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Leukemia is a prevalent and life-threatening cancer, where early detection significantly improves 

curability. Microarray data, which enables simultaneous measurement of thousands of gene 

expressions, offers a powerful tool for early diagnosis. However, its high dimensionality and 

inherent noise complicate analysis, necessitating effective gene selection to enhance accuracy and 

reduce computational burden. This paper proposes a hybrid two-stage framework integrating 

feature selection with deep temporal modeling for leukemia subtype classification. First, features 

are filtered using Mutual Information to retain genes with the strongest statistical association to 

disease labels. Second, XGBoost performs embedded feature ranking, ensuring stable selection of 

the most discriminative genes across iterations. Finally, a Temporal Fusion Transformer is 

employed for classification, efficiently capturing complex temporal patterns within the refined gene 

set. Evaluated on a real-world microarray dataset comprising 22,284 genes from 640 samples 

across five leukemia subtypes, the proposed method achieved an accuracy of 99.26%, precision of 

99.3%, and recall of 98.9%. A sensitivity analysis, demonstrating the model's stability to parameter 

variation. The method significantly outperformed baseline models, and state-of-the-art deep 

learning approaches, while successfully identifying a compact set of biologically relevant genes for 

differentiation. 
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1. Introduction 

Cancer has been one of the most important diseases of the present century and a problem for 

human societies. It is also the second leading cause of death after cardiovascular diseases. The World 

Health Organization estimates that more than 10 million people are diagnosed with various types of 

cancer each year. The number of new cases is expected to increase from 10 million to 15 million 

annually by 2020[15]. The human body makes trillions of living cells. Normal cells in the body grow, 

divide into new cells, and die regularly. Cancer is a group of diseases characterized by the 

uncontrolled growth and spread of abnormal cells. If the spread of these cells is not controlled, it will 

lead to death [4]. Uncontrolled growth and invasion of other tissues is what makes a cell a cancer cell. 

The main cause of cancer is gene mutations. Mutations in some genes, especially in genes such as 

tumor suppressor genes, cause the lack of expression of these genes and change the expression of 

some other genes. This change in the pattern of gene expression causes uncontrolled cell division and 

excessive cell proliferation, resulting in the formation of tumors [20,2]. 

The discovery of DNA and genetic strands such as RNA and protein and their role in discovering 

the causes of diseases and treating diseases that have a genetic basis has created a huge revolution in 
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the biological sciences. The fundamental point in the structure of DNA that makes it distinctive and 

unique is its sequence. Decoding and finding the DNA sequence leads to decoding the message stored 

in DNA. [13, 22,12]. 

Microarrays allow the simultaneous measurement of the expression of thousands of genes under 

different conditions. These tools allow researchers to monitor and analyze changes in gene expression 

over time or under different biological conditions (such as exposure to a drug or environmental stress). 

Gene expression is the process by which the information contained in a gene (a piece of DNA) is 

translated into an active product such as a protein. This process can change depending on 

environmental conditions and the needs of the cell. Microarray data are usually in the form of matrices 

that record gene expression levels at different times or under different conditions [13,3]. Analysis of 

these data, particularly to identify common or different patterns in gene expression, can play an 

important role in better understanding biological processes, disease discovery, and drug design [22]. 

Since microarray data are usually collected over multiple time periods, this is inherently a time 

series problem. In this type of data, the goal is to analyze the trend of gene expression changes over 

time and thereby identify the behavior of genes in response to different stimuli. Such analysis can 

provide valuable information about key genes in a biological process, or genes that are regulated 

simultaneously [10,22, 12]. 

The development and advancement of artificial intelligence techniques have led to tremendous 

advances in the field of medical science, but diagnosing cancer is still difficult. Gaining complete 

experience in diagnosing cancer requires a long period of time and a lot of practical work for a 

specialist doctor. It seems necessary to have a doctor's assistant system that can accurately predict 

cancer. Identifying the structure of DNA and decoding it has many applications in medical science. 

Determining the sequence of DNA helps medical science and laboratory studies to identify the cause 

of leukemia in the body of organisms. 

