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Constrained Multi-Objective Deep Reinforcement Learning for
Safe and Fair Urban Traffic Signal Control
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This paper presents a constrained multi-objective deep reinforcement learning framework
for urban traffic signal control. The problem is modeled as a constrained Markov decision
process in which an agent simultaneously optimizes efficiency objectives while respecting
explicit safety and fairness constraints. A dueling double deep Q-network (D3QON) is
combined with a Lagrangian cost estimator to approximate both the reward value function
and cumulative constraint costs. The state representation includes queue lengths, phase
indicators and elapsed green times, and the action space consists of a small set of
interpretable decisions such as extending the current green or switching to the next phase.
The proposed controller is trained and evaluated in a SUMO-based microscopic simulation
of a four-leg urban intersection under various traffic demand patterns. Its performance is
compared with fixed-time, vehicle-actuated and unconstrained DON controllers. Simulation
results show that the proposed method can substantially reduce average delay and maximum
queue length while keeping queue spillback and delay imbalance within predefined limits.
These findings indicate that constrained multi-objective deep reinforcement learning offers
a promising and practically deployable framework for safe and fair traffic signal control in
congested urban networks, and can be extended to more complex corridors and network-
wide settings in future work.

Keywords: adaptive traffic signal control, deep reinforcement learning, constrained Markov decision
process, safe reinforcement learning, multi-objective optimization, SUMO.

1. Introduction

Rapid growth in private car ownership, urbanization, and commercial activities has led to
persistent traffic congestion in many cities. Expanding road infrastructure through new lanes,
flyovers, or underpasses is costly, requires long construction times, and is often infeasible in dense
urban environments. Consequently, improving the operational efficiency of existing intersections
through intelligent traffic signal control has become a key strategy for mitigating congestion, reducing
travel time, and lowering emissions. Conventional traffic signal control methods are typically
grouped into three categories. The first category consists of fixed-time plans designed offline using
historical average demand. These controllers are simple and robust but cannot respond to short-term
fluctuations or incidents. The second category includes centralised adaptive systems that collect real-
time detector data and update signal timing parameters (cycle length, splits, offsets) using pre-defined
rules and model-based optimization. Although more responsive than fixed-time plans, their
adaptability is limited by modelling assumptions and the need for periodic retuning. The third
category encompasses fully adaptive or distributed methods, in which individual intersections or
groups of intersections adjust their timings online based on local measurements and, in some cases,
coordination with neighbours through heuristic or optimization-based strategies.
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Despite decades of development, traditional model-based and rule-based signal control still faces
several challenges. First, building and calibrating traffic models that accurately describe complex,
stochastic urban conditions is difficult and time-consuming. Second, once deployed, controllers may
require significant manual retuning when demand patterns, land use, or driver behaviors change.
Third, most classical approaches primarily optimize a single performance objective such as delay or
throughput, while safety and environmental impacts are often treated only implicitly or via ad-hoc
penalty terms. Reinforcement learning (RL) has emerged as a powerful alternative paradigm for
adaptive traffic signal control (ATSC). Instead of relying on an explicit traffic-flow model, an RL
agent learns a control policy by interacting with a simulation or real environment and receiving
feedback in the form of rewards. Over the past few years, deep reinforcement learning (DRL) —
combining RL with deep neural networks — has been extensively applied to isolated intersections,
arterial corridors, and larger networks. Multiple recent surveys report that DRL-based controllers can
substantially reduce average delay, queue length, and the number of stops compared with fixed-time,
actuated, and classical adaptive methods, across a wide range of scenarios and benchmarks [9.10].
However, a large portion of existing DRL studies in traffic signal control has two important
limitations. First, most works still use a single scalar reward that mainly reflects traffic efficiency
(e.g. delay, queue length, throughput), while crucial aspects such as safety (e.g. conflict risk), fairness
between approaches, and environmental impact are either ignored or simply added as small penalty
terms. Second, many DRL controllers are trained without explicit constraints on their behaviors,
which can lead to policies that perform well on average but occasionally produce unsafe or
operationally unacceptable actions (e.g. extremely short or excessively long greens, frequent phase
changes, or severe queue spillbacks). Recent research in multi-objective and safe RL for traffic signal
control seeks to address these issues by incorporating formal constraints, cost signals, and vector-
valued reward formulations, explicitly balancing efficiency with safety, fairness, and sustainability
[1,2]. In parallel, a variety of benchmark environments and toolkits have been proposed to standardize
the evaluation of RL-based signal controllers. Notable examples include benchmark suites that define
common network topologies, demand patterns, and evaluation protocols for RL-based traffic signal
control [2,9], and frameworks that integrate RL libraries with microscopic simulators such as SUMO
to provide convenient interfaces, state and reward templates, and baseline implementations [1,6].
These efforts highlight both the potential of DRL-based approaches and the need for more systematic
studies that consider safety, constraints, and real-world deployability [1-6].

