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A spectral Conjugate Gradient method for solving
unconstrained optimization problems

Mariya Toofan'>" Gohar Shakouri’

The conjugate gradient (CG) method stands out as one of the most rapidly growing and effective approaches
for addressing unconstrained optimization problems. In recent years, significant efforts have been dedicated
to adapting the CG for tackling nonlinear optimization challenges. This research article introduces a new
modification of the Fletcher—Reeves (FR) conjugate gradient method. The proposed method is characterized
by its sufficient descent property, and its global convergence has been established under specific
assumptions. Numerical experiments conducted on 96 functions from the CUTEr collection demonstrate the
potential and effectiveness of the proposed methods. The computational results show that the proposed MFR
method achieves better performance in terms of function and gradient evaluations as well as CPU time
compared to DPRP and FR, while remaining competitive with NPRP. These findings confirm that enforcing
the sufficient descent condition in equality form can provide both theoretical robustness and practical

efficiency.

Keywords: Nonlinear optimization; line search; spectral conjugate gradient method; sufficient
descent property.

1. Introduction

The CG method is a well-established class of algorithms widely used for solving large-scale
optimization problems. Its popularity is mainly due to the simplicity of the iterative scheme, the fast
convergence properties, and the low memory requirements. In this study, we consider the following
unconstrained optimization problem:

,?;}{%f(x)‘ (1)

Let f(x): R™ - R denote the differentiable objective function, where xeR"™ represents an
arbitrary n-dimensional vector. For convenience, we define g, = Vf (xy) as the gradient at iteration
k, and y, = gr+1 — gx as the difference between successive gradients. Owing to its simple iterative
structure, low memory requirements, and remarkable numerical efficiency, the CG method is
considered one of the most effective algorithms for solving unconstrained optimization problems.
The iterative scheme of the CG method can be formulated as:

X1 = X + Qrdg. (2)

The positive step size @, is determined by a line search procedure. In this paper, we employ the
strong Wolfe—Powell (SWP) line search, which requires «;, to satisfy the following two inequalities:
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[ + apdy) < f(x) + Sy g(xi) " d, (3)
lg (e + ardy)dy| < —og ()7 d. 4)

Where 6 and o are positive constants such that 0 < § < g< 1. In formula (2), the term dj, denotes
the k-th search direction, also referred to as the descent direction, which is initialized as dy = —gj.
The recursive relation is given by:

A1 = —9(Xp41) + Prdi k=0 (5

Here, f5), represents the CG coefficient, a crucial parameter that governs the update of the search
direction and significantly affects the convergence behavior of the algorithm. Different choices of S
lead to distinct optimization strategies. Among the most widely used variants are the Fletcher—Reeves
(FR) method and the Polak—Ribiere—Polyak (PRP) method:

FR _ lgk+1ll> LPRP _ Gk+1Vk

KT Ngellz 27K T gedi?
These approaches play a fundamental role in optimization, as they determine how the search
direction evolves across iterations and thereby influence the efficiency and robustness of the method.
Following the introduction of these classical approaches, researchers developed numerous
enhanced CG methods. Among these advancements, Wei et al. [ 14] introduced a modified version of

the PRP method, referred to as the WYL method. The corresponding formula is:

||gk+1|| T
lgxl k+19k

gll®

2_
gV _ lgre+ll
i% =

In comparison to the PRP method, the WYL approach incorporates an additional ratio involving
lgr+all

gl
convergence performance by enabling adaptive modifications to the step size, particularly in

optimization problems that involve dimensions which vary partially. Nevertheless, refining the WYL
method also escalates computational complexity, ultimately resulting in slower convergence rates.
Jiang et al. [9] introduced the JPRP method, whose CG coefficient combines features of both the PRP
and WYL methods, and is defined by the following formula:

the covariance coefficients and the gradient paradigms, expressed as . This adjustment enhances

2_lgk+all 7
™ foull 9k+29%

max {u|gF, 1 di|IlgxllZ}

JPRP [lgr+1l

K =

Under the condition that p> 1 and applying a standard Wolfe line search, the author demonstrated
the global convergence of this method. Building on the inspiration from the JPRP method, Hu et al.
[7] introduced the NPPR methods. These methods were designed to improve the efficiency of CG
techniques by refining the updates for search directions and enhancing convergence behavior. The
CG coefficient for this method is:

g T
||gk+1||2—” k+1“9k+19k

NPRP llgll
= > 1.
Br max {ull g+ lldillllgrll?}’ H

Dai and Wen [3] proposed modified NPRP method as follows:
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lgg+l
llgkll

1|9 oqdr|+llgrll?

I gr+all2— |9k+19k]

BR™" = , u>1

In recent years, a variety of new CG formulas have been proposed to enhance computational
efficiency and improve convergence rates. A major challenge with classical CG methods lies in their
inconsistent performance: while some variants may converge slowly or even stagnate on certain
unconstrained optimization problems, others achieve faster progress at the expense of overall
convergence reliability. To address these issues, researchers have sought to refine CG strategies with
the goal of achieving a more balanced trade-off between computational speed, convergence stability,
and practical effectiveness.

In the following sections, we will review additional modifications; for example, Ibrahim and
Salihu [8] introduced a new modification of the CG method, referred to as the IMRMIL method. The
proposed coefficient is defined as:

T T
IMRMIL __ Ik+1Yk — gk+1dk
K - 2
Il il

The proposed IMRMIL coefficient fulfills both the sufficient descent condition and the
convergence criterion. Consequently, the generated search directions guarantee descent without
additional restrictions, and the global convergence of the algorithm is established under standard
Wolfe line search assumptions.

Mrad and Fakhari [11] proposed a modified spectral CG algorithm for unconstrained optimization
problems. The CG coefficient is defined as:

(0 gl’l;+1dk <c
gzdk
g;f dy
KF =< max(0,min(BE, BLP)) o <=
gid
s ||9Tk+1||2 g£;1dk > ¢,
Ir+19k di Yk

This algorithm employs Wolfe inexact line search conditions to determine the step length at each
iteration and adaptively selects the appropriate CG coefficient. Numerical experiments on a variety
of unconstrained functions demonstrated that the method is highly stable regardless of the starting
point, and in several cases achieves faster convergence and higher efficiency compared to classical
CG methods.

Building upon prior studies, this paper aims to introduce a simpler CG method that ensures the
descent condition and convergence. The previous methods remain important and effective, but our
approach provides a more direct formulation with clear convergence properties.

This paper presents a newly modified nonlinear CG method, developed by extending the
approaches of Dai and Wen [3] and Hu et al. [7]. The proposed formula and algorithm are described
in detail in Section 2. Section 3 establishes the global convergence of the method under Wolfe line
search conditions, with a rigorous proof provided. Section 4 reports extensive numerical experiments,
highlighting the performance of the proposed method in comparison with several classical and
modern CG variants.
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2. New spectral CG

Building upon the concepts introduced by the NPRP and DPRP methods, this paper proposes a
novel approach, referred to as the MFR method. In this formulation, the denominator of the CG
coefficient is retained from the NPRP method, while the numerator is slightly modified by
incorporating elements of the Fletcher—Reeves (FR) strategy. In this way, the proposed formula
integrates the strengths of both NPRP and FR approaches. The detailed expression of the MFR
coefficient is given by:

T
, d
lgieall? = min (rlZettdel o ey
BMFR — I Gre+a [l dicl

max {ull| g+ llldicll, l gicl1?}

> 2 (6)

6 = =l grll?
~lgrsa 2 +BK R gk 1 di’
MFR )
A1 = —0Gk+1 +0Bg  "dy.
It is worth noting that the MFR method establishes a sufficient descent condition
Gir1dicsr = —graall?, (8)

which serves as a necessary step for proving convergence, expressed in the form of an equality.
Here is the detailed algorithm:

Algorithm 1: MFR Method
Step 1: Initialize with a starting point x,€R", set € > 0 and constants 0 < § < %, 6<o<1.