Cancer is an unpredictable, hidden disease with subtle symptoms. One of the approaches to 

investigating and predicting treatment and preventing progression is to use time series with a deep 

approach. For this reason, this disease and the predictors before the risk of becoming acute and 

reaching an advanced stage of the disease can be detected with a convolutional neural network. In 

addition, it can be stated whether the obtained data will ultimately cause leukemia or not and in what 

time period and at what stage this cancer will be. Feature selection is very necessary to eliminate 

additional and irrelevant features and improve classification performance [12, 2,5,7]. 

In this paper, a hybrid method for diagnosing leukemia based on the analysis of DNA changes and 

gene expression patterns is presented. The goal of this method is to increase the accuracy of diagnosis 

by identifying effective genes and reducing the dimensions of microarray data. In the first step, all 

genetic data are preprocessed and features are evaluated using the mutual information criterion to 

identify genes that have the highest statistical association with the disease label. Then, in the second 

step, the XGBoost algorithm is used for embedded ranking and stable feature selection; so that only 

genes that show the highest importance in multiple iterations are considered as input to the final 

model. In the final step, the classification process is performed using a Temporal Fusion transformer. 

In this method, by extracting complex patterns from gene data, distinct profiles of Leukemia types 

are produced. The temporal fusion transformer, due to its lightweight and non-parametric nature, 

performs remarkably well in datasets with a very large number of features and a limited number of 

samples. Thus, it will produce the necessary output and predict the 5 categories of leukemia in the 

sample. The rest of the paper is divided as follows: Section 2 reviews the literature on the subject, 

Section 3 describes the proposed method, Section 4 discusses the evaluation results, and Section 5 

presents the conclusions. 
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2. Related Work 

Recent advances in machine learning and deep learning have significantly impacted the diagnosis 

of various diseases and cancers, particularly leukemia [8]. Traditional machine learning approaches 

have been widely applied to medical datasets due to their ability to process high-dimensional data 

and identify complex patterns. Shahab et al. [22] provided a comprehensive review of machine 

learning applications in medical diagnosis, highlighting their effectiveness in cancer prediction tasks. 

Similarly, Kumar and Alqahtani [12] reviewed deep learning techniques for cancer detection, 

emphasizing convolutional and recurrent neural networks as dominant architectures. 

In the context of leukemia diagnosis, most existing studies have predominantly focused on image-

based analysis of blood smear or white blood cell microscopy images. Saeed et al. [21] proposed a 

CNN-based framework for acute lymphoblastic leukemia detection, achieving high classification 

accuracy through deep feature extraction. Shree and Logeswari [23] introduced optimized deep 

recurrent neural networks (ODRNN) to enhance leukemia detection performance by refining network 

weights through metaheuristic optimization. Other studies employed CNN variants, including 

lightweight architectures and hybrid convolutional models, to improve computational efficiency and 

diagnostic accuracy [14,12,18, 25-28]. 

In parallel, gene expression–based leukemia classification has attracted attention due to its 

potential for early diagnosis and biological interpretability. Microarray data provide large-scale gene 

expression measurements but suffer from extreme dimensionality and limited sample sizes. To 

address this challenge, various feature selection techniques have been proposed. Some researchers 

introduced an HMM-based feature selection method to reduce dimensionality while preserving 

discriminative gene patterns. Mutual Information–based methods have also been widely used to 

quantify statistical dependency between genes and disease labels, demonstrating effectiveness in 

filtering irrelevant and noisy features [27,28,29]. 

More recently, researchers have explored advanced learning architectures for sequential and 

structured data. Transformer-based models have emerged as powerful tools for capturing long-range 

dependencies and complex feature interactions. While such models have been successfully applied in 

time-series forecasting and structured prediction tasks [27,24], their application to genomic 

microarray data remains limited. Wang [27] emphasized the importance of interpretability and 

stability in genomic machine learning models, particularly in high-dimensional, low-sample 

scenarios. Furthermore, recent studies have highlighted the sensitivity of feature selection 

performance to estimator choice and model instability, underscoring the need for robust and 

reproducible selection frameworks [28,9,16]. 

