the coding capacity upper bound of 

sum-networks is increased. 

 

3.1.  Numerical results  

 

In this section, we present some examples of communication networks with dependent sources. We 

calculate the coding capacity of communication networks with dependent sources, then we compare the 

obtained results with previous works (the coding capacity of communication networks with independent 

sources). We show that a special kind of dependency among the sources can increase the capacity region 

of communication networks. The next two examples show that how dependent sources can increase the 

routing capacity of communication networks. 

 

Example 3.1. Consider network 𝑁 shown in Figure 2, in which two sources 𝑠1 and 𝑠2 produce messages 

𝑋 and 𝑌, respectively. Also, two sinks 𝑡1 and 𝑡2 demand the both of two messages. By [4], the routing 

capacity of this network is 1/2 (for more detail see Example III.2 in [4]). Supposing that the sources 

are dependent such that 𝑋 = 𝑌. Then, 𝑡1 and 𝑡2 can receive 𝑋 and 𝑌 through two edges (𝑠1, 𝑡2) and 

(𝑠2, 𝑡1), respectively. Since sinks 𝑡1 and 𝑡2 demand both of two messages 𝑋 and 𝑌, it is sufficient that 

only one of those two messages is passed through the edge (𝑣1, 𝑣2). Thus, the routing capacity of 𝑁 is 

1,  which means it is increased by the factor of 1/2. 
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Figure 2. The network 𝑁, where only one of the two messages 𝑋 and 𝑌 passes through the edge 

(𝑣1, 𝑣2). 

 

• The previous example demonstrates a trivial statement. In the following, a much simpler 

example is presented. 

 

Example 3.2. Consider a “𝑌” network with two sources 𝑠1 and 𝑠2 on top and one sink t at the bottom 

such that these two sources are connected to the sink through a shared link. Let messages 𝑋 and 𝑌 be 

produced with 𝑠1 and 𝑠2, respectively. Moreover, sink 𝑡 demands the both of two messages. Then, the 

routing capacity of this network is 1/2. Now, supposing that the sources are linear dependent such that 

𝑋 = 𝑌 . Then, the routing capacity of this network is 1. 

In the next example, we consider a sum-network with dependent sources. We show that the capacity 

region of a sum-network change when the sources be linearly dependent. This result is shown by the 

following example. 

 

Example 3.3. Consider a network with two sources 𝑠1 and 𝑠2 and two sinks 𝑡1 and 𝑡2. Let two messages 

𝑋 and 𝑌 be produced by 𝑠1 and 𝑠2, respectively. Supposing that this network only has 10 two edges 

(𝑠1, 𝑡1) and (𝑠2, 𝑡2). When the sources are independent, then the sum-capacity is zero. If 𝑋 = 𝑌, then 

the sum-capacity is 1. Moreover, if 𝑋 = −𝑌, then the sum-capacity is infinite. 

By [28], the linear coding capacity of sum-network 𝑆3, depicted in Figure 3, is at least 
2

3
 . We show 

that a special kind of dependency among the sources can increase the capacity lower bound of this sum-

network. 

 

Example 3.4. Consider network 𝑆3 shown in Figure 3. Supposing that 𝑋𝑖 = (𝑋𝑖,1 , 𝑋𝑖,2) is generated at 

source si, for 𝑖 = 1, 2, 3. Consider the following dependency among the sources: 

 

𝑋1,1 = 𝑋2,1, 𝑋1,2 = 𝑋3,1, 𝑋2,2 = 𝑋3,2. 
 

We define two sums 𝑆𝑢𝑚1 and 𝑆𝑢𝑚2 as follows: 

 

𝑆𝑢𝑚1 = 𝑆𝑢𝑚2 = 𝑋1,1 + 𝑋1,2 + 𝑋2,2. 
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• If 𝑺𝒖𝒎𝟏 + 𝑺𝒖𝒎𝟐 is transmitted to terminals 𝒕𝟏 and 𝒕𝟐 in the first time slot and 𝑺𝒖𝒎𝟏 +
𝑺𝒖𝒎𝟐 is transmitted to terminal 𝒕𝟑 in the second time slot, then 𝑺𝒖𝒎𝟏 and 𝑺𝒖𝒎𝟐 can be 

transmitted to all the terminals in two time slots. Thus, the linear coding capacity of the sum-

network 𝑺𝟑 is at least 1. 

     

    

 

Figure 3. The network 𝑆3. 