Motivated by these observations, this paper focuses on designing and evaluating a constrained
multi-objective deep reinforcement learning controller for an isolated urban intersection. Instead of
relying on fuzzy rules or manually tuned logic, the proposed method formulates traffic signal control
as a constrained Markov decision process (CMDP) in which the agent directly observes lane-level
queues, phase information, and elapsed green time, and selects among a small set of discrete actions
such as extending the current phase or switching to the next one. The primary objective is to minimize
delay and queue length, while satisfying explicit constraints related to safety (e.g. avoiding queue
spillback) and fairness (e.g. limiting large delay imbalances between approaches) in line with recent
multi-objective and safe DRL frameworks [6,9,17]. The remainder of the paper is organized as
follows. Section 2 reviews related work in classical, RL-based, and safe/constrained RL traffic signal
control. The key idea Section 3 presents the proposed constrained DRL formulation, including the
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state, action, reward, and cost definitions, as well as the dueling double deep Q-network with
Lagrangian cost estimation.

2. Related Work

Research on traffic signal control spans several generations of methods, from classical fixed-time
plans to modern deep reinforcement learning (DRL) and safe, multi-objective controllers. This
section briefly reviews these developments and positions the proposed constrained DRL approach
within the literature.

2.1 Classical fixed-time and adaptive signal control

Early work on traffic signal control focused on fixed-time plans designed offline using historical
average flows. Webster’s formulas for determining cycle length and green splits are among the most
influential contributions in this category, providing approximate expressions for the optimal cycle
time and average delay at isolated signalized intersections [16]. Although fixed-time control is simple
and robust, it cannot respond to short-term fluctuations, incidents, or special events. To improve
responsiveness, centralized adaptive urban traffic control systems were developed, notably SCATS
(Sydney Co-Ordinated Adaptive Traffic System) and SCOOT (Split Cycle Offset Optimization
Technique). SCATS adjusts cycle length, splits and offsets based on detector measurements at the
area level, providing real-time area traffic control in many cities worldwide [6]. SCOOT similarly
performs on-line optimization of cycle, split and offset using a rolling-horizon model of queues on
links, and has been deployed widely in the UK and elsewhere. These systems have demonstrated
substantial benefits over fixed-time control, but their performance still depends on model
assumptions, careful calibration and periodic retuning when demand patterns change.

2.2 Fuzzy logic and other intelligent controllers

Before the widespread use of reinforcement learning, fuzzy logic controllers (FLCs) were among
the most popular intelligent approaches for adaptive traffic signals. Fuzzy controllers encode expert
knowledge in linguistic rules such as IF queue on approach A is high AND queue on approach B is
low THEN extend green for A. Niittymaki and Pursula designed one of the earliest fuzzy controllers
for signal-group control, showing improvements over vehicle actuated control in simulation [11].
Trabia et al. proposed a two-stage fuzzy logic controller for an isolated intersection that uses detector
data to determine whether to extend or terminate the current phase, reporting reductions in delay
compared with fixed-time control [14]. Numerous variants of fuzzy controllers, including multi-
phase, multi-layer and pedestrian-aware designs, have since been proposed. Fuzzy logic has also been
combined with heuristic optimization methods such as genetic algorithms (GA) to tune membership
functions or rule weights, yielding GA—FLC or fuzzy—GA controllers that typically outperform hand-
crafted fuzzy systems under the optimization objective. However, both pure fuzzy and GA-tuned
fuzzy controllers generally require substantial offline design and do not naturally capture multi-
objective trade-offs or explicit safety constraints. In a different direction, self-organizing traffic light
schemes treat each intersection as a simple agent applying local rules based on queue lengths or
platoon detection. Gershenson showed that such self-organizing controllers can outperform rigid
fixed-time and traditional adaptive methods across a wide range of densities in simulation [15,19].
These approaches are appealing for their simplicity and decentralization, but they typically lack
explicit optimization objectives and can be difficult to analyse in terms of safety guarantees.
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2.3 Reinforcement learning and deep reinforcement learning for traffic signals

Reinforcement learning (RL) has been studied for adaptive traffic signal control (ATSC) for more
than two decades, starting with tabular Q-learning and SARSA controllers for isolated intersections.
More recently, deep reinforcement learning (DRL) has become the dominant paradigm, using deep
neural networks to approximate value functions or policies for high-dimensional state spaces. Several
comprehensive surveys provide overviews of RL-based traffic signal control, including DRL methods
for single intersections, arterial corridors and networks [1-4]. These works highlight key design
dimensions such as state representation (queues, delays, occupancy, phase information), reward
structures (delay, stops, emissions), and training setups (single-agent vs multi-agent, centralized vs
decentralized). Recent surveys specifically dedicated to DRL for traffic signal control emphasize that
DRL-based controllers often achieve substantial reductions in average delay, queue length and
number of stops compared to fixed-time, actuated and classical adaptive control, across various
benchmark networks [7,11,18]. At the same time, they point out several open challenges: sample
efficiency, robustness to sensor failures or demand shifts, interpretability and the difficulty of
balancing multiple objectives such as safety and emissions.