Despite these advances, several critical limitations persist in the existing literature. First, the 

majority of leukemia classification studies either rely on image-based diagnosis or treat gene 

expression samples as static, independent observations, thereby neglecting the latent sequential 

structure embedded in gene expression profiles. Second, many deep learning models employed for 

genomic data act as black-box predictors, offering limited interpretability and reduced clinical trust. 

Third, feature selection is often performed as a single-stage preprocessing step, without assessing 

stability across training iterations, which increases the risk of overfitting and information leakage. 

Moreover, although Transformer-based architectures have demonstrated strong performance in 

modeling complex dependencies, their integration with stable, biologically meaningful feature 

selection mechanisms for microarray-based leukemia classification has not been sufficiently 

explored. In particular, there is a lack of unified frameworks that jointly address dimensionality 

reduction, feature stability, interpretability, and pseudo-temporal dependency modeling in high-

dimensional genomic datasets. 

This study addresses the aforementioned research gaps by proposing a novel hybrid framework 

for leukemia subtype classification based on microarray gene expression data. The key contributions 

of this work are threefold. First, a two-stage feature selection strategy is introduced, combining 
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Mutual Information filtering with XGBoost-based embedded ranking to ensure both statistical 

relevance and stability of selected genes across multiple training iterations. This approach effectively 

reduces dimensionality while mitigating feature selection instability. 

Second, unlike previous studies that rely on static classifiers, this work leverages the Temporal 

Fusion Transformer architecture to model pseudo-temporal dependencies among gene expression 

features. The TFT’s gating mechanisms, attention-based variable selection, and interpretability-

oriented design enable the extraction of complex gene interaction patterns while maintaining 

transparency in the decision-making process. 

Third, the proposed framework is systematically evaluated against both classical machine learning 

and state-of-the-art deep learning models, demonstrating superior performance in terms of accuracy, 

precision, and recall. By integrating stable feature selection with advanced temporal deep learning, 

this study provides a robust and scalable solution for high-dimensional genomic classification and 

contributes new insights into precision leukemia diagnostics. 

 

3. Proposed Method 

Many standard analytical techniques are unsuitable or computationally impossible for analyzing 

high-throughput data. Using unrelated genes in data analysis increases the problem size and 

computational cost. The proposed method of this study is based on the analysis of DNA changes and 

the identification of genetic patterns that are effective in the occurrence of leukemia. Given that 

changes in the genome structure, including changes in the number of DNA copies, play an important 

role in the development and progression of leukemia, the identification of these changes can play a 

significant role in the early and accurate diagnosis of the disease. In this study, in order to increase 

the accuracy of the model and reduce the dimensionality of the data, a two-stage hybrid approach is 

used in feature selection. In the first step, the features extracted from the genetic data are evaluated 

using the mutual information criterion to identify the genes that have the highest statistical 

dependence with the cancer type label. In the second step, the XGBoost algorithm is used for 

embedded ranking and stable feature selection [17]. This step causes the features that are most 

important in different iterations to be included in the model with a higher weight and the ineffective 

features to be removed. Finally, the final classification will be performed using a temporal fusion 

transformer [27]. Given that the data is dynamic and of the time series type and gene changes occur 

over time, there is a need to use dynamic algorithms, while other models focus on a single feature 

and are not dynamic and recognize outputs based on a single feature (frequency-variance). The block 

diagram of the proposed method is shown in Figure 1. In the following, each step of the proposed 

method will be described in detail. 

Figure 1 illustrates the block diagram of the proposed hybrid model for leukemia subtype 

classification. The diagram showcases the data preprocessing step, followed by feature selection 

using Mutual Information and XGBoost, and finally, the classification step using the Temporal Fusion 

Transformer (TFT). Each stage is crucial for reducing the dataset's dimensionality and enhancing the 

model's ability to capture temporal dependencies in gene expression data. 
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Figure 1. Block diagram of the proposed method  

 

3.1.1. Data preprocessing 

The necessary preprocessing, including removing extra characters and headers, is performed on 

all data in the dataset to deal with the data in raw form. 

 

3.1.2. Feature Selection 

The method used in this paper is the two-stage fast filter method with mutual information and 

XG-BOOST, the details of which are explained in this section. 
 

3.1.3. Quick Filter with Mutual Information 

In the first step, the mutual information (MI) criterion is used to evaluate the statistical 

association between each gene and the target variable (cancer type). The MI criterion is 

defined as follows: 

(1 ) 
𝑝(𝑥𝑖, 𝑗)

𝑝(𝑥𝑗)𝑝(𝑦)
𝑝(𝑥𝑗 , 𝑦)𝑙𝑜𝑔 ∑ ∑ = 𝐼(𝑋𝑗, 𝑌)

𝑥𝑗∈𝑋𝑦∈𝑌
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where Xj represents the expression of the jth gene and Y is the class label (cancer type). 

Features with higher mutual information values are considered as more effective genes in 

diagnosis. Based on the MI values, K1 top genes are selected to enter the second stage. This 

stage is fast and removes noise and reduces the computational burden of the next stage [17]. 

3.1.4. Embedding Ranking with XG-Boost  

In the second step, the XG-Boost algorithm is used as an embedding learning model to 

determine the importance of features based on their contribution to improving the accuracy 

of the model. XG-Boost, by combining a set of decision trees sequentially and with gradient 

learning, has a high ability to model nonlinear relationships. Its objective function is defined 

as follows [1]: 

(2 ) 𝛺(𝑓𝑘) ∑ +𝑙(𝑦𝑖 , 𝑦𝑖̂) ∑ = Հ2||𝜆||𝑤
1

2
+ 𝛾𝑇 = 𝛺(𝑓)

𝐾

𝑘=1

 

where l is the loss function, Ω(f) is the regularization term to control the complexity of the 

model, and T is the number of leaves in the tree. After training the model, the importance of 

each gene is calculated using the Gain criterion: 

(3 ) ∆𝑙𝑠 ∑
1

|𝑗𝑆|
= 𝐺𝑎𝑖𝑛(𝑓𝑖)

𝑗𝑆

 

Where Δls is the amount of loss reduction in tree splits related to feature fj. 

3.1.5. Temporal Fusion Transformer 

The Temporal Fusion Transformer (TFT) model is a deep learning architecture for multi-step 

time series forecasting. It is designed to have both high accuracy and maintain model interpretability 

[23,24, 27, 6].  
1- Input, embedding, and mapping to feature 

vector space 

2- Multi Head Attention for modeling long-term 

temporal dependencies with the formula 

 (4) 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑇𝑄𝐾

√𝑑
) 𝑉

= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) 

Where: 

 

(5) i,tWQh=Q 

(6) i,tWKh=K 

(7) i,tWvh=V 

W, Wk, and VWQ are learnable weights. 

3- Add and normalization 

4- Using feed forward network 
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4. Experimental Results 

In this paper, the proposed method is implemented in the MATLAB environment and the results are 

analyzed with the criteria of precision, accuracy, recovery and F-criterion. In all experiments, the K-

Fold method with K=10 was used for training and validation. In this type of validation, the data is 

divided into K subsets. Of these K subsets, one is used for validation each time and the other K-1 are 

used for training. This procedure is repeated K times and all data are used exactly once for training and 

once for validation. Finally, the average result of these K validation times is selected as a final estimate. 

To further ensure the absence of overfitting, Figure 2, which shows the training and validation, is 

plotted. As can be seen in the graph, the model error in both the training and validation datasets 

decreases continuously over time. This indicates that the model is well trained and no signs of overfitting 

are observed, as the error on the validation and training data decreases similarly. 
 

 

Figure 2. Error and training curve 

 

The model demonstrated excellent stability, as evidenced by the continuous reduction in 

error across both training and validation datasets over time (Figure 2). This suggests that the 

model is not prone to overfitting, as the error in the validation and training sets decreases 

similarly, indicating a well-generalized model. Figure 3 shows the accuracy graph of the 

proposed model on two training and validation datasets. 
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Figure 3. Accuracy and training curve 

4.1.1. Data Base 

The data used were collected from the Kaggle database. The analysis was based on a dataset of 

gene expression measurements in 64 leukemia patients over time (640 samples) with 22,284 genes 

(features) and 600 healthy samples. The leukemias studied were of 5 types, including AML (acute 

myelogenous leukemia), PB (plasma cell), PBSC_CD34 (hematopoietic stem cells), Bone_Marrow 

(bone marrow) and Bone_Marrow_CD34 (bone marrow with CD34 marker). Acute lymphoblastic 

leukemia (AML) is the most common type of leukemia and accounts for approximately 75% of all 

blood cancers. The columns of the dataset are in sequential order and represent the genes in the dataset 

with the exact transformation used over time [29]. Gene values are numbers between 0 and 1. A 

sample of the data is shown in the table below. 
 

Table 1. Sample data 

Gene 

22284 
 ... Gene 3 Gene 2 Gene 1 Sample 

Leukemia 

Type 

0.12 … 0.56 0.45 0.23 1 AML 

  

4.1.2. Evaluation Criteria 

In general, the confusion matrix is used to examine the success and efficiency of disease 

classification and diagnosis systems. The analysis of the confusion matrix in disease classification and 

diagnosis leads to 4 states: TP, TN, FP, FN. The results of the confusion matrix yield three indices of 

accuracy, precision, and efficiency, which are used to analyze the performance of classification systems. 

The following are the important indices and variables in measuring efficiency. The performance of the 

model is evaluated based on the following criteria: 

True Positives (TP): Samples that are predicted to be positive and are actually positive. 

False Positives (FP): Samples that are predicted to be positive but are actually negative. 

True Negatives (TN): Samples that are predicted to be negative and are actually negative. 

False Negatives (FN): Samples that are predicted to be negative but are actually positive [13]. 

The equations for accuracy, precision, and recall are as follows: 
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(5 ) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
                                                  

(6 ) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑒𝑡𝑖𝑣𝑒𝑠
                                                     

(7 ) 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                                   

(8 ) 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Based on the use of the gene model generator, the proposed method has been compared with 

three datasets. The first dataset, DataC1, is normal, the second dataset is based on binarization of the 

DataLC dataset, and the third dataset is based on normalization of the weights, DataC2. Figure 4 

compares the accuracy of the proposed method with other traditional and deep learning models, 

including decision trees, SVM, and CNN. 

 

 

Figure 4. Evaluation of the proposed method and other methods in terms of accuracy criteria 

 

As shown in Figure 4, the proposed method has a higher accuracy than all the compared methods. 

The proposed method achieved 99.26 % accuracy in the C1 dataset, compared to the decision tree 

with a value of 97.61 and the decision support vector with a value of 96 in the output as accuracy. 

In the C2 dataset, the proposed method with a value of 98.89%t accuracy is the closest to the 

proposed method, compared to the decision support vector methods with 94.80 and the decision tree 

with 94.48, and finally, in the LC dataset, the proposed method with a value of 98.89%accuracy is 

the closest to the proposed method, compared to the decision support vector methods with 94.80 and 

the decision tree with 94.39. Among them, KNN and Adaboost have recorded the lowest values in 

the accuracy criterion in the three datasets. Table 2 shows the performance of the proposed method 

on the dataset.  
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Table 2. Evaluation of the efficiency of the proposed method for diagnosing types of leukemia 

 

 

 

 

 

 

As shown in Table 2, Bone_Marrow had the lowest detection rate and PBSC_CD34 had the 

highest detection rate among leukemias. The proposed method performed excellently across all five 

leukemia subtypes. It achieved high recall values, demonstrating the model’s effectiveness at 

identifying nearly all cases of leukemia, even in subtypes like PBSC_CD34 where it reached over 

99% recall. Impressive precision, especially for AML and PB subtypes, where it achieved over 99% 

precision. Overall accuracy was consistently high, with the lowest accuracy being 98.18% for 

Bone_Marrow, and the highest accuracy of 99.26% for the entire model. This shows that the proposed 

method is highly reliable and accurate, with no significant drops in performance across the different 

leukemia types. Next, the proposed method was compared with a number of different methods and 

its results are shown in Table 3. 

 

Table 3. Comparison of the proposed method with similar cancer detection methods 

F1 score Recall Precision Accuracy 
Leukemia 

Classification 

92.32 92.20 92.53 92.42 CNN [19,26] 

93.31 92.20 92.73 91.44 LSTM 

92.85 92.05 91.92 92.28 GRU 

94.65 93.45 93.65 93.50 ALNett [11] 

95.45 95.62 94.95 94.61 RNN [11] 

96.04 95.81 96.02 95.93 DRNN[23] 

97.14 97.05 96.94 97.09 
Mobilenet 

V2+Resnet [1] 

97.98 97.85 97.23 97.98 
ODRNN 

[23] 

99.2 98.9 99.3 99.26 
Proposed 

Method 
 

Recall Precision Accuracy number leukemia 

99.09 99.02 99.03 210 AML 

99.07 99.01 98.99 140 PB 

99.21 99.11 99.17 100 PBSC_CD34 

98.36 98.26 98.18 110 Bone_Marrow 

99.06 99.07 99.05 80 Bone_Marrow_CD34 

99.06 99.07 99.05 640 Performance 
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According to Table 3, the proposed method has a good advantage over other similar methods and 

has recorded an improvement of about 2% over its closest method. Based on this comparison, the 

CNN method [26] with an accuracy value of 92.42% has shown the lowest accuracy value, and the 

ODRNN method [23] with an accuracy value of 98.97% is in second place in accuracy, after the 

proposed method with an accuracy of 99.26%. 

 

5. Conclusion 

Cancer is one of the most important causes of death in the world. In most cases, if this disease is 

detected early, it is curable. One of the effective methods for diagnosing cancer is the use of 

microarray data, which, unlike imaging methods, does not contain harmful radiation for humans. 

Microarrays contain many genes, which makes analysis complex and time-consuming; therefore, 

selecting effective genes is one of the essential steps in diagnosing this disease. The aim of this paper 

is to diagnose types of myelogenous and acute lymphocytic leukemia using the selection of effective 

genes from microarray data. In the proposed method, a two-stage feature selection method is used. In 

the first stage, features are selected using the mutual information criterion to identify more effective 

genes associated with leukemia types. This stage automatically removes ineffective and noisy features 

and reduces the number of genes. In the second step, the XGBoost algorithm is used for embedding 

ranking and stable feature selection. With this method, features that are more important in multiple 

iterations are selected. These selected features are then fed to the Transformer Fusion Temporal 

classifier. Transformer Fusion Temporal shows the best performance in data with many features and 

limited samples by extracting complex patterns in the input data. This classifier combines 

probabilistic and statistical features to achieve the highest classification criteria.  

Key findings confirm that the two-stage feature selection successfully reduced dimensionality 

from 22,284 genes to a compact set of highly discriminative features, thereby lowering computational 

cost while retaining biologically critical information. The Temporal Fusion Transformer effectively 

captured complex temporal patterns within the refined gene profiles, achieving state-of-the-art 

performance with an accuracy of 99.26%, precision of 99.3%, and recall of 98.9% on a dataset 

comprising 640 samples across five leukemia subtypes. Comparative evaluation revealed that the 

proposed model outperformed both traditional machine learning methods and contemporary deep 

learning approaches, solidifying its advantage in genomic diagnostics. 

Despite these promising outcomes, certain limitations should be acknowledged. The model was 

validated on a specific microarray dataset, and its generalizability to other genomic data types or 

diverse populations requires further external verification. Additionally, while the TFT offers 

relatively higher interpretability than many deep learning architectures, fully elucidating the 

biological pathways corresponding to the selected genes remains an open challenge. Computational 

demand, although mitigated through feature selection, may still pose constraints in low-resource 

environments. 

Moving forward, several directions are recommended for future work. These include integrating 

multi-omics data to build a more holistic diagnostic model, conducting prospective clinical studies to 

assess real-world impact, enhancing interpretability through explainable AI techniques tailored to 

temporal models, and exploring model optimization for efficient deployment in clinical settings. In 

summary, this research contributes a robust and accurate computational framework for leukemia 

subtyping and highlights the potential of combining hybrid feature selection with advanced temporal 

deep learning in precision oncology. Addressing the noted limitations in subsequent studies will be 

essential for translating this methodological advancement into practical clinical tools. 
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