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unconstrained optimization problems 
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The conjugate gradient (CG) method stands out as one of the most rapidly growing and effective approaches 

for addressing unconstrained optimization problems. In recent years, significant efforts have been dedicated 

to adapting the CG for tackling nonlinear optimization challenges. This research article introduces a new 

modification of the Fletcher–Reeves (FR) conjugate gradient method. The proposed method is characterized 

by its sufficient descent property, and its global convergence has been established under specific 

assumptions. Numerical experiments conducted on 96 functions from the CUTEr collection demonstrate the 

potential and effectiveness of the proposed methods. The computational results show that the proposed MFR 

method achieves better performance in terms of function and gradient evaluations as well as CPU time 

compared to DPRP and FR, while remaining competitive with NPRP. These findings confirm that enforcing 

the sufficient descent condition in equality form can provide both theoretical robustness and practical 

efficiency. 
 

Keywords: Nonlinear optimization; line search; spectral conjugate gradient method; sufficient 
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1. Introduction 
 

The CG method is a well-established class of algorithms widely used for solving large-scale 

optimization problems. Its popularity is mainly due to the simplicity of the iterative scheme, the fast 

convergence properties, and the low memory requirements. In this study, we consider the following 

unconstrained optimization problem: 

min
𝑥𝜖ℝ𝑛

𝑓(𝑥). (1) 

 

Let 𝑓(𝑥): ℝ𝑛 → ℝ denote the differentiable objective function, where 𝑥𝜖ℝ𝑛 represents an 

arbitrary n-dimensional vector. For convenience, we define 𝑔𝑘 = ∇𝑓(𝑥𝑘) as the gradient at iteration 

k, and  𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 as the difference between successive gradients. Owing to its simple iterative 

structure, low memory requirements, and remarkable numerical efficiency, the CG method is 

considered one of the most effective algorithms for solving unconstrained optimization problems. 

The iterative scheme of the CG method can be formulated as: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. (2) 

 

The positive step size 𝛼𝑘 is determined by a line search procedure. In this paper, we employ the 

strong Wolfe–Powell (SWP) line search, which requires 𝛼𝑘 to satisfy the following two inequalities: 
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𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘  𝑔(𝑥𝑘)
𝑇𝑑𝑘 , (3) 

 

|𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘| ≤ −𝜎𝑔(𝑥𝑘)

𝑇𝑑𝑘. (4) 

 

Where 𝛿 and 𝜎 are positive constants such that 0 < 𝛿 < 𝜎< 1. In formula (2), the term 𝑑𝑘 denotes 

the k-th search direction, also referred to as the descent direction, which is initialized as 𝑑0 = −𝑔0.  
The recursive relation is given by: 

 

𝑑𝑘+1 = −𝑔(𝑥𝑘+1) + 𝛽𝑘𝑑𝑘          𝑘 ≥ 0 (5) 

 

Here, 𝛽𝑘 represents the CG coefficient, a crucial parameter that governs the update of the search 

direction and significantly affects the convergence behavior of the algorithm. Different choices of  𝛽𝑘 

lead to distinct optimization strategies. Among the most widely used variants are the Fletcher–Reeves 

(FR) method and the Polak–Ribiere–Polyak (PRP) method: 

𝛽𝐾
𝐹𝑅 =

‖𝑔𝑘+1‖
2

‖𝑔𝑘‖
2 , 𝛽𝐾

𝑃𝑅𝑃 =
𝑔𝑘+1
𝑇 𝑦𝑘

‖𝑔𝑘‖
2 . 

These approaches play a fundamental role in optimization, as they determine how the search 

direction evolves across iterations and thereby influence the efficiency and robustness of the method. 

Following the introduction of these classical approaches, researchers developed numerous 

enhanced CG methods. Among these advancements, Wei et al. [14] introduced a modified version of 

the PRP method, referred to as the WYL method. The corresponding formula is: 

 

𝛽𝐾
𝑊𝑌𝐿 =

‖𝑔𝑘+1‖
2−

‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘+1
𝑇 𝑔𝑘

‖𝑔𝑘‖
2 . 