2.4 multi-agent and coordinated RL traffic signal control

Because urban traffic networks involve many interacting intersections, multi-agent reinforcement
learning (MARL) has been widely explored for coordinated signal control. In MARL, each
intersection is typically controlled by an agent that observes local state and selects actions, while
coordination emerges through shared rewards, communication or graph-based representations. Saadi
et al. review RL and DRL methods for coordination in intelligent traffic light control, covering value-
decomposition, actor—critic and communication-based architectures [13]. Kolat et al. propose a
cooperative MARL approach for a network of intersections and report improvements in fuel
consumption and travel time compared to traditional control [9]. More recent work considers
decentralized multi-modal MARL controllers that jointly optimize person-delay for private vehicles
and public transport. These studies show that MARL can scale DRL-based controllers to larger
networks and capture interactions across intersections. Nevertheless, most methods still rely on scalar
reward functions primarily focused on efficiency, and they rarely provide explicit guarantees on
safety-related properties such as queue spillback prevention or respect for operational constraints (e.g.
minimum/maximum green times).

2.5 multi-objective and safe reinforcement learning for traffic signal control

A growing body of work aims to move beyond purely efficiency-driven RL controllers by
introducing multi-objective formulations that consider safety, fairness and environmental impact
alongside delay and throughput. Zhang et al. propose a multi-objective DRL framework that jointly
optimizes safety (conflict risk), efficiency (delay) and decarbonization for adaptive traffic signal
control, showing that properly designed reward functions can reduce conflicts and emissions with
limited loss of efficiency [5]. Mirbakhsh and Azizi develop a multi-objective DRL-based controller
that balances safety and efficiency, reporting reductions in traffic conflicts, waiting time and
emissions relative to traditional adaptive controllers [10]. Similar ideas have been applied to transit
signal priority and network-wide safety-aware control, where DRL agents use vector-valued rewards
to encode multiple criteria [3,4]. Beyond multi-objective rewards, safe and constrained RL introduces
formal constraints into the learning process, often via constrained Markov decision processes
(CMDPs) or Lagrangian methods. Zhou et al. present a safe RL-based controller that handles
competing public transport priority requests while ensuring that safety-related constraints are
respected at signalized intersections. Other recent studies integrate queue-spillback awareness, robust
training against sensor failures or action-shielding mechanisms into RL-based traffic control, further
emphasizing the importance of safety and robustness for real-world deployment [12]. The proposed
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work aligns with this line of research by explicitly formulating traffic signal control as a constrained
multi-objective DRL problem. In contrast to fuzzy and Fuzzy Q-Learning controllers, which embed
human knowledge in fuzzy rules [14], the present approach directly operates on continuous state
vectors and enforces safety and fairness constraints through a CMDP framework and Lagrangian
updates [8].

2.6 Benchmarks, simulators and experimental frameworks

To make RL-based traffic signal control research more comparable and reproducible, several
benchmark toolkits and experimental frameworks have been introduced. Ault and Sharon propose a
benchmark suite for RL-based traffic signal control that includes standardized network
configurations, demand patterns, performance metrics and implementations of several RL algorithms
[2]. SUMO-RL provides a convenient interface that connects the SUMO microscopic traffic simulator
with RL libraries, supporting both single-agent and multi-agent environments and simplifying the
definition of state and reward functions [1]. Flow similarly offers a framework for developing DRL
controllers for traffic problems (including traffic lights) on top of SUMO [6]. Benchmark collections
such as RESCO further contribute realistic network scenarios and reference implementations to
evaluate and compare RL algorithms [9]. These toolkits have accelerated progress in DRL-based
traffic signal control and made it easier to evaluate new algorithms under common conditions. In this
paper, we follow this trend by implementing our constrained DRL controller in a SUMO-based
environment and adopting evaluation practices compatible with existing benchmarks [10].

3. Proposed Constrained Deep Reinforcement Learning Model

In this section, we present the proposed constrained multi-objective deep reinforcement learning
(DRL) model for adaptive traffic signal control at an isolated urban intersection. The key idea is to
formulate the problem as a constrained Markov decision process (CMDP) and to learn a signal control
policy using a dueling double deep Q-network (D3QN) augmented with Lagrangian cost estimation.
The controller explicitly balances efficiency objectives (e.g. delay and queue length) with safety and
fairness constraints (e.g. spillback prevention and delay imbalance limits).

3.1 Overall architecture

Figure 1 illustrates the overall closed-loop architecture of the proposed controller. The traffic
dynamics are simulated in SUMO, which handles vehicle arrivals, movements and interactions at the
intersection. At fixed control intervals, a state extraction module collects lane-based queues, the
current active phase, elapsed green time and spillback indicators from the simulator and assembles
them into a state vector s;.This state vector is passed to the CMDP/DRL agent, implemented as a
D3QN with additional heads for cost estimation and a Lagrangian layer. Based on s;, the agent selects
a discrete control action a; (e.g. extend the current green or switch to the next phase). The action is
translated by the signal controller into an operational command that updates the traffic lights in
SUMO.
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Figure 1. Overall architecture of the proposed constrained DRL-based traffic signal controller

In parallel, a constraint monitor observes the resulting traffic conditions and computes safety- and
fairness-related cost signals, such as spillback occurrences or excessive delay imbalance between
approaches. The transition (s;, a;, 1, C¢, S¢4+1) consisting of state, action, scalar reