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Facility location and routing problems have attracted significant research attention since the 1960s 

due to their practical relevance and complexity. Efficiently establishing production facilities, 

optimizing vehicle routes, and implementing effective inventory systems are essential for improving 

organizational performance. In this study, we propose an integrated location-routing model for the 

pharmaceutical supply chain, designed to satisfy all retailer demands through an appropriate 

inventory policy, ensuring no demand is unmet. The proposed mixed-integer mathematical model 

considers a four-tier supply chain, including manufacturers, distributors, wholesalers, and 

retailers, with the objective of establishing cost-effective warehouses while fulfilling all demand 

requirements. Demand uncertainty is addressed using a scenario-based probabilistic approach. 

The model is solved using GAMS for a small-scale case study. For larger-scale instances, where 

exact solutions are computationally challenging, a meta-heuristic approach—specifically, a 

genetic algorithm—is employed to efficiently obtain near-optimal solutions. 
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1. Introduction 

 

One of the main goals in shaping a supply chain (SC) is ensuring it responds to consumer demands 

effectively. Responding on time helps businesses to remain competitive in the market, and maximizes 

profits. To achieve these, all parts of the supply chain must be optimized to lower costs, enhance 

customer satisfaction, and rise up overall profits [21]. In essence, every supply chain consists of 

various interconnected components and stages, all working towards a common goal. Today, the 

problems in the pharmaceutical supply chain are of global concern due to its importance in providing 

essential products for human health and patient care. What was once a simple process with production 

in a single location has evolved into a complex network involving multiple centers, companies, and 

facilities [8]. These activities are not limited to a specific region but are carried out on a large scale. 

The main challenges in drug production involve making decisions about expanding facilities and 

planning drug production [46]. Two factors, namely meeting consumer expectations and increasing 

costs throughout the chain, compel the chain to seek ways to enhance its efficiency. Access to 

important and necessary medications, a fundamental aspect of healthcare systems, has led to the 

consideration of political criteria primarily focused on reducing cost growth within the 

pharmaceutical industry. Supply chain management involves overseeing all stages of the chain, 

starting from the creation of products to their delivery to customers [38]. This encompasses the entire 

flow of activities within the network, from sourcing raw materials to adding value to the final 

products. One important topic in supply chain analysis is facility location within the network. Facility 

location issues involve placing a set of facilities (resources) to minimize fulfillment costs of a set of 

customer demands while considering a set of constraints. Supply chain management emphasizes the 

integration of chain members, as decisions cannot be considered separately and optimization efforts 

are needed for efficiency improvement [34]. Decision integration is a crucial factor that significantly 
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reduces supply chain expenditures and enhances customer satisfaction. Given the essential role of the 

two elements of facility location and routing in the continuity of a SC, the integration of these two 

elements results in a resilient and efficient SC [56]. In a supply chain, the most crucial factor after 

selecting optimal facility locations is proper routing, which significantly reduces transportation costs. 

In the present times, the presence of pandemic such as COVID-19 can bring about disruptions in the 

pharmaceutical production and distribution system. Therefore, providing a suitable solution for 

integrated decision-making and effective management of the pharmaceutical SC is important. Given 

the uncertainties surrounding the demand for essential commodities such as medicines, which follows 

a highly probabilistic trend, the presentation of a systematic approach for integrating location-routing 

decisions for pharmaceutical items is of utmost significance [50].  In today's competitive world, supply 

chain issues are particularly prominent, with the pharmaceutical sector being especially affected. An 

effective supply chain should ensure rapid delivery, increase profitability, and reduce operational 

costs at all levels [43]. Managing the supply chain within manufacturing companies involves making 

ideal decisions about production levels, storage quantities, transportation methods, and the selection 

of suppliers. Therefore, this improves a corporate's competitive advantage and leads to increased 

profitability. In developed countries, healthcare expenditures represent a large share of the gross 

national product, while the pharmaceutical industry contributes comparatively less. On the other 

hand, selecting suitable locations for establishing and operating production sites is crucial, as it falls 

under strategic and long-term decisions. Furthermore, optimal routing is crucial for efficiently 

delivering consumer products, ensuring the shortest and best routes are taken among multiple choices. 

Thus, considering the above-mentioned points, presenting a model for location-routing in a 

pharmaceutical SC is essential due to the challenges present in drug production and distribution. This 

research introduces a mathematical model for distribution centers’ (DCs) location within a multi-level 

SC. Pharmaceuticals commodities are sent to DCs and wholesalers after production, then forwarded 

to retail stores, commonly known as pharmacies, before reaching customers. The focus of this 

research is on the routing between these two stages. Among this, the demand for each pharmacy is 

considered uncertain and probabilistic.  Supply chain management is among the most crucial topics 

in industries and organizations. Various elements exist within the supply chain, and by examining 

and managing them, organizations reduce their operational cost which is a important goal. Supply 

chain planning is divided into three stages: (I) strategic, (II) operational, and (III) tactical planning 

[58]. Location-based issues are of great significance for industries that directly face end customers 

and operate at primary activity levels, such as consumer goods industries. In such sectors, market 

competition, customer loyalty, product pricing, timely product accessibility, and product quality are 

directly linked [61]. Therefore, a crucial element for profitability is delivering a timely and high-

quality response to customer demands at the lowest possible cost. Lately, extensive studies have been 

conducted in the location-routing problems’ field, yet many challenges remain unaddressed, 

particularly in the context of pharmaceutical SC management and the consumption of pharmaceutical 

items. The absence or scarcity of medications can pose significant threats to human lives. Thus, the 

formulation of a mathematical model for SC management in the realm of location and routing is of 

extreme importance. Moreover, multi-level location-routing within a supply chain, considering 

uncertain demands and potential transportation disruptions, remains an area where researchers have 

yet to fully investigate. Today, researchers believe that simultaneously addressing location-routing 

issues in a SC plays a significant role in cost reduction related to these aspects. 

The research objectives can be succinctly stated as follows, 

• To present a mathematical model for pharmaceutical SC management under crisis conditions. 

• We considered demand uncertainy in this paper. 

• To provide suitable solutions for solving the model (considering the model's NP-hard nature 

and choosing an appropriate solving method for large instances). 

• To present an integrated location-routing model within the pharmaceutical SC context. 
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The studied SC is a 4-tier chain composing of the manufacturer (factories), DCs, wholesalers, 

and retailers (customers). The supply chain operates over multiple periods and handles multiple 

products. The location of production centers, DCs, and wholesalers are not fixed and needs to be 

selected from several potential sites. Moreover, the transportation fleet is heterogeneous, with a 

probabilistic chance of vehicle breakdown and the number and capacity of vehicles are limited. 

Additionally, the demand is considered uncertain. By addressing these objectives, this study aims to 

contribute to the optimization and efficiency enhancement of pharmaceutical SCs, which are of 

importance for ensuring the essential medications availability and the well-being of human 

populations.  

The study is arranged as follows: Section 2 reviews the literature. Section 3 describes the 

notations and assumptions and the formulation of the model. The solution approach is presented in 

section 4. Section 5 provides a numerical analysis of the presented model's parameters and results 

and also serves as a source of managerial insights. We have a conclusion in section 6.  

 

2. Literature Review  

 

A pharmaceutical SC is a complex network of interconnected stages, both direct and indirect, 

dedicated to meeting customer demands [5]. In this complex process, raw materials begin their 

journey from suppliers to factories [51]. Following transformation, the finished products embark on 

a journey through intermediate and distributor warehouses, finishing in their arrival at retailers and, 

eventually, in the hands of enthusiastic consumers. This journey highlights the multifaceted nature of 

the supply chain, where products alternate between storage and transportation activities [27]. At the 

core of this intricate system lie the foundational components of a conventional supply chain: 

suppliers, raw materials, production facilities, distributors, retailers, and the customer [35]. However, 

the scope of the SC extends beyond physical processes, encompassing the intricate flow of financial 

management, information system [42], and the exchange of vital knowledge [36]. Therefore, 

integrated planning is needed to deal with complex supply chain [17]. In today's highly competitive 

global markets, businesses face a critical need to not only meet but exceed customer expectations 

while delivering unique products [23]. This pressure has prompted companies to shift their 

investments towards the enhancement of their SCs. In a typical SC systems, the process begins with 

the procurement of raw materials, followed by their transformation into finished products within one 

or more manufacturing facilities. These finished products are then temporarily stored in intermediate 

warehouses before sending to retailers or customers [45]. Therefore, successful supply chain 

strategies must effectively oversee interactions across multiple levels of this supply chain, ensuring a 

delicate balance between cost efficiency and the delivery of exceptional services. Pharmaceutical SC 

unifies suppliers, manufacturers, and pharmacies into an efficient system, enhancing performance by 

reducing lead times [47], ensuring product safety, and meeting regulatory standards [41]. This 

integration goes beyond manufacturing; it ensures that products are not only produced but also 

distributed in the right quantities, to the correct locations, and at precisely the exact times. All of this 

is accomplished while minimizing the overall system costs and meeting rigorous service level 

requirements. Effective SC management is essential for reducing extra costs, maximizing profits, and 

meeting the ever-increasing expectations of consumers [19]. This requires a three-tiered decision-

making process: operational, tactical, and strategic. At the strategic level, decisions involve factors 

like facility location, production capacity, transportation methods, and information systems, spanning 

several years into the future [52]. In the medium-term planning stage, the focus shifts to decisions 

related to inventory levels [43], pricing strategies, and supplier selection [39] for specific markets. 

Finally, at the short-term planning stage, on-the-ground decisions such as product allocation, order 

completion dates, and truck scheduling come into play. The relative importance of each planning 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                             3 / 28

http://iors.ir/journal/article-1-860-en.html


Multi-Objective Mathematical Model for Pharmaceutical Location-Routing  

 
35 

 

horizon may vary depending on the organization's policy and scale, but adherence to these 

operational, tactical, and strategic decisions is crucial for SC success. The strategic placement of 

facilities is a critical factor in an organization's profitability and its broader impact on economic, 

social, cultural, environmental, and regional conditions. This long-term decision is less flexible and 

incurs high costs, but significantly influences service system performance and customer satisfaction 

[10]. Transportation is a cornerstone of economic and societal activities, playing a vital role in goods 

distribution and procurement [11]. Distribution costs can inflate product prices significantly, to 

highlight its significance. Moreover, vehicles can handle a substantial percentage of goods 

transportation, emphasizing the need for efficient routing and scheduling. Vehicle routing problems 

focus on finding optimal routes while considering capacity constraints, have gained prominence in 

service and procurement systems. These problems have evolved since their theoretical inception in 

1959 with the truck dispatch problem, demonstrating their growing importance in supply chains. 

Despite their complexity, as they are categorized as NP-hard problems, they remain a vital research 

focus [28]. Efficient transportation, grounded in data-driven models and spatial relationships, 

supports integrated approaches to address transportation challenges, particularly in modern urban 

planning, fostering harmonious cities [31]. Overall, the intricate interplay between supply chain 

dynamics, facility location decisions, and the optimization of transportation networks is indispensable 

for modern businesses, offering the potential for cost reduction, improved service quality, and 

competitive success. The pharmaceutical supply chain holds plays a vital role in healthcare industry, 

ensuring the uninterrupted availability of life-saving medications and critical healthcare commodities 

arrives on time to patients and healthcare providers [7]. Timely and reliable access to medications is 

vital for the effective treatment of diseases, management of chronic conditions, and rapid response to 

healthcare emergencies. Therefore, the pharmaceutical supply chain's resilience and efficiency are 

paramount, making it an indispensable component of global healthcare infrastructure [25].  

 

2.1. Pharmaceutical Supply Chain (PSC) 

 

PSC plays a pivotal role in safeguarding public health by adhering to stringent quality control 

standards and regulatory practices, thereby ensuring the efficacy and safety of pharmaceutical products. 

[55] investigated a collaborative approach to ensure that drugs with unexpired usage dates could be 

reused. They considered a reverse SC including a manufacturer, end consumers, and third-party 

companies. The model was also multi-product and focused on entities like pharmacies and hospitals as 

customers. Moreover, they employed a Mulvey approach based on discrete scenarios to explore inherent 

uncertainty regarding low-demand items, linked to imprecise demand in the pharmaceutical market. 

[12] proposed a location-allocation-inventory model for PSC network design. This model is multi-

objective, addressing cost minimization, reduced delivery times, and improved transportation system 

reliability. Moreover, they account for uncertainty in various parameters, such as costs and capacity, 

using a robust fuzzy optimization approach. Furthermore, the study introduces an efficient modification 

of the red deer algorithm for solving the multi-objective problem. [64]  proposed a bi-objective MILP 

model for developing a perishable PSC network under demand uncertainty. Their model simultaneously 

minimizes the lost demand amount and the total network cost. It is a multi-period, multi-product model 

encompassing facility location, inventory management, and vehicle routing making it an strategic- 

operational model. Moreover, they consider various factors, including procurement discounts, product 

lifetimes, time windows, lost demand, and storing products for future periods. To solve this model, a 

novel hybrid approach combining goal programming, chance constrained programming, and fuzzy 

theory is introduced. [22] introduced an innovative cost-sharing agreement for the environmentally 

responsible disposal of antibiotics in a two-tier sustainable reverse supply chain for pharmaceuticals. 

This contract maximizes supply chain profitability, improves the social image of companies, increases 

sustainability, and reduces governmental penalties associated with pharmaceutical waste disposal. [14] 
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developed a PSC model with three objective functions aimed at minimizing unfulfilled demands, total 

costs, and reducing waiting times at the firm entrance. It proposes a nonlinear programming model and 

employs multi-objective decision-making methodology to address conflicting targets. [1] propose a 

decentralized blockchain framework for selling pharmaceutical products online, eliminating 

intermediaries such as hospitals. Ethereum smart contracts are used to oversee interactions and record 

events, ensuring participants stay updated on transactions. Furthermore, smart contracts manage seller-

consumer interactions by monitoring IoT container statuses and notifying consumers. Two 

mathematical programming models are developed by [7] for routing mobile pharmacies to minimize 

the mean absolute deviation of the stock-out severity index. They also find that focusing exclusively on 

equity results in high operational costs, and show methods to achieve equity with controlled cost 

increases. Moreover, [7] present a two-stage framework to minimize costs, with "pre-disaster" decisions 

made before demand is known and "post-disaster" decisions made after. They address demand 

uncertainty using robust optimization and stochastic programming. [18] present a multi-objective 

optimization method for PSC design to minimize costs and delivery times to hospitals and pharmacies, 

while maximizing transportation reliability. They developed a new MINLP model for production, 

allocation, inventory, distribution, ordering, and routing. [44] introduces an order-up-to replenishment 

policy combined with inventory routing optimization within a three-echelon SC framework. It includes 

a real-world case study from the pharmaceutical company Hovione Farmaciência.  