 

In comparison to the PRP method, the WYL approach incorporates an additional ratio involving 

the covariance coefficients and the gradient paradigms, expressed as 
‖𝑔𝑘+1‖

‖𝑔𝑘‖
. This adjustment enhances 

convergence performance by enabling adaptive modifications to the step size, particularly in 

optimization problems that involve dimensions which vary partially. Nevertheless, refining the WYL 

method also escalates computational complexity, ultimately resulting in slower convergence rates. 

Jiang et al. [9] introduced the JPRP method, whose CG coefficient combines features of both the PRP 

and WYL methods, and is defined by the following formula: 

 

𝛽𝐾
𝐽𝑃𝑅𝑃 =

‖𝑔𝑘+1‖
2−

‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘+1
𝑇 𝑔𝑘

max {𝜇|𝑔𝑘+1
𝑇 𝑑𝑘|,‖𝑔𝑘‖

2}
. 

 

Under the condition that μ > 1 and applying a standard Wolfe line search, the author demonstrated 

the global convergence of this method. Building on the inspiration from the JPRP method, Hu et al. 

[7] introduced the NPPR methods. These methods were designed to improve the efficiency of CG 

techniques by refining the updates for search directions and enhancing convergence behavior. The 

CG coefficient for this method is: 

 

𝛽𝐾
𝑁𝑃𝑅𝑃 =

‖𝑔𝑘+1‖
2−

‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘+1
𝑇 𝑔𝑘

max {𝜇‖𝑔𝑘+1‖‖𝑑𝑘‖,‖𝑔𝑘‖
2}
,                𝜇 > 1. 

 

Dai and Wen [3] proposed modified NPRP method as follows: 
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𝛽𝐾
𝐷𝑃𝑅𝑃 =

‖𝑔𝑘+1‖
2−

‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1
𝑇 𝑔𝑘|

𝜇|𝑔𝑘+1
𝑇 𝑑𝑘|+‖𝑔𝑘‖

2 ,     𝜇 > 1. 

 

In recent years, a variety of new CG formulas have been proposed to enhance computational 

efficiency and improve convergence rates. A major challenge with classical CG methods lies in their 

inconsistent performance: while some variants may converge slowly or even stagnate on certain 

unconstrained optimization problems, others achieve faster progress at the expense of overall 

convergence reliability. To address these issues, researchers have sought to refine CG strategies with 

the goal of achieving a more balanced trade-off between computational speed, convergence stability, 

and practical effectiveness. 

In the following sections, we will review additional modifications; for example, Ibrahim and 

Salihu [8] introduced a new modification of the CG method, referred to as the IMRMIL method. The 

proposed coefficient is defined as: 

𝛽𝐾
𝐼𝑀𝑅𝑀𝐼𝐿 =

𝑔𝑘+1
𝑇 𝑦𝑘 − 𝑔𝑘+1

𝑇 𝑑𝑘
‖𝑑𝑘‖

2
. 

 

The proposed IMRMIL coefficient fulfills both the sufficient descent condition and the 

convergence criterion. Consequently, the generated search directions guarantee descent without 

additional restrictions, and the global convergence of the algorithm is established under standard 

Wolfe line search assumptions. 

Mrad and Fakhari [11] proposed a modified spectral CG algorithm for unconstrained optimization 

problems. The CG coefficient is defined as: 

𝛽𝐾
𝑀𝐹 =

{
 
 
 

 
 
 0                                                                   

𝑔𝑘+1
𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑑𝑘

≤ 𝑐1 

max(0,𝑚𝑖𝑛(𝛽𝐾
𝐿𝑆, 𝛽𝐾

𝐶𝐷))                 𝑐1 <
𝑔𝑘+1
𝑇 𝑑𝑘

𝑔𝑘
𝑇𝑑𝑘

𝛿
‖𝑔𝑘+1‖

2

𝑔𝑘+1
𝑇 𝑑𝑘

                                                 
𝑔𝑘+1
𝑇 𝑑𝑘

𝑑𝑘
𝑇𝑦𝑘

≥ 𝑐2

 

 

This algorithm employs Wolfe inexact line search conditions to determine the step length at each 

iteration and adaptively selects the appropriate CG coefficient. Numerical experiments on a variety 

of unconstrained functions demonstrated that the method is highly stable regardless of the starting 

point, and in several cases achieves faster convergence and higher efficiency compared to classical 

CG methods. 

Building upon prior studies, this paper aims to introduce a simpler CG method that ensures the 

descent condition and convergence. The previous methods remain important and effective, but our 

approach provides a more direct formulation with clear convergence properties. 

This paper presents a newly modified nonlinear CG method, developed by extending the 

approaches of Dai and Wen [3] and Hu et al. [7]. The proposed formula and algorithm are described 

in detail in Section 2. Section 3 establishes the global convergence of the method under Wolfe line 

search conditions, with a rigorous proof provided. Section 4 reports extensive numerical experiments, 

highlighting the performance of the proposed method in comparison with several classical and 

modern CG variants. 
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2. New spectral CG  

Building upon the concepts introduced by the NPRP and DPRP methods, this paper proposes a 

novel approach, referred to as the MFR method. In this formulation, the denominator of the CG 

coefficient is retained from the NPRP method, while the numerator is slightly modified by 

incorporating elements of the Fletcher–Reeves (FR) strategy. In this way, the proposed formula 

integrates the strengths of both NPRP and FR approaches. The detailed expression of the MFR 

coefficient is given by: 

𝛽𝐾
𝑀𝐹𝑅 =

‖𝑔𝑘+1‖
2 −min (

|𝑔𝑘+1
𝑇 𝑑𝑘|

‖𝑔𝑘+1‖‖𝑑𝑘‖
, ‖𝑔𝑘+1‖

2)

max {𝜇‖𝑔𝑘+1‖‖𝑑𝑘‖, ‖𝑔𝑘‖
2}

, 𝜇 > 2 

 

 

 

(6) 

 

𝜃 =
−‖𝑔𝑘+1‖

2

−‖𝑔𝑘+1‖
2+𝛽𝐾

𝑀𝐹𝑅𝑔𝑘+1
𝑇 𝑑𝑘

, 

 

𝑑𝑘+1 = −𝜃𝑔𝑘+1 + 𝜃𝛽𝐾
𝑀𝐹𝑅𝑑𝑘. 

 

 

(7) 

 

It is worth noting that the MFR method establishes a sufficient descent condition 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2, 

 

(8) 

 

which serves as a necessary step for proving convergence, expressed in the form of an equality. 

Here is the detailed algorithm: 

 

Algorithm 1: MFR Method 

Step 1: Initialize with a starting point 𝑥0𝜖ℝ
𝑛, set 𝜺 > 𝟎 and constants 𝟎 < 𝜹 <

𝟏

𝟐
, 𝜹 < 𝝈 < 𝟏. 

Assign initial values for variables as 𝒅𝟎 = −𝒈𝟎, 𝑘 = 0 . 

Step 2: Check the stopping criterion. If ‖𝒈𝒌‖ < 𝜺 terminate the algorithm. Otherwise, proceed 

to Step 3.  

Step 3: Compute 𝛽𝐾
𝑀𝐹𝑅 using Equation (6) and calculate 𝒅𝒌 based on Equation (7).  

Step 4: Determine 𝜶𝒌using the SWP line search method derived from Equations (3) and (4). 

Step Step 5: Update the solution as 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, then increment k by 1. Return to Step 2. 

 

3.  Global Convergence Analysis 
To demonstrate the global convergence of the proposed method, this paper begins by introducing 

Assumption 3.1.  

Assumption 3.1:  

A: The set, represented as 𝐾 = {𝑥𝜖ℝ𝑛; 𝑓(𝑥) ≤ 𝑓(𝑥0)} constitutes the level set that is bounded.  

B: Within a specified neighborhood 𝐷 of the set, the function 𝐾  is continuously differentiable and 

adheres to the following inequality: ‖𝒈(𝒙) −  𝑔(𝑦)‖  ≤  𝑳‖𝑥 −  𝑦‖ where 𝑥, 𝒚 ∈ 𝐷 and 𝑳 >  0.  

 

Lemma 3.1: Given that Assumption 1 holds, consider any CG defined by equations (2) and (5), 

where the condition 𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 is satisfied. Furthermore, let 𝛼𝑘fulfill the SWP line 

search criteria specified in equations (3) and (4). As a result, the following inequality holds: 
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∑
(𝑔𝑘+1

𝑇 𝑑𝑘+1)
2

‖𝑑𝑘‖
2

∞

𝑘=1

< ∞ 
(9) 

Additionally, substituting equation (8) into inequality (9). leads to: 

∑
‖𝑔𝑘+1‖

4

‖𝑑𝑘‖
2

∞
𝑘=1 < ∞. 

This lemma is commonly known as the Zoutendijk condition and is satisfied under the SWP line 

search framework, as discussed in [1].  

 

Theorem 3.1: If Assumption 1 holds, 𝛽𝑘is determined by equation (6), and 𝑥𝑘is obtained using 

Algorithm 1. Moreover, 𝛼𝑘 satisfies the SWP line search conditions outlined in equations (3) and (4), 

with parameters 𝟎 < 𝜹 < 𝝈 <
𝟏

𝟐
, 𝝁 > 𝟐. Then: 

 

lim
𝑘→∞

‖𝑔𝑘‖ = 0. 

 

Remark 3.1: Consider the case where we define  

 

𝒅𝒌+𝟏  =  {
𝑑𝑘+1
𝑀𝐹𝑅                  ‖𝑑𝑘+1

𝑀𝐹𝑅‖ < 𝑀 
−𝑔𝑘+1                                    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆        

  

 

where a restart is implemented whenever ‖𝑑𝑘+1
𝑀𝐹𝑅‖ falls below a prespecified large constant M. 

Under this condition, it can be observed that the MFR method demonstrates convergence. 

4. Numerical experiments 
 
To evaluate the computational performance of the proposed methods, we present several numerical 

experiments, comparing MFR, NPRP, DPRP and FR. The implementation of all codes was carried out in 

MATLAB, tested on 96 functions from the CUTEr [5] test suite, as listed in Tables 1-6. Comprehensive 

details regarding the software and hardware specifications are available in [10]. The approximate Wolfe 

conditions outlined in [6,14] were utilized in our implementations, maintaining the same parameter values 

(specifically, δ = 0.1 and σ = 0.9). The algorithms were terminated based on the same criteria detailed in 

[2]. To evaluate the quality of the results, we relied on the performance profile described in [4], using the 

notation from [2]. This assessment was conducted on TNFGE (total number of function and gradient 

evaluations, as defined in [6,14]) and CPUT (CPU time measured in seconds). The improvement can be 

attributed to enforcing the sufficient descent condition in equality form, which stabilizes the search 

directions and accelerates convergence. These findings demonstrate that the proposed spectral 

modification not only ensures theoretical convergence but also delivers practical computational 

advantages, making it a promising alternative for large-scale unconstrained optimization problems. 

Figure 1 illustrates the performance profile with respect to TNFGE across the tested CUTEr functions. 

It can be observed that the proposed MFR method consistently outperforms NPRP, DPRP, and FR, 

achieving lower function and gradient evaluations in the majority of test cases. This indicates that 

enforcing the sufficient descent condition in equality form contributes to improved computational 

efficiency and stability of the algorithm.   The outputs of the numerical experiments are reported in 

Tables 1–3, which summarize the performance of the proposed MFR method compared to NPRP, 

DPRP, and FR. 
Figure 2 illustrates the comparative performance profiles of the tested algorithms with respect to CPU 

time, clearly showing that NPRP achieves the fastest execution, followed by MFR, DPRP, and FR. These 

trends confirm the efficiency of the proposed spectral modification relative to classical methods. The 
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detailed numerical outputs supporting these observations are reported in Tables 4–6, where the values of 

TNFGE and CPUT are presented for all CUTEr test functions. The tabulated results provide further 

evidence of the stability and competitiveness of MFR compared to the other CG methods. 

 

 

 
Figure 1: Outputs of comparisons by the approximate Wolfe line search with respect to TNFGE 

 

 

 
Figure 2: Outputs of comparisons by the approximate Wolfe line search with respect to CPUT 
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Table 1: Result based on TNFGE-Series 1 

 
 

 

 

 

 

 

Function Dimention MFR FR DPRP NPRP

 ARGLINA 200 9 9 9 9

 ARWHEAD 5000 27996 36724 36724 647

 BDEXP 5000 39 49 49 29

 BDQRTIC 5000 50015 50015 50015 13919

 BIGGSB1 5000 69998 70041 70041 69998

 BOX 10000 50004 50004 50004 4412

 BQPGABIM 50 1622 2335 2335 3316

 BQPGASIM 50 1622 2335 2335 3316

 BQPGAUSS 2003 69998 70033 70033 69998

 BRATU1D 5003 763 693 693 994

 BROWNAL 200 69990 70859 70859 70030

 BROYDN7D 5000 13934 14801 14801 12746

 BRYBND 5000 216 411 411 513

 CHAINWOO 4000 50019 54452 54452 44204

 CHENHARK 5000 69998 70025 70025 69998

 CHNROSNB 50 57338 50004 50004 56720

 CLPLATEB 5041 50004 50015 50015 50323

 COSINE 10000 123 115 115 132

 CRAGGLVY 5000 1920 3339 3339 1349

 CURLY10 10000 50050 50094 50094 50050

 CURLY20 10000 50046 50046 50046 50046

 CURLY30 10000 50042 50046 50046 50046

 DECONVU 63 50004 50464 50464 50004

 DIXMAANA 3000 44 49 49 403

 DIXMAANB 3000 34 49 49 368

 DIXMAANC 3000 44 59 59 265

 DIXMAAND 3000 49 69 69 257

 DIXMAANE 3000 47367 69982 69982 53801

 DIXMAANF 3000 50742 69156 69156 52585

 DIXMAANG 3000 50675 69228 69228 52427

 DIXMAANH 3000 50465 69336 69336 53192

 DIXMAANI 3000 69982 69968 69968 69958
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Table 2: Result based on TNFGE-Series 2 
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Table 3: Result based on TNFGE-Series 3 

 
 

 

 

 

 

 

 

Function Dimention MFR FR DPRP NPRP

 MOREBV 5000 69998 70009 70009 69998

 MSQRTALS 1024 50023 50023 50023 50031

 MSQRTBLS 1024 50023 50023 50023 50023

 NCB20 5010 50008 51909 51909 50055

 NCB20B 5000 68529 44709 44709 13872

 NONCVXU2 5000 50004 50004 50004 50004

 NONDIA 5000 50004 50004 50004 50311

 NONDQUAR 5000 50008 50152 50152 50146

 PENALTY1 1000 7775 31531 31531 2293

 PENALTY2 200 9 9 9 9

 PENALTY3 200 2512 2495 2495 1733

 POWELLSG 5000 52008 50004 50004 54854

 POWER 10000 50004 50015 50015 12867

 QUARTC 5000 94 104 104 363

 SCHMVETT 5000 406 951 951 194

 SENSORS 100 135 223 223 186

 SINQUAD 5000 50045 50045 50045 34029

 SPARSINE 5000 68922 68832 68832 67764

 SPARSQUR 10000 134 117 117 467

 SPMSRTLS 4999 19145 26518 26518 25980

 SROSENBR 5000 44806 55089 55089 3139

 TESTQUAD 5000 69998 71396 71396 69998

 TOINTGOR 50 4021 7854 7854 4945

 TOINTGSS 5000 29 95 95 29

 TOINTPSP 50 4417 6274 6274 1393

 TOINTQOR 50 586 1639 1639 1251

 TQUARTIC 5000 50004 50030 50030 50157

 TRIDIA 5000 69998 70037 70037 69998

 VARDIM 200 61 79 79 69

 VAREIGVL 50 214 379 379 329

 WOODS 4000 28830 50004 50004 36777
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Table 4: Result based on CPUT-Series 1 
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Table 5: Result based on CPUT-Series 2 
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Table 6: Result based on CPUT-Series 3 

 
 

5. Conclusion 

In this study, we introduced a spectral modification of the CG method (MFR) and demonstrated 

its effectiveness through extensive numerical experiments. The proposed algorithm guarantees both 

the sufficient descent condition and global convergence under Wolfe line search assumptions. 
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Numerical results on 96 CUTEr test functions confirmed that MFR achieves competitive efficiency 

compared to NPRP, DPRP, and FR, while maintaining theoretical robustness. These findings suggest 

that enforcing the descent condition in equality form can provide computational advantages in large-

scale unconstrained optimization. Despite these promising results, the study is limited to 

unconstrained optimization problems and relies on benchmark test functions, which may not fully 

capture the complexity of real-world applications. Future research could extend the proposed 

approach to constrained optimization, investigate its performance on large-scale industrial problems, 

and explore applications in areas such as image restoration and machine learning. These directions 

would further validate the practical relevance and broaden the impact of the proposed method. 

 

 

References  

 
[1] Alhawarat, A., Salleh, Z., Mamat, M., and Rivaie, M. (2017), An efficient modified Polak–

Ribière–Polyak conjugate gradient method with global convergence properties, 

Optimization Methods and Software, 32(6), 1299-1312. 

[2] Aminifard, Z., and Babaie–Kafaki, S., (2019), An optimal parameter choice for the Dai–

Liao family of conjugate gradient methods by avoiding a direction of the maximum 

magnification by the search direction matrix, 4OR, 17:317–330. 

[3] Dai, Z., & Wen, F. (2012), Another improved Wei–Yao–Liu nonlinear conjugate gradient 

method with sufficient descent property, Applied Mathematics and Computation, 218(14), 

7421-7430. 

[4] Dolan, E.D. and Moré, J.J., (2002), Benchmarking optimization software with performance 

profiles, Math. Programming, 91(2, Ser.A):201–213. 
[5] Gould, N.I.M., Orban, D. and Toint, Ph.L. (2003) CUTEr: a constrained and unconstrained 

testing environment, revisited, ACM Trans. Math. Software, 29(4):373–394. 
[6] Hager, W.W., and Zhang, H., (2006), Algorithm 851: CG-Descent, a conjugate gradient 

method with guaranteed descent, ACM Trans. Math. Software, 32(1):113–137. 

[7] Hu, O., Zhang, H., and Chen, Y., (2022), Global convergence of a descent PRP type 

conjugate gradient method for nonconvex optimization, Applied Numerical Mathematics, 

173, 38-50. 

[8] Ibrahim, S. M., & Salihu, N. (2025), Two sufficient descent spectral conjugate gradient algorithms 

for unconstrained optimization with application, Optimization and Engineering, 26(1), 655-679. 

[9] Jiang, X. Z., Jin Bao, J. I. A. N., and Dong, G., (2014), Two Conjugate Gradient Methods 

with Sufficient Descent Property, Acta Mathematica Sinica, Chinese Series, 57(2), 365-

372.  
[10] Mirhoseini, N., Babaie–Kafaki, S., and Aminifard, Z., (2022), A nonmonotone scaled 

Fletcher–Reeves conjugate gradient method with application in image reconstruction, Bull. 

Malays. Math. Sci. Soc., 45:2885–2904. 

[11] Mrad, H., & Fakhari, S. M. (2024), Optimization of unconstrained problems using a developed 

algorithm of spectral conjugate gradient method calculation, Mathematics and Computers in 

Simulation, 215, 282-290. 

[12] Ranjbar, M., & Ashrafi, A. (2025). A modified hybrid three-term conjugate gradient method and its 

applications in image restoration. Iranian Journal of Operations Research, 16(1), 1-17. 

[13] 
 

Toofan, M., & Babaie-Kafaki, S. (2026). Hybrid Conjugate Gradient Methods Based on an Extended 

Least-Squares Model: M. Toofan, S. Babaie-Kafaki. Vietnam Journal of Mathematics, 54(1), 205-

213. 

[14] Wei, Z., Yao, S., and Liu, L., (2006), The convergence properties of some new conjugate 

gradient methods, Applied Mathematics and Computation 183(2), 150. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

06
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            13 / 13

http://iors.ir/journal/article-1-861-en.html
http://www.tcpdf.org