   

By Example 3.4, the lower bound of the network coding capacity of the sum-network 𝑆3 is increased 

from 
2

3
 to 1 because the sources are dependent. Thus, by Corollary 3.1, we conclude that the dependency 

between the sources can change the capacity region of sum-networks. In the next example, we show 

that dependency among the sources can convert a non-solvable sum-network to a solvable one. 

According to [31], if the sources are independent, then the coding capacity of the network 𝑆3
′  (depicted 

in Figure 3) is 
2

3
. Moreover, by [31], the network 𝑆3

′  𝑖s non-solvable, which means all the terminals can 

not receive the sum of sources at rate 1.   

 

Example 3.5. Consider the network 𝑆3
′  depicted in Figure 4. By [31], the network 𝑆3

′  has a (2, 3) 

fractional network coding solution which means it is not solvable. Supposing that the sources are 

dependent such that 𝑋1 = 𝑋3, where 𝑋1 and 𝑋3 are the generated messages at two sources 𝑆1 and 𝑆3, 

respectively. Then, there exists a network coding scheme for 𝑆3
′  such that all terminals can receive the 

sum of the sources at rate 1. Figure 4 shows this network coding solution. The depicted coding scheme 

in Figure 4 shows that two terminals 𝑡1 and 𝑡2 can receive the sum of the source messages through their 

incoming edges. Also, the terminal 𝑡3 can receive 𝑋3 and 𝑋2 + 𝑋3 through incoming edges. Since 𝑋1 =
𝑋3, the terminal 𝑡3 can receive the sum of the source messages. Thus, the network 𝑆3

′  is solvable. 
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Figure 4. The network 𝑆3
′  and its corresponding coding scheme. Terminal 𝑡3 can 

receive message 𝑋1 through the incoming edge (𝑣1, 𝑡3). 

 

 

4. Conclusion 

 

This work considers a sum-network with 𝛿 −dependent sources. It evaluates the upper bound of the 

coding capacity of this network for the case where 𝛿 ≠ 0. We conclude that the dependency between 

the sources can alter the capacity region of sum-networks. By Theorem 3.1, if the value of 𝛿 is increased, 

the capacity upper bound of the sum-network also increases. In more detail, the relationship between 𝛿 

and 𝐴 (the upper bound obtained in Theorem 3.1) is as follows: 

 

• If 𝛿 = 0, then 𝐴 = 1. In other words, when the sources are independent, the upper bound of the 

coding capacity is 1, which coincides with the upper bound presented in [36] (see Theorem 1 in [36]). 

   

• If 𝛿 > 0 and |ℱ| = 𝑞 ≥ 2, then 𝑣 log2 𝑞 > 𝑣 log2 𝑞 − (𝑣𝛿 + 𝛿′).  Therefore, by Theorem 3.1, we 

have 𝐴 > 1. Hence, when the sources of the considered sum-network are 𝛿 −dependent, the upper 

bound of its coding capacity is greater than 1. 

 

This work has investigated the coding capacity of a sum-network employing 𝛿 −dependent sources. 

Our primary contribution is the characterization of an upper bound on the capacity for the general case 

where 𝛿 ≠ 0, demonstrating that statistical dependency between sources can significantly alter the 

capacity region of such networks. 

The key insight, formalized in Theorem 3.1, is that the upper bound 𝐴 is a non-decreasing function 

of the dependency parameter 𝛿. Specifically, our analysis reveals the following precise relationship: 

• Independent Sources (𝛿 = 0): The upper bound simplifies to 𝐴 = 1. This result 

perfectly coincides with and reinforces the established bound for independent sources 

given in [35], serving as a sainty check for our generalized model.  

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

31
 ]

 

                            12 / 15

http://iors.ir/journal/article-1-855-en.html


72 Mehdi Ghiyasvand and Sepideh Ghazvineh 

 

• Dependent Sources (𝛿 > 0): For any finite field size 𝑞 ≥ 2, the derived upper bound 

yields 𝐴 > 1. This establishes that any positive source dependency strictly increases 

the upper bound on the coding capacity compared to the independent case. 

These findings imply that the correlation between sources introduces a new dimension to the network 

coding problem, potentially enabling higher achievable rates. This challenges the conventional design 

principle based on the assumption of independent sources and suggests the leveraging source 

dependency could be a powerful tool for enhancing network performance. 

For future research, several directions emerge naturally. First, the tightness of this upper bound 

should be investigated by constructing achievable coding schemes that match it for specific value of 𝛿. 
Second, it would be valuable to explore whether similar dependency-exploiting gains in other types of 

network problem beyond sum-networks. Finally, analyzing more complex, non-linaer dependency 

structures between sources presents a challenging but fruitful for the further study.   
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