 

2.2. Location Routing Problem for Pharmaceutical Products 

 

Location routing problems assume a critical role in time management of delivery, especially 

perishable pharmaceutical products. A location-routing model is essential for pharmaceutical logistics 

because it uniquely addresses the industry's critical need for temperature control, product security, and 

urgent delivery, ensuring medication efficacy and patient safety. It strategically optimizes the placement 

of facilities and the routing of vehicles to meet these strict requirements while also improving efficiency 

and reducing costs. [16] focus on designing a green supply chain and developing a location-routing-

inventory model. The study examines a two-objective mixed-integer model which involves the of DCs 

location and vehicle routing under fuzzy demand. The research addresses the facility location, using a 

limited capacity vehicle routing problem formulation. Moreover, the demand is considered as uncertain 

and a fuzzy solution approach is employed. [59] investigated the blood supply chain in China. They use 

robust optimization based on distribution which was the key point of their study. Also, they were a 

pioneer in the context of blood SCs. [54] develop an integrated pharmacy inventory and government 

decision model for a closed-loop SC in the pharmaceutical industry. This model addresses 

environmental, social, and economic sustainability by focusing on the reusing of drugs to reduce waste, 

alleviate the financial burden on patients, and examine the influence of government subsidies and 

incentives. The study highlights the feasibility of drug recycling plans and their potential benefits, taking 

into account the patients' receptiveness to utilizing recycled drugs and the role of non-profit pharmacies 

in obtaining sustainability goals within the circular economy framework. [65] developed a 

comprehensive multi-objective, probabilistic MILP model for a sustainable reverse and forward 

logistics network. This model considers various dimensions, including environmental impacts, 

processing time, and social responsibility, to address both original and return product flows within an 

uncertain demand context. Additionally, it utilizes probabilistic planning to handle uncertain parameters 

and employs a NSGA-II to obtain Pareto front solutions. [3] addressed the complexities of the drug SC, 
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characterized by high turnover and product corruption. It focuses on integrated vehicle routing, and 

inventory management, aiming to analyze inventory and routing problems in the drug SC, considering 

travel time and perishable products dependencies. The Box-Jenkins predicting method is applied to deal 

with uncertain demand effectively. [60] presented a hybrid particle swarm intelligence heuristic method 

for solving the complex problem of multi-type vehicle assignment and MIP route optimization in 

pharmaceutical logistics. [48] studied a supply network configuration problem which integrates 

warehouse selection for inventory policy, vendor-managed inventory, and delivery routing 

optimization. The paper presents both deterministic and robust optimization models, including a special 

model to account for the COVID-19 pandemic's impact on delivery times and demand. [15] developed 

a bi-objective mathematical model for shaping a resilient pharmaceutical-health relief SC network under 

disruption, with a focus on minimizing delivery time and total costs. The study uses a scenario-based 

robust optimization method and compares the results with and without lateral transshipment, showing 

that lateral transshipment can enhance supply chain performance and reduce shortages during 

disruptions. [9] developed a hybrid heuristic algorithm for solving the VRP with Cross-Docking and 

Three-Dimensional Loading Constraints (3L-VRPCD). This algorithm outperforms the traditional 

MILP-based method in terms of computational efficiency and solution quality, particularly for medium 

to large-scale instances. Their paper also introduces a storage-pool-based strategy to enhance the 

heuristic's search process and reduce computational burden. Additionally, it analyzes and discusses the 

influences of various properties, such as loading conditions, on the 3L-VRPCD solutions. [4] addressed 

the capacitated VRP with urgency, considering factors like infectiousness rates and travel times as 

critical issues. It employs multi-objective optimization algorithms, including NSGAII, SPEA2-SDE, 

GrEA, HypE, and reference points-based evolutionary algorithm, to optimize two objectives: 

minimizing travel time and reducing infectiousness rates for vehicles serving medical facilities with 

urgency levels. [6] introduced a bi-objective capacitated VRP that considers two types of consumers 

based on priority, aiming to reduce total distance traveled by customers' and vehicles’ average latency. 

It explores three scenarios for average latency calculation, including priority and non-priority 

customers. [24] addressed the integrated location-transportation problem with uncertain demand, 

specifically in the context of a pharmaceutical logistics network in Brazil. The paper introduces a 

mathematical model with multi-time scales, accounting for practical aspects like fleet sizing, safety 

constraints, and tax considerations. To tackle uncertainty, a robust counterpart and Fix-and-Optimize 

heuristics are presented. Using real data, the heuristics demonstrate a significant reduction (40%) in 

logistics costs and taxes compared to the MIP model. [2] introduce a multi-objective MILP model that 

integrates the two-echelon VRP with the vaccine SC, aiming to reduce the number of undelivered doses. 

They propose solving this complex model using a heuristic approach based on greedy random search. 

Moreover, [37] propose a model for nitrous oxide SC decisions, introducing a single-product multi-line 

production routing problem with time-dependent setups. The model investigates direct and indirect 

emissions, considering a heterogeneous fleet to minimize greenhouse gas emissions and costs. 

Furthermore, [49] present a bi-level optimization model to reduce transportation risks time-window 

penalties, transportation costs, and site selection costs in the face of uncertainties. The paper also uses 

the lognormal distribution to model the uncertainty in medical waste production. [20] introduce a MILP 

model for creating a robust infectious waste management reverse network amid the COVID-19 

pandemic. The results illustrate the model's effectiveness in shaping a resilient waste management 

system during health crises.  Moreover, [20] combines the lexicographic optimization method with the 
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TH method to create an effective multi-objective solution for the bi-objective MILP model. 

Furthermore, it employs an information-sharing system to manage waste generation uncertainties.  

In this research, the significant problem of pharmaceutical distribution, which is among practical 

issues closely related to the real world, is studied within a four-level supply chain. The focus is on a 

pharmaceutical manufacturing company, which proposes to distribute its products from multiple 

production centers to distribution centers, then to warehouses, followed by wholesalers, and ultimately 

to retailers. The company aims to make decisions regarding the establishment of production centers and 

transportation systems in a way that minimizes costs. A summary of this study in comparison with 

previous studies are shown in Table 1.  

Table 1. Literature review 

Author Objective Type of product Approach 

Stellingwerf et al. 

[53] 
Minimizing total emissions Drugs Fico Xpress Mosel 

Yang et al. [61] Minimizing costs Vaccines 
Disaggregation-and-merging 

algorithm 

Li et al. [29] Minimizing costs Commodities Multi-objective algorithms 

Moadab et al. [32] 

Minimizing costs, negative 

societal impact caused by 

shortages, and environmental 

impact 

COVID Test 
Multiple Choice Goal 

Programming 

Fallahi et al. [13] 
Minimizing the total cost and 

total carbon emission 
Blood plasma ɛ-Constraint 

Machiani et al. [30] 

Minimizing total SCN costs, 

environmental effects, social 

impacts, and maximizing the 

reliability of demand delivery 

Medical 

protective 

equipment 

Augmented ε-Constraint, Multi-

objective algorithms 

This paper 
Minimizing costs and delivery 

time 

Pharmaceutical 

commodities 
Genetic algorithm 

 

 

3. Problem Definition 

 

Location-routing problem includes the placement of factories, distribution centers, transportation 

issues, and routing, which affects to the routing of product transfers from factories to distribution 

centers, from DCs to wholesalers, and from there to retailers (customers). The location-allocation 

problem, when integrated with the discussed topic, addresses the distribution of products from 

wholesalers to retailers (customers). As a result, the investigation involves a mixed-integer problem 

that combines elements of location, routing, and allocation.  In the proposed mathematical model, 

retailer (customer) demand is uncertain. However, based on historical data, customer demand can be 

estimated through multiple scenarios. At the beginning of the planning horizon, experts estimate 

potential demand. Based on the projected demand and factors such as warehouse storage capacity, 

available transportation options, and more, the optimization of supply and demand for each time 
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period must be determined. Products manufactured in factories are transported to distribution centers, 

and from there, they are dispatched to designated warehouses for further distribution. Upon arrival at 

the warehouses, products are stored to prevent potential demand loss. They are then transported from 

the warehouses to wholesalers and, ultimately, to retailers. This study examines a mixed-integer 

model within a four-level supply chain scenario. 

The proposed mathematical model tries to simultaneously determine the optimal locations and 

transportation flows across the entire system, while minimizing overall costs. 

3.1. Assumptions 

The assumptions employed in modeling the problem are outlined as follows: 

1. The SC is a four-tiered chain, consisting of manufacturers (factories), distribution centers, 

wholesalers, and retailers (customers). 

2. The SC is multi-period and multi-product. 

3. The locations of manufacturing centers are not specified; they need to be selected from 

several potential active/initiated centers. 

4. The locations of distribution centers are not specified; they need to be selected from several 

potential active/initiated centers. 

5. The locations of wholesalers are not specified; they need to be selected from several 

potential active/initiated centers. 

6. The locations of retailers are specified. 

7. The transportation fleet is heterogeneous, and there is a probability of vehicle breakdown. 

8. The capacity vehicles are limited. 

9. Production capacity is limited. 

10. Each DC is assigned to a maximum of one manufacturing center. 

11. Each wholesaler is assigned to a maximum of one DC. 

12. Time available is limited. 

13. The number of available vehicles is specified. 

14. Three levels of routing are considered: from manufacturing centers to DCs, from 

distribution centers to wholesalers, and from wholesalers to retailers. 

15. Demand is considered uncertain. 

The parameters and notations are used in mathematical model are as follows: 

3.2. Sets and Indices 

Index for factories : 𝐹 

Index for distribution centers : 𝑆 

Index for wholesale centers : 𝐷 

Index for retail centers : 𝑊 

Index for vehicles : 𝑉 

Index for time period : 𝑇 

3.3. Parameters 

Cost of establishing/launching factory 𝐹. : 𝐶𝑜𝑠𝑡𝑓 

Setup costs of distribution centers. : 𝐶𝐶𝑜𝑠𝑡𝑠 

Setup costs of wholesale centers. : 𝐴𝐶𝑜𝑠𝑡𝑑 

Holding Cost per Product Unit at DC 𝑠 in Period 𝑡. : 𝐵𝐶𝑜𝑠𝑡𝑠𝑡 

Holding Cost per Product Unit at Center 𝑑 in Period 𝑡. : 𝐻𝐶𝑜𝑠𝑡𝑑𝑡 
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3.4. Decision Variables 

The quantity of products manufactured in factory 𝑓 in period 𝑡. : 𝑄𝑓𝑡 

The quantity of products stored at DC 𝑠 in period 𝑡. : 𝑄𝑄𝑠𝑡 

The quantity of products stored at wholesale center 𝑑 in period 𝑡. : 𝑄𝐴𝑑𝑡 

The quantity of goods going from factory f to DC 𝑠 in period 𝑡. : 𝑄𝐵𝑓𝑠𝑡 

The quantity of goods going from DC s to wholesale center 𝑑 in period 𝑡. : 𝑄𝐶𝑠𝑑𝑡 

The quantity of goods going from wholesale center d to retail center w in period 𝑡. : 𝑄𝐷𝑑𝑤𝑡 

The quantity of goods transported from factory 𝑓 to DC 𝑠 by vehicle v in period 𝑡. : 𝑄1𝑓𝑠𝑣𝑡 

The quantity of goods transported from DC s to wholesale center d by vehicle v in 

period 𝑡. 

: 𝑄2𝑠𝑑𝑣𝑡 

The quantity of goods transported from wholesale center d to retail center w by 

vehicle v in period 𝑡. 

: 𝑄3𝑑𝑤𝑣𝑡 

If the production center 𝑓 is established, it equals 1; otherwise, it is 0. : 𝑦1𝑓 

If the DC 𝑠 is established, it equals 1; otherwise, it is 0. : 𝑦𝐴𝑠 

If the wholesale center 𝑑 is established, it equals 1; otherwise, it is 0. : 𝑦𝐵𝑑 

If the retail center 𝑤 is established, it equals 1; otherwise, it is 0. : 𝑦2𝑤   

Capacity of Wholesale Center 𝑑 in Period 𝑡. : 𝐶𝐶𝑎𝑝𝑑𝑡 

Capacity of DC 𝑠 in Period 𝑡. : 𝐴𝐶𝑎𝑝𝑠𝑡 

Cost of transporting each unit of product from production centers f to DC 𝑠 in period 

𝑡. 

: 𝑇𝐶𝑜𝑠𝑡𝑓𝑠𝑡 

Cost of transporting each unit of product from DC 𝑠 to wholesale centers 𝑑 in period 

𝑡. 

: 𝐼𝐶𝑜𝑠𝑡𝑠𝑑𝑡 

Cost of transporting each unit of product from wholesale centers 𝑑 to retail centers 𝑤 

for sales in period 𝑡. 

: 𝑊𝐶𝑜𝑠𝑡𝑑𝑤𝑡 

Cost of vehicle breakdown v. : 𝑉𝑐𝑜𝑠𝑡𝑣
𝑣𝑒ℎ 

The duration of vehicle breakdown v from production center f to DC 𝑠 in period 𝑡. : 𝑑1𝑓𝑠𝑣𝑡 

The duration of vehicle breakdown v from DC 𝑠 to wholesale center 𝑑 in period 𝑡. : 𝑑2𝑠𝑑𝑣𝑡 

The duration of vehicle breakdown v from wholesale center d to retail w in period 𝑡. : 𝑑3𝑑𝑤𝑣𝑡 

Capacity of vehicle v. : 𝐻𝑐𝑎𝑝𝑣
𝑣𝑒ℎ 

A very large number : 𝑏𝑖𝑔𝑀 

The probability of vehicle v breaking down. : 𝑝𝑣 

The maximum number of potential production centers f that can be established in 

potential locations. 

: 𝑁1𝑚𝑎𝑥𝑓 

The maximum number of potential DC 𝑠 that can be established in potential 

locations. 

: 𝑁2𝑚𝑎𝑥𝑠 

The maximum number of potential sales centers d that can be established in potential 

locations. 

: 𝑁3𝑚𝑎𝑥𝑑 

The time for vehicle v transportation from factory f to DC 𝑠 in period 𝑡. : 𝑡𝑖𝑚𝑒1𝑓𝑠𝑣𝑡 

The time for vehicle v transportation from DC 𝑠 to wholesale center 𝑑 in period 𝑡. : 𝑡𝑖𝑚𝑒2𝑠𝑑𝑣𝑡 

The time for vehicle v transportation from the wholesale center d to the retail center 

𝑤 (customer) in period 𝑡. 

: 𝑡𝑖𝑚𝑒3𝑑𝑤𝑣𝑡 
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If vehicle v moves from production center 𝑓 to DC 𝑠 in period 𝑡, it is 1; otherwise, it 

is 0. 

: 𝑥𝑥𝑓𝑠𝑣𝑡 

If vehicle v moves from DC 𝑠 to wholesale center 𝑑 in period 𝑡, it is 1; otherwise, it is 

0. 

: 𝑥𝑜𝑠𝑑𝑣𝑡 

If vehicle v moves from wholesale center 𝑑 to retail center 𝑤 (customer) in period 𝑡, it 

is 1; otherwise, it is 0. 

: 𝑥𝑢𝑑𝑤𝑣𝑡 

If vehicle 𝑣 is allocated from production center 𝑓 to DC 𝑠 in period 𝑡, it is 1; 

otherwise, it is 0. 

: 𝑦𝑡𝑓𝑠𝑣𝑡 

If vehicle 𝑣 is allocated from DC 𝑠 to wholesale center 𝑑 in period 𝑡, it is 1; 

otherwise, it is 0. 

: 𝑦𝑒𝑠𝑑𝑣𝑡 

If vehicle 𝑣 is assigned from wholesale center 𝑑 to retail center 𝑤 in period 𝑡, it is 1; 

otherwise, it is 0. 

: 𝑦𝑓𝑑𝑤𝑣𝑡 

3.5. Model  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑜𝑠𝑡: = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 +  𝐻𝑜𝑙𝑑 𝑐𝑜𝑠𝑡 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 (𝑓11)  = ∑ 𝐴𝐶𝑜𝑠𝑡𝑑

𝑑

𝑦𝐵𝑑 + ∑ 𝐶𝑜𝑠𝑡𝑓𝑦1𝑓

𝑓

+ ∑ 𝐶𝐶𝑜𝑠𝑡𝑠

𝑠

𝑦𝐴𝑠 (1) 

𝐻𝑜𝑙𝑑 𝑐𝑜𝑠𝑡 𝑓(12)  = ∑ 𝑄𝐴𝑑𝑡𝐻𝐶𝑜𝑠𝑡𝑑𝑡

𝑑𝑡

+ ∑ 𝑄𝑄𝑠𝑡𝐵𝐶𝑜𝑠𝑡𝑠𝑡

𝑠𝑡

 
(2) 

 

Now, let's combine (1) and (2), resulting in the total cost being equal to: 

 

𝑀𝑖𝑛 𝐹1 =  (𝑓11) +  𝑓(12)

= ∑ 𝐴𝐶𝑜𝑠𝑡𝑑

𝑑

𝑦𝐵𝑑 + ∑ 𝐶𝑜𝑠𝑡𝑓𝑦𝐴𝑠

𝑓

+ ∑ 𝐶𝐶𝑜𝑠𝑡𝑠

𝑠

𝑦1𝑓

+ ∑ 𝑄𝐴𝑑𝑡𝐻𝐶𝑜𝑠𝑡𝑑𝑡

𝑑𝑡

+ ∑ 𝑄𝑄𝑠𝑡𝐶𝑜𝑠𝑡𝑠𝑡

𝑠𝑡

 

(3) 

𝑀𝑖𝑛 𝐹2 =  (∑ 𝑥𝑥𝑓𝑠𝑣𝑡𝑡𝑖𝑚𝑒𝑓𝑠𝑣𝑡

𝑓𝑠𝑣𝑡

+ ∑ 𝑥𝑜𝑠𝑑𝑣𝑡𝑡𝑖𝑚𝑒𝑠𝑑𝑣𝑡

𝑠𝑑𝑣𝑡

+ ∑ 𝑥𝑢𝑑𝑤𝑣𝑡𝑡𝑖𝑚𝑒𝑑𝑤𝑣𝑡

𝑑𝑤𝑣𝑡

) (4) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑄𝐵𝑓𝑠𝑡 ≤ 𝑏𝑖𝑔𝑀𝑥𝑥𝑓𝑠𝑣𝑡 ∀𝑠،𝑓،v،𝑡 (5) 

𝑄𝐶𝑠𝑑𝑡 ≤ 𝑏𝑖𝑔𝑀𝑥𝑜𝑠𝑑𝑣𝑡   ∀𝑠،𝑑،v،𝑡 (6) 

𝑄𝐷𝑑𝑤𝑡 ≤ 𝑏𝑖𝑔𝑀𝑥𝑢𝑑𝑤𝑧𝑡 ∀ 𝑤،𝑑،v،𝑡 (7) 

∑ 𝑄𝐵𝑓𝑠𝑡

𝑓𝑠

≤ 𝑏𝑖𝑔𝑀𝑦𝐴𝑠 ∀𝑡 
(8) 

∑ 𝑄𝐶𝑠𝑑𝑡

𝑠𝑑

≤ 𝑏𝑖𝑔𝑀𝑦𝐵𝑑 ∀𝑡 
(9) 

∑ 𝑄𝐷𝑑𝑤𝑡

𝑑𝑤

≤ 𝑏𝑖𝑔𝑀𝑦𝑤 ∀𝑡 
(10) 
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𝑦𝑡𝑓𝑠𝑣𝑡 ≤ 𝑦𝐴𝑠 ∀ 𝑠،𝑓،𝑣،𝑡 (11) 

𝑦𝑒𝑠𝑑𝑣𝑡 ≤ 𝑦𝐵𝑑  ∀ 𝑠،𝑓،𝑣،𝑡 (12) 

𝑦𝑓𝑑𝑤𝑣𝑡 ≤ 𝑦2𝑤  ∀𝑤،𝑑،𝑣،𝑡 (13) 

∑ 𝑄1𝑓𝑠𝑣𝑡𝑥𝑥𝑓𝑠𝑣𝑡

𝑓

≤ 𝐻𝑐𝑎𝑝𝑣
𝑣𝑒ℎ ∀𝑠،𝑣،𝑡 (14) 

∑ 𝑄2𝑠𝑑𝑣𝑡𝑥𝑜𝑠𝑑𝑣𝑡

𝑠

≤ 𝐻𝑐𝑎𝑝𝑣
𝑣𝑒ℎ ∀ 𝑑،𝑣،𝑡 (15) 

∑ 𝑄3𝑑𝑤𝑣𝑡𝑥𝑢𝑑𝑤𝑣𝑡

𝑑

≤ 𝐻𝑐𝑎𝑝𝑣
𝑣𝑒ℎ ∀ 𝑤،𝑣،𝑡 (16) 

𝑄𝑄𝑠𝑡 + 𝑄𝐵𝑓𝑠𝑡 ≤ 𝐴𝐶𝑎𝑝𝑠𝑡 ∀ 𝑓،𝑠،𝑡 (17) 

𝑄𝐴𝑑𝑡 + 𝑄𝐶𝑠𝑑𝑡 ≤ 𝐶𝐶𝑎𝑝𝑑𝑡 ∀ 𝑑،𝑠،𝑡 (18) 

∑ 𝑦𝐵𝑑

𝑑

≤ 𝑁3𝑚𝑎𝑥𝑑  (19) 

∑ 𝑦𝐴𝑠

𝑠

≤ 𝑁2𝑚𝑎𝑥𝑠  (20) 

∑ 𝑦𝑓

𝑓

≤ 𝑁1𝑚𝑎𝑥𝑓  (21) 

𝑦𝐵𝑑 , 𝑦𝐴𝑠, 𝑦𝑓 , 𝑥𝑥𝑓𝑠𝑣𝑡 , 𝑥𝑜𝑠𝑑𝑣𝑡, 𝑥𝑢𝑑𝑤𝑣𝑡, 𝑦𝑡𝑓𝑠𝑣𝑡 , 𝑦𝑒𝑠𝑑𝑣𝑡 , 𝑦𝑓𝑑𝑤𝑣𝑡 ϵ {0،1} (22) 

𝑄𝑄𝑠𝑡 , 𝑄1𝑓𝑠𝑣𝑡 , 𝑄2𝑠𝑑𝑣𝑡 , 𝑄3𝑑𝑤𝑣𝑡, 𝑄𝑓𝑡 , 𝑄𝐴𝑑𝑡 , 𝑄𝐵𝑓𝑠𝑡 , 𝑄𝐶𝑠𝑑𝑡 , 𝑄𝐷𝑑𝑤 ≥ 0 

Equation (1) defines the location costs for three sections of the supply chain, which are part of 

long-term decision-making. Once a section is established and operational, it incurs specific costs. 

These costs are represented by multiplying a fixed value by a binary variable, indicating whether the 

section is active (1) or not (0). Equation (2) optimizes the holding cost per unit of product, which is 

influenced by the volume of stored materials. Equation (4) minimizes the maximum delivery time for 

products. Equations (5) to (7) ensure that at least one vehicle is required for product transfer. If no 

vehicle is deployed, the transfer of products between routes becomes impossible. Equations (8) to 

(10) specify that the corresponding center must be established and operational to facilitate product 

transfer. Equations (11) to (13) define the allocation of products to each center. Equations (14) to (16) 

represent vehicle capacity constraints for product transportation, ensuring that each vehicle operates 

within its designated capacity. Equation (17) defines the storage capacity of distribution centers, 

ensuring that the transferred product volume does not exceed the center's capacity. Equation (18) 

outlines the capacity of major sales centers. Equations (19) to (21) define the constraints for the 

maximum number of centers that can be selected. Equation (22) specifies the decision variables. 
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4. Solving Procedure 

The presented model is solved using GAMS software on a small scale. Since the model is an NP-

hard problem, a genetic algorithm is used for larger instances. 

4.1.     Genetic Algorithm 

One of the evolutionary algorithms is the genetic algorithm, which is a non-algebraic optimization 

algorithm and is suitable for functions that are difficult to optimize with algebraic methods. In the last 

decade, the genetic algorithm has been widely used as a simulation algorithm and search for answers in 

different fields (Katoch et al., 2021). The main reason for the increasing use of this algorithm is its high 

applicability in symptoms and the simplicity of its application and general approach. Features of genetic 

algorithm are as follows, 

• The genetic algorithm starts searching from a population of answers and instead of finding a point, it 

identifies a suitable range in the space of variables and by choosing suitable parents, it follows an 

effective search in all the space of variables. 

• In this algorithm, only the calculations related to the objective function are performed, and every time 

the algorithm is repeated and the solution space is searched, only the objective function is calculated, 

and there is no need for other calculations. 

• This algorithm uses probabilistic rules instead of deterministic rules. Unlike many optimization 

methods that start from one point according to a certain rule and move to other points in the search 

space, this algorithm starts with a set of points and calculations will be performed on all of them at the 

same time. Therefore, the probability of being in the wrong place and getting stuck at a local point is 

reduced. 

• The generality and independence of the algorithm's components make it possible to search for the 

answer regardless of the characteristics of the problem and can be used in any problem with any type 

of objective function. 

• In this algorithm, calculations are done accurately and approximations are not used. This algorithm 

does not use any approximate calculations, such as linearization of the objective function, rounding 

of results, conversion of discrete to continuous variables, etc. 

4.1.1.  General Structure of Genetic Algorithm 

The genetic algorithm was the first model developed based on the simulation of genetic systems 

(Katoch et al., 2021). Genetic algorithms belong to the class of random search methods. Despite their 

randomness, they have a goal-oriented structure, classifying them as evolved random algorithms. Unlike 

traditional algorithms, genetic algorithms begin with an initial set of random solutions, referred to as a 

population. Each individual of this population is called a chromosome, which represents a solution to the 

problem. The chromosome is a series of signs that evolve through successive repetitions, which are called 

generations. In each generation, chromosomes are evaluated by measuring fitness. In order to produce the 

next generation, new chromosomes, which are called offspring, are produced in two ways. 

1) Integration of two chromosomes from the current generation using the crossover operator 

2) Changing a chromosome through the mutation operator 

The top chromosomes have a higher chance of selection and after repeating several generations, the 

algorithm converges towards the top chromosomes, which may indicate the optimal or suboptimal 

solution. Genetic operators follow the process of inheriting genes in order to produce offspring in each 

generation, and the evolution operator imitates Darwin's evolutionary process in order to produce a 

population from one generation to another. 
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4.1.2. Crossover 

 

The crossover is considered the main operator in genetic algorithms, which is performed on two 

chromosomes at any time. The simplest method of crossover is to choose a random crossover point so that 

the left side of the crossover point of one parent is connected to the right side of the crossover point of the 

other parent. The efficiency of this method is high by displaying the binary string. The efficiency of genetic 

algorithms is highly dependent on the efficiency of the crossover operator used in them. The crossover 

works as follows, 

First, a crossover point is randomly selected and the right part of the crossover point in the first parent 

is replaced with the right point in the second parent. Suppose, the two chromosomes are as figure 1 and 

consider the crossover point as the border between the light and dark point. 

Parent 1 

1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 
 

Parent 2 

1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 

 
The children resulting from applying the crossover are as follows. 

Child 1 

1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 
 

Child 1 

1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 

Figure 1. Example process of the crossover 

4.1.3. Mutation 

The mutation is the secondary operator responsible for injecting new information into the population 

at a low rate and producing random changes in different chromosomes. The main role of the jump operator 

is to identify points in the space that are less likely to be searched and reduce the probability of the 

algorithm getting trapped in the local optimal solution. In genetic algorithms, the mutation plays a decisive 

role. These roles are like replacing missing genes in the population by means of the selection operator or 

producing genes not present in the primary population. The mutation modifies one or more genes based 

on the mutation rate. Suppose the tenth gene of the following chromosome is selected for the mutation. 

Because the tenth gene of this chromosome is equal to zero, it changes to the value of one and the result 

of the operation will be as figure 2. 

 

1 0 1 0 1 1 1 0 1 0 1 0 

 

1 0 1 0 1 1 1 0 1 1 1 0 
Figure 2. Example process of the mutation 

 

The mutation rate is also considered as one of the parameters affecting the population. If this ratio is 

too low, many genes that may be useful will never be produced, and if it is too high, there will be a lot of 

chaos in the population, and the offspring will have little resemblance to their parents, and the algorithm 

loses the ability to learn from the past search. 
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4.1.4. The Suggested Genetic Algorithm 

As mentioned earlier, the genetic algorithm solved the problem in large dimensions. The reason for 

using this algorithm is that the genetic algorithm has been used in most of the articles on positioning-

routing models and secondly, this algorithm has been used in a consolidated manner, which covers the 

shortcomings of non-consolidated algorithms. As the model is bi-objective model, we employ NSGA-II 

algorithm. Figure 3 is the flowchart of the proposed algorithm. 

 

 

Figure 3. Flowchart of NSGA-II (Thonglek et al. [57]) 

 

5. Validation and Numerical Examples 

 

Given that the model presented in the previous section constitutes an NP-hard problem, obtaining 

exact solutions for large-scale instances within a reasonable computational time is impractical. 

Consequently, a small-scale version of the problem was formulated and solved using exact 

optimization techniques to establish a benchmark. The exact solutions were generated via GAMS 

software, while the genetic algorithm was implemented in MATLAB. A comparative analysis 
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revealed that the solutions obtained from the genetic algorithm closely approximate the exact 

solutions. This observation suggests that the proposed metaheuristic is a promising approach for 

addressing medium- and large-scale instances, as it demonstrates the capability to produce near-

optimal solutions in small-scale test cases. 

 

5.1. Model Analysis with Genetic Algorithm 

Defining an appropriate solution representation is a key factor in enhancing the efficiency of the 

proposed algorithm. In this study, the adopted solution structure incorporates 𝑥𝑧𝑑𝑤𝑡, where each 

chromosome corresponds to a specific retailer or customer. Each chromosome is represented as a 

vector whose length equals the number of wholesale levels plus one. Each position in the vector 

corresponds to a level, and the value stored in that position denotes the wholesale distribution center 

selected at that level. To illustrate this more clearly, an example is provided: consider a case with six 

wholesale centers, i.e., 𝑟 = 6 

 

Table 2. Example parameters for the algorithm 

 0r 1r 2r 3r 4r 5r 

d 3 1 5 2 4 d 

The first cell in Table 2 (from the left) indicates that the retailer is initially allocated to wholesale 

center number 3 at the zero level. In the event of a disruption at this center, the customer is reassigned 

to wholesale center number 1. If this center is also disrupted, the retailer is then allocated to the next 

available wholesale center. This process continues sequentially up to the fourth level. The final cell, 

representing the fifth level, must be assigned to the wholesale center designated as the last in the 

allocation sequence. 

Initialization: 

A trial-and-error procedure was employed to identify the near-optimal values of the genetic 

algorithm parameters 𝑛, 𝑝𝑐 and 𝑝𝑚. Various combinations of these parameters, selected from their 

respective predefined ranges, were systematically evaluated. For each combination, the genetic 

algorithm was executed on the problem instance, and the performance was assessed to determine the 

most effective parameter configuration. This approach facilitates the identification of parameter 

settings that achieve a favorable balance between solution quality and computational efficiency. The 

parameter values examined are summarized in Table 3. 

Table 3. Parameter settings considered in the trial-and-error analysis. 

Parameters Values Tested 

𝒏 40 50 60 

𝒑𝒄 0.5 0.6 0.7 

𝒑𝒎 0.01 0.02 0.03 

 

Fitness function: In this section, parents are selected according to the relevant selection strategy, and 

crossover and mutation are performed on them, in such a way that pairs that have a lower cost are 

selected. 

Crossover Operation: In alignment with the principles of natural evolution, chromosomes are 

selected as parents and recombined to produce offspring. Within the proposed genetic algorithm, a 
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single-point crossover operator is applied in each iteration to generate new solutions. Specifically, a 

crossover point is randomly chosen within the range (1 𝑡𝑜 𝑟), and the offspring is constructed by 

combining the gene segments of both parents according to this point of division. This mechanism 

ensures the exchange of genetic material, thereby enhancing population diversity and promoting 

convergence toward high-quality solutions. 

 

 Parent 1   Parent 2  

 1 0 0 1 1   0 0 1 1 1  

 

 Child 1   Child 2  

 1 0 1 1 1   0 0 0 1 1  

Figure 4. Crossover performance 

 

Mutation: In this study, the applied mutation operator is the transfer mutation operator, which 

enhances solution diversity and prevents premature convergence. This operator randomly selects two 

genes within a chromosome and exchanges their positions, introducing variability without disrupting 

the overall structure of the solution. Such an approach helps maintain genetic diversity in the 

population, which is crucial for exploring the search space effectively. 

1 0 1 0 0 0 1 

     

1 0 0 0 0 1 1 

1 0 1 0 1 1 1 0 1 0 1 0 

 

1 0 1 0 1 1 1 0 1 1 1 0 

Figure 5. Mutation performance 

 

To address the proposed optimization problem, a genetic-based solution framework was 

developed to systematically incorporate all scenarios examined in this study. The solution process 

begins with the model initialization phase, during which key structural parameters—such as 

mutation intervals and the number of decision elements—are defined. The framework is designed 

with a high degree of flexibility, enabling dynamic adjustments to the number of factories and 

distribution centers, as well as real-time evaluation and refinement of operational constraints. 

Following initialization, the algorithm progresses to the optimization phase, which integrates 

multiple computational techniques to achieve cost-effective solutions. Specifically, three 

complementary methods were employed: 

1. Traveling Salesman Problem (TSP): to minimize total routing distance and improve 

distribution efficiency. 

2. K-Nearest Neighbors (KNN): to determine the optimal locations for distribution centers 

based on demand clusters. 

3. Simulated Annealing (SA): to enforce production capacity and payment constraints while 

preventing premature convergence. 

The solution process is initiated by specifying the predetermined locations of wholesalers and 

consumers. Subsequently, optimal distribution routes are generated using the TSP algorithm. Based 

on retailer demand density, candidate distribution center locations are selected using KNN, ensuring 

proximity to high-demand areas. Finally, the SA method is applied to refine production and payment 
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allocations under operational constraints. The program architecture allows dynamic modifications 

during execution, ensuring adaptability to changes in network structure and constraints. The validity 

and effectiveness of the proposed approach are demonstrated through graphical representations of the 

algorithm’s execution, as shown in the subsequent figures. 

 

Figure 6. Locations of wholesalers (customers) and optimal routing 

In the subsequent phase, the algorithm initiates the optimization process by employing a 

neighborhood search procedure to identify the optimal locations for factories and distribution centers, 

as well as the most efficient distribution routes. 

 

Figure 7. Optimum places of firms, distribution centers, and the best route 
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Figure 8 illustrates the final stage of the optimization process, where the software determines the 

optimal facility locations and distribution routes. 

 

Figure 8. Optimal locations and final optimal route 

5.3. Program Execution and Dynamic Optimization 

During its execution loop, the program continuously evaluates potential locations and routing 

options to minimize the overall cost of the distribution network. It provides recommendations 

regarding both the optimal navigation routes and the location coordinates of distribution centers 

(DCs) and factories. These suggested coordinates are systematically recorded, as exemplified in Table 

4. The iterative process continues until convergence to an optimal solution is achieved. 

The final output, illustrated in the corresponding figure, represents the system’s fitness level, 

which accounts for evaluated scenarios, including center locations and optimal timing, while 

minimizing total distribution costs. Notably, the methodology is fully dynamic, allowing all 

parameters to be adjusted, retested, and reassessed under new data conditions. The resulting 

optimized values for routes and locations are summarized in Table 4. 
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Table 5. Summary of objective function results 

RUN 1 2 3 4 5 6 7 8 9 

Z1 6432569 6335659 5996336 6012332 5889632 5666532 5789965 5998635 5888932 

Z2 42 32 30 28 30 26 27 20 18 

 

6.  Sensitivity Analysis of The Parameters 

In this section, we demonstrate that how variations in the inputs of the model affect the objective 

function. Given the complexity, scale, and numerous parameters of the model, this paper focus on 

analyzing a subset of parameters. This paper used GAMS software for solving and employing a loop 

to examine parameter values in a small-scale model with 5 repetitions. First, the parameter 𝑐𝑜𝑠𝑡𝑓
𝑓𝑎𝑐

 

is reduced by 35% for two values of 𝑓. These values are then analyzed to evaluate the sensitivity of 

the model to these changes. 

 

Table 6. Objective function results with changes in facility location costs 

Objective Function 𝑭𝟐 𝑭𝟏 

51068 550 500 

49819 357 325 

49562 232 211 

49407 151 137 

49306 98 89 

49240 63 58 
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S
am

p
le 1

0
 

S
am

p
le 9

 

S
am

p
le 8

 

S
am

p
le 7

 

S
am

p
le 6

 

S
am

p
le 5

 

S
am

p
le 4

 

S
am

p
le 3

 

S
am

p
le 2

 

S
am

p
le 1

 

Decision 

variable 

30 40 82 10 12 24 67 74 67 49 
Location 

F 

54 30 73 20 67 20 37 61 76 10 
Location 

D 

92 78 52 48 49 36 54 54 82 80 
Location 

S 

21.4  

M 

49.9 

M 
35.3 

M 
33.2 

M 
55.0 

M 
17.5 

M 
45.5 

M 
45.3 

M 
23.1 

M 
34.2 

M 

Cost of 

Transport

ation 

733.2 

Tr 

815.2 

Tr 
11.4 

Tr 
822.0 

Tr 
569.1 

Tr 
87.8 

Tr 
250.7 

Tr 
492.2 

Tr 
861.7 

Tr 
868.4 

Tr 
Factory 

cost 

624334 312157 193808 333487 77705 106099 753676 764934 460422 48387 Production 

M: Million, Tr: Trillion 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                            19 / 28

http://iors.ir/journal/article-1-860-en.html


Multi-Objective Mathematical Model for Pharmaceutical Location-Routing  

 
51 

 

 

Figure 9. Sensitivity analysis of facility location costs 

 

Figure 9 illustrates the sensitivity analysis of the first objective function, focusing on costs. We 

adjust the cost-related parameter to a constant value to observe changes in the first objective function, 

which encompasses location, maintenance, and transportation costs. The first objective function 

relates to costs, thereby the total cost should decrease as individual costs are reduced. With the 

reduction in costs, the first objective function, i.e., the total costs, also decreases. Furthermore, we 

analyze other parameters in 5 repetitions according to the previous method. For distribution centers, 

we increase D1 and D3 by 20% while decreasing D2 and D4 by 10% in each iteration. 

 

Table 7. Objective function results with changes in location costs of distribution centers 

Objective Function 𝑫𝟒 𝑫𝟑 𝑫𝟐 𝑫𝟏 

50168 125 175 185 120 

50161 112 210 166 144 

50149 101 252 149 172 

50139 91 302 134 270 

50130 82 362 121 248 

50122 73 435 109 298 

We reduce the location costs for the distribution centers to a fixed ratio, similar to the previous 

method. As we can conclude form the Figure 10, changes in location costs significantly impact the 

main objective function. Moreover, this analysis focuses on costs, showing that as the location costs 

of the distribution centers decrease or increase, objective function 1 will correspondingly decrease or 

increase with the change in the input parameter. The input parameter for location costs is directly 

correlated with objective function 1. 
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Figure 10. Distribution center location sensitive analysis chart 

 

Table 8. Objective function results with changes in vehicle capacity 
 

Objective Function 𝑉3 𝑉2 𝑉1 

50168 1750 2000 1500 

50168 1050 1200 900 

50168 630 720 540 

50168 378 432 324 

50168 226 259 194 

50168 136 155 116 

 

 

Figure 11. Objective function results with changes in vehicle capacity 
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Figure 11 demonstrates that changes in vehicle capacity do not significantly impact the main 

objective function. This means that whether we increase the vehicle's capacity from 500 units to 1000 

units or reduce it, the costs in objective function 1 are not significantly affected. 

Table 9 demonstrate the production cost parameters for factories 1 and 2 for three products, increased 

by 20% in each iteration. These changes are reflected in the objective function 1. 

 

Table 9. Objective function results with changes in production cost 

Objective Function 1 𝐹23 𝐹22 𝐹21 𝐹13 𝐹12 𝐹11 

50168 20 30 15 25 15 10 

59931 24 36 18 30 18 12 

71646 28 43 21 36 21 14 

93528 35 52 42 43 6 17 

111954 41 62 50 52 31 21 

 

As we anticipated, the production costs for established factories 1 and 2 are positively correlated 

with the input parameter.  The increase or decrease in these costs causes objective function 1, which 

is related to costs and is cost-natured. In contrast, objective function 2, which relates to time, remains 

unaffected by changes in cost-related inputs. 

 
Figure 12. Objective function results with changes in factory 1 production costs 
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Figure 13. Objective function results with changes in factory 2 production costs 

 

7.  Conclusion 

Providing an effective framework for determining production facility locations, vehicle routing, 

and inventory management significantly enhances organizational efficiency. In modern operations, 

supply chain optimization is a critical factor in reducing costs and increasing productivity. Among 

supply chain challenges, the location-routing problem (LRP) is particularly important, as selecting 

optimal routes and facility locations directly influences operational efficiency and organizational 

competitiveness. 

In this study, a location-routing model is proposed for a four-level supply chain encompassing 

manufacturers, distributors, wholesalers, and retailers (customers). To reflect real-world conditions, 

demand is treated as uncertain and scenario-based, highlighting the stochastic nature of customer 

requirements. The primary objective of the model is to minimize total economic costs, including 

transportation, inventory, and facility establishment expenses. 

Due to the NP-hard nature of the problem, GAMS software is employed for small-scale instances, 

while a meta-heuristic genetic algorithm is used for larger-scale problems. The model optimizes the 

location of three key components and determines the best routes across three distribution stages. The 

genetic algorithm simultaneously identifies optimal distribution paths and facility placements. Based 

on the results illustrated in previous chapters’ charts and tables, the model provides optimal values 

for decision variables, including warehouse inventory levels, quantities transported per period, 

disposal amounts, and the optimal routing and facility location configurations. 

 

7.1. Suggestions for Further Research 

Based on this research, several directions for future studies can be suggested. First, developing 

new heuristic or meta-heuristic algorithms could improve the efficiency of solving the model. 

Additionally, future work could explore supplier selection using different approaches, such as fuzzy 

logic methods. Incorporating quality control measures would help minimize the costs associated with 

returned goods. Furthermore, the model could be enhanced by including delivery time considerations 
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and applied to real-world scenarios with more concrete parameters. Examining alternative 

transportation routes, such as air and rail, and including the locations of retailers (customers) would 

also provide valuable insights. 
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