Assign initial values for variables as dg = —gg, k =0 .

Step 2: Check the stopping criterion. If || g, || < & terminate the algorithm. Otherwise, proceed
to Step 3.

Step 3: Compute S¥FR using Equation (6) and calculate d,, based on Equation (7).

Step 4: Determine ajusing the SWP line search method derived from Equations (3) and (4).
Step Step 5: Update the solution as xj . = xj, + apdy, then increment k by 1. Return to Step 2.

3. Global Convergence Analysis

To demonstrate the global convergence of the proposed method, this paper begins by introducing
Assumption 3.1.

Assumption 3.1:

A: The set, represented as K = {xeR"; f(x) < f(xg)} constitutes the level set that is bounded.

B: Within a specified neighborhood D of the set, the function K is continuously differentiable and
adheres to the following inequality: ||g(x) — g(¥)|| < L||lx — y|| where x,y € Dand L > 0.

Lemma 3.1: Given that Assumption 1 holds, consider any CG defined by equations (2) and (5),
where the condition gl dyr1 = —|lgr+1ll? is satisfied. Furthermore, let a;fulfill the SWP line

search criteria specified in equations (3) and (4). As a result, the following inequality holds:
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(9F1dies)? ©)
iz ="

Additionally, substituting equation (8) into inequality (9). leads to:

o lgreall*
—_ < oo
Zic=1 ll |2

This lemma is commonly known as the Zoutendijk condition and is satisfied under the SWP line

search framework, as discussed in [1].

Theorem 3.1: If Assumption 1 holds, fSiis determined by equation (6), and x,is obtained using
Algorithm 1. Moreover, a, satisfies the SWP line search conditions outlined in equations (3) and (4),
with parameters 0 < § < < %, u > 2. Then:

Jim llgll = 0.
—00
Remark 3.1: Consider the case where we define

dicyT sl < m

—YIk+1 otherwise

diyr = {

where a restart is implemented whenever ||d,¥ff || falls below a prespecified large constant M.

Under this condition, it can be observed that the MFR method demonstrates convergence.

4. Numerical experiments

To evaluate the computational performance of the proposed methods, we present several numerical
experiments, comparing MFR, NPRP, DPRP and FR. The implementation of all codes was carried out in
MATLAB, tested on 96 functions from the CUTEr [5] test suite, as listed in Tables 1-6. Comprehensive
details regarding the software and hardware specifications are available in [10]. The approximate Wolfe
conditions outlined in [6,14] were utilized in our implementations, maintaining the same parameter values
(specifically, 8 = 0.1 and 6 = 0.9). The algorithms were terminated based on the same criteria detailed in
[2]. To evaluate the quality of the results, we relied on the performance profile described in [4], using the
notation from [2]. This assessment was conducted on TNFGE (total number of function and gradient
evaluations, as defined in [6,14]) and CPUT (CPU time measured in seconds). The improvement can be
attributed to enforcing the sufficient descent condition in equality form, which stabilizes the search
directions and accelerates convergence. These findings demonstrate that the proposed spectral
modification not only ensures theoretical convergence but also delivers practical computational
advantages, making it a promising alternative for large-scale unconstrained optimization problems.

Figure 1 illustrates the performance profile with respect to TNFGE across the tested CUTETr functions.
It can be observed that the proposed MFR method consistently outperforms NPRP, DPRP, and FR,
achieving lower function and gradient evaluations in the majority of test cases. This indicates that
enforcing the sufficient descent condition in equality form contributes to improved computational
efficiency and stability of the algorithm. The outputs of the numerical experiments are reported in
Tables 1-3, which summarize the performance of the proposed MFR method compared to NPRP,
DPRP, and FR.

Figure 2 illustrates the comparative performance profiles of the tested algorithms with respect to CPU
time, clearly showing that NPRP achieves the fastest execution, followed by MFR, DPRP, and FR. These
trends confirm the efficiency of the proposed spectral modification relative to classical methods. The
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detailed numerical outputs supporting these observations are reported in Tables 4—6, where the values of
TNFGE and CPUT are presented for all CUTEr test functions. The tabulated results provide further
evidence of the stability and competitiveness of MFR compared to the other CG methods.
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Figure 1: Outputs of comparisons by the approximate Wolfe line search with respect to TNFGE
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Figure 2: Outputs of comparisons by the approximate Wolfe line search with respect to CPUT
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Table 1: Result based on TNFGE-Series 1
Dimention MFR

Function
ARGLINA
ARWHEAD
BDEXP
BDQRTIC
BIGGSB1
BOX
BQPGABIM
BQPGASIM
BQPGAUSS
BRATU1D
BROWNAL
BROYDN7D
BRYBND
CHAINWOO
CHENHARK
CHNROSNB
CLPLATEB
COSINE
CRAGGLVY
CURLY10
CURLY20
CURLY30
DECONVU
DIXMAANA
DIXMAANB
DIXMAANC
DIXMAAND
DIXMAANE
DIXMAANF
DIXMAANG
DIXMAANH
DIXMAANI

200
5000
5000
5000
5000

10000
50
50

2003
5003

200
5000
5000
4000
5000

50
5041
10000
5000
10000
10000
10000
63
3000
3000
3000
3000
3000
3000
3000
3000
3000

9
27996
39
50015
69998
50004
1622
1622
69998
763
69990
13934
216
50019
69998
57338
50004
123
1920
50050
50046
50042
50004
44

34

44

49
47367
50742
50675
50465
69982

FR

9
36724
49
50015
70041
50004
2335
2335
70033
693
70859
14801
411
54452
70025
50004
50015
115
3339
50094
50046
50046
50464
49

49

59

69
69982
69156
69228
69336
69968

DPRP
9
36724
49
50015
70041
50004
2335
2335
70033
693
70859
14801
411
54452
70025
50004
50015
115
3339
50094
50046
50046
50464
49
49
59
69
69982
69156
69228
69336
69968

NPRP

647
29
13919
69998
4412
3316
3316
69998
994
70030
12746
513
44204
69998
56720
50323
132
1349
50050
50046
50046
50004
403
368
265
257
53801
52585
52427
53192
69958

69
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Table 2: Result based on TNFGE-Series 2

Function
DIXMAANI
DIXMAANK
DIXMAANL
DIXON3DQ
DMN15102
DMN15103
DMN37142
DMN37143
DQDRTIC
DQRTIC
DRCAVILQ
DRCAV2LQ
DRCAV3LQ
EDENSCH
EG2
EIGENALS
EIGENBLS
EIGENCLS
ENGVAL1
ERRINROS
EXTROSNB
FLETCBV2
FLETCBV3
FLETCHBV
FLETCHCR
FMINSRF2
FMINSURF
FREUROTH
GENHUMPS
GENHUMPS
GENROSE
LIARWHD

Dimention MFR

3000
3000
3000
10000
66
99
66
99
5000
5000
4489
4489
4489
2000
1000
2550
2550
2652
5000
50
1000
5000
5000
5000
1000
5625
5625
5000
5000
5000
500
5000

50004
50004
50004
69998
50016
50090
50008
50035
5962
94

4

4

4
152
29
50031
50004
50008
148
50015
50015
50004
49

49
65588
50004
63066
16790
50047
50047
50955
50004

50004
50004
50015
70041
50148
50146
50016
50032
7999
104

4

4

4
264
29
50410
50016
50244
249
50041
50008
124408
45

49
65689
56504
57590
35051
50043
50043
50008
50011

DPRP
50004
50004
50015
70041
50148
50146
50016
50032

7999
104

4

4

4
264
29
50410
50016
50244
249
50041
50008
124408
45

49
65689
56504
57590
35051
50043
50043
50008
50011

NPRP
50004
50822
53112
69998
50209
50337
50109
50272
13746

363
4

4

4
172
29
50053
50036
50105
278
50081
50024
50004
45

45
66804
55786
55242
23532
50148
50148
50012
13499
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Table 3: Result based on TNFGE-Series 3

Function
MOREBV
MSQRTALS
MSQRTBLS
NCB20
NCB20B
NONCVXU2
NONDIA
NONDQUAR
PENALTY1
PENALTY2
PENALTY3
POWELLSG
POWER
QUARTC
SCHMVETT
SENSORS
SINQUAD
SPARSINE
SPARSQUR
SPMSRTLS
SROSENBR
TESTQUAD
TOINTGOR
TOINTGSS
TOINTPSP
TOINTQOR
TQUARTIC
TRIDIA
VARDIM
VAREIGVL
WOODS

5000
1024
1024
5010
5000
5000
5000
5000
1000
200
200
5000
10000
5000
5000
100
5000
5000
10000
4999
5000
5000
50
5000
50
50
5000
5000
200
50
4000

Dimention MFR

69998
50023
50023
50008
68529
50004
50004
50008
7775
9
2512
52008
50004
94
406
135
50045
68922
134
19145
44806
69998
4021
29
4417
586
50004
69998
61
214
28830

FR

70009
50023
50023
51909
44709
50004
50004
50152
31531
9
2495
50004
50015
104
951
223
50045
68832
117
26518
55089
71396
7854
95
6274
1639
50030
70037
79
379
50004

DPRP
70009
50023
50023
51909
44709
50004
50004
50152
31531

9
2495
50004
50015
104
951
223
50045
68832
117
26518
55089
71396
7854
95
6274
1639
50030
70037
79
379
50004

NPRP
69998
50031
50023
50055
13872
50004
50311
50146

2293
9
1733
54854
12867
363
194
186
34029
67764
467
25980
3139
69998
4945
29
1393
1251
50157
69998
69
329
36777

71
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Table 4: Result based on CPUT-Series 1

Function
ARGLINA
ARWHEAD
BDEXP
BDQRTIC
BIGGSB1
BOX
BQPGABIM
BQPGASIM
BQPGAUSS
BRATU1D
BROWNAL
BROYDN7D
BRYBND
CHAINWOO
CHENHARK
CHNROSNB
CLPLATEB
COSINE
CRAGGLVY
CURLY10
CURLY20
CURLY30
DECONVU
DIXMAANA
DIXMAANB
DIXMAANC
DIXMAAND
DIXMAANE
DIXMAANF
DIXMAANG
DIXMAANH
DIXMAANI

Dimention
200
5000
5000
5000
5000
10000
50
50
2003
5003
200
5000
5000
4000
5000
50
5041
10000
5000
10000
10000
10000
63
3000
3000
3000
3000
3000
3000
3000
3000
3000

MFR
8.82E-02
4.80E+00
8.55E-02
1.03E+01
6.97E+00
2.27E+01
9.54E-02
1.13E-01
6.76E+00
7.11E+00
5.24E+00
9.41E+00
1.81E-01
8.57E+00
6.41E+00
2.20E+00
1.15E+01
1.76E-01
1.14E+00
1.51E+01
2.05E+01
2.69E+01
2.21E+00
6.98E-02
6.33E-02
6.20E-02
7.25E-02
6.94E+01
3.60E+01
3.34E+01
3.66E+01
5.98E+01

FR
1.63E-01
1.47E+01
1.34E-01
2.42E+01
2.48E+01
5.06E+01
1.82E-01
1.23E-01
5.69E+00
5.54E+00
1.21E+01
2.30E+01
4.00E-01
2.05E+01
1.39E+01
1.83E+00
2.60E+01
2.74E-01
1.73E+00
1.34E+01
1.86E+01
2.53E+01
1.99E+00
8.48E-02
1.07E-01
9.40E-02
9.56E-02
1.62E+02
4.94E+01
1.65E+02
6.04E+01
5.28E+01

DPRP
1.26E-01
1.48E+01
1.33E-01
2.44E+01
2.47E+01
5.05E+01
1.20E-01
1.26E-01
6.20E+00
5.51E+00
1.22E+01
2.31E+01
3.88E-01
2.09E+01
1.53E+01
1.81E+00
2.67E+01
2.84E-01
1.69E+00
1.34E+01
1.84E+01
2.56E+01
1.98E+00
8.47E-02
9.24E-02
8.88E-02
1.06E-01
1.63E+02
5.37E+01
1.38E+02
6.01E+01
5.27E+01

NPRP
1.48E-01
4.72E-01
1.20E-01

6.30E+00
1.93E+01
4.29E+00
2.00E-01
2.06E-01
5.60E+00
5.65E+00
1.17E+01
1.97E+01
4.53E-01
1.57E+01
1.38E+01
1.72E+00
2.56E+01
2.90E-01
7.14E-01
1.29E+01
1.87E+01
2.57E+01
1.84E+00
1.92E-01
1.73E-01
1.65E-01
1.37E-01
9.00E+01
4.70E+01
3.84E+01
3.71E+01
6.41E+01
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Table 5: Result based on CPUT-Series 2

Function Dimention MFR FR
DIXMAANJ 3000 4.45E+01 5.32E+01
DIXMAANK 3000 4.48E+01 4.64E+01
DIXMAANL 3000 4.30E+01 5.41E+01
DIXON3DQ, 10000 9.97E+00 9.46E+00
DMN15102 66 9.43E+01 1.95E+02
DMN15103 99 1.15E+02 1.14E+02
DMN37142 66 9.70E+01 9.52E+01
DMN37143 99 1.14E+02 1.13E+02
DQDRTIC 5000 9.28E-01 1.10E+00
DQRTIC 5000 8.03E-02 5.05E-02
DRCAV1LQ 4489 8.55E-02 8.91E-02
DRCAV2LQ 4489 1.05E-01 9.74E-02
DRCAVILQ 4489 1.18E-01 9.66E-02
EDENSCH 2000 8.04E-02 9.07E-02
EG2 1000 7.77E-02 4.01E-02
EIGENALS 2550 6.67E+01 6.82E+01
EIGENBLS 2550 6.66E+01 6.77E+01
EIGENCLS 2652 7.23E+01 7.36E+01
ENGVALL 5000 1.16E-01 1.37E-01
ERRINROS 50 2.10E+00 1.87E+00
EXTROSNB 1000 4.00E+00 3.21E+00
FLETCBV2 5000 1.82E+01 3.87E+01
FLETCBV3 5000 1.19E-01 1.12E-01
FLETCHBV 5000 1.14E-01 1.19E-01
FLETCHCR 1000 3.66E+00 3.34E+00
FMINSRF2 5625 9.41E+00 1.03E+01
FMINSURF 5625 1.17E+01 1.06E+01
FREUROTH 5000 3.96E+00 7.19E+00
GENHUMPS 5000 2.77E+01 2.69E+01
GENHUMPS 5000 2.72E+01 2.66E+01
GENROSE 500 2.78E+00 2.36E+00
LIARWHD 5000 8.48E+00 8.06E+00

DPRP
5.35E+01
4.64E+01
5.44E+01
9.65E+00
1.93E+02
1.26E+02
9.51E+01
1.13E+02
1.09E+00
7.38E-02
8.66E-02
8.69E-02
9.16E-02
9.16E-02
3.74E-02
6.81E+01
6.76E+01
7.36E+01
1.24E-01
1.83E+00
3.30E+00
3.88E+01
1.19E-01
1.10E-01
3.33E+00
1.03E+01
1.08E+01
7.11E+00
2.69E+01
2.61E+01
2.38E+00
7.98E+00

NPRP
3.92E+01
4.12E+01
4.25E+01
9.65E+00
1.92E+02
1.16E+02
9.48E+01
1.22E+02
1.77E+00
9.26E-02
9.64E-02
8.90E-02
1.08E-01
7.50E-02
4.20E-02
6.75E+01
6.74E+01
7.41E+01
1.28E-01
1.74E+00
3.17E+00
1.75E+01
1.17E-01
1.08E-01
3.20E+00
9.71E+00
1.00E+01
4.89E+00
2.83E+01
2.77E+01
2.22E+00
1.90E+00

73


http://iors.ir/journal/article-1-861-en.html

[ Downloaded from iors.ir on 2026-02-06 ]

74 Mariya Toofan and Gohar Shakouri

Table 6: Result based on CPUT-Series 3
Function Dimention MFR FR DPRP NPRP
MOREBV 5000 9.12E+00 7.43E+00 7.47E+00 7.17E+00
MSQRTALS 1024 1.48E+01 3.11E+01 3.13E+01 3.07E+01
MSQRTBLS 1024 1.50E+01 3.12E+01 3.14E+01 2.98E+01
NCB20 5010 2.64E+01 6.20E+01 6.21E+01 5.86E+01
NCB20B 5000 3.47E+01 5.17E+01 5.13E+01 1.58E+01
NONCVXU2 5000 1.73E+01 3.83E+01 3.90E+01 3.86E+01
NONDIA 5000 7.66E+00 7.33E+00 7.42E+00 7.14E+00
NONDQUAR 5000 5.71E+00 1.26E+01 1.22E+01 1.21E+01
PENALTY1 1000 5.70E-01 1.72E+00 1.66E+00 1.41E-01
PENALTY2 200 2.94E-02 2.46E-02 1.68E-02 1.08E-02
PENALTY3 200 3.36E+00 3.34E+00 3.36E+00 2.72E+00
POWELLSG 5000 5.68E+00 1.25E+01 1.25E+01 1.17E+01
POWER 10000 6.65E+01 1.13E+02 1.13E+02 4.30E+00
QUARTC 5000 1.04E-01 6.01E-02 6.73E-02 1.05E-01
SCHMVETT 5000 4.20E-01 7.78E-01 7.45E-01 2.07E-01
SENSORS 100 3.78E-01 8.05E-01 7.39E-01 6.77E-01
SINQUAD 5000 1.76E+01 4.08E+01 4.08E+01 2.67E+01
SPARSINE 5000 2.36E+01 5.51E+01 5.48E+01 5.28E+01
SPARSQUR 10000 2.10E-01 1.58E-01 1.55E-01 3.09E-01
SPMSRTLS 4999 4,33E+00 5.48E+00 5.42E+00 5.13E+00
SROSENBR 5000 4.91E+00 5.83E+00 5.82E+00 4.01E-01
TESTQUAD 5000 1.66E+01 8.36E+01 8.42E+01 2.93E+01
TOINTGOR 50 2.69E-01 6.24E-01 6.64E-01 4.04E-01
TOINTGSS 5000 8.56E-02 1.11E-01 1.12E-01 7.10E-02
TOINTPSP 50 2.05E-01 4.92E-01 4.52E-01 1.34E-01
TOINTQOR 50 3.95E-02 8.95E-02 9.19E-02 9.79E-02
TQUARTIC 5000 7.23E+00 1.53E+01 1.45E+01 1.43E+01
TRIDIA 5000 2.06E+01 4.77E+01 4.76E+01 2.56E+01
VARDIM 200 2.56E-02 2.23E-02 3.38E-02 3.01E-02
VAREIGVL 50 4.77E-02 7.26E-02 4.97E-02 3.84E-02
WOODS 4000 3.34E+00 5.53E+00 5.58E+00 3.53E+00

5. Conclusion

In this study, we introduced a spectral modification of the CG method (MFR) and demonstrated
its effectiveness through extensive numerical experiments. The proposed algorithm guarantees both
the sufficient descent condition and global convergence under Wolfe line search assumptions.
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Numerical results on 96 CUTEr test functions confirmed that MFR achieves competitive efficiency
compared to NPRP, DPRP, and FR, while maintaining theoretical robustness. These findings suggest
that enforcing the descent condition in equality form can provide computational advantages in large-
scale unconstrained optimization. Despite these promising results, the study is limited to
unconstrained optimization problems and relies on benchmark test functions, which may not fully
capture the complexity of real-world applications. Future research could extend the proposed
approach to constrained optimization, investigate its performance on large-scale industrial problems,
and explore applications in areas such as image restoration and machine learning. These directions
would further validate the practical relevance and broaden the impact of the proposed method.

References

[1] Alhawarat, A., Salleh, Z., Mamat, M., and Rivaie, M. (2017), An efficient modified Polak—
Ribiére-Polyak conjugate gradient method with global convergence properties,
Optimization Methods and Software, 32(6), 1299-1312.

[2] Aminifard, Z., and Babaie—Kafaki, S., (2019), An optimal parameter choice for the Dai—
Liao family of conjugate gradient methods by avoiding a direction of the maximum
magnification by the search direction matrix, 40OR, 17:317-330.

[3] Dai, Z., & Wen, F. (2012), Another improved Wei—Yao—Liu nonlinear conjugate gradient
method with sufficient descent property, Applied Mathematics and Computation, 218(14),
7421-7430.

[4] Dolan, E.D. and Moré¢, J.J., (2002), Benchmarking optimization software with performance
profiles, Math. Programming, 91(2, Ser.A):201-213.

[51 Gould, N.LM., Orban, D. and Toint, Ph.L. (2003) CUTEY: a constrained and unconstrained
testing environment, revisited, ACM Trans. Math. Software, 29(4):373-394.

[6] Hager, W.W., and Zhang, H., (2006), Algorithm 851: CG-Descent, a conjugate gradient
method with guaranteed descent, ACM Trans. Math. Software, 32(1):113—-137.

[71 Hu, O., Zhang, H., and Chen, Y., (2022), Global convergence of a descent PRP type
conjugate gradient method for nonconvex optimization, Applied Numerical Mathematics,
173, 38-50.

[8] Ibrahim, S. M., & Salihu, N. (2025), Two sufficient descent spectral conjugate gradient algorithms
for unconstrained optimization with application, Optimization and Engineering, 26(1), 655-679.

[9] Jiang, X. Z., Jin Bao, J. I. A. N., and Dong, G., (2014), Two Conjugate Gradient Methods
with Sufficient Descent Property, Acta Mathematica Sinica, Chinese Series, 57(2), 365-
372.

[10] Mirhoseini, N., Babaie—Kafaki, S., and Aminifard, Z., (2022), A nonmonotone scaled
Fletcher—Reeves conjugate gradient method with application in image reconstruction, Bull.
Malays. Math. Sci. Soc., 45:2885-2904.

[11] Mrad, H., & Fakhari, S. M. (2024), Optimization of unconstrained problems using a developed
algorithm of spectral conjugate gradient method calculation, Mathematics and Computers in
Simulation, 215, 282-290.

[12] Ranjbar, M., & Ashrafi, A. (2025). A modified hybrid three-term conjugate gradient method and its
applications in image restoration. Iranian Journal of Operations Research, 16(1), 1-17.

[13] Toofan, M., & Babaie-Kafaki, S. (2026). Hybrid Conjugate Gradient Methods Based on an Extended
Least-Squares Model: M. Toofan, S. Babaie-Kafaki. Vietnam Journal of Mathematics, 54(1), 205-
213.

[14] Wei, Z., Yao, S., and Liu, L., (2006), The convergence properties of some new conjugate
gradient methods, Applied Mathematics and Computation 183(2), 150.


http://iors.ir/journal/article-1-861-en.html
http://www.tcpdf.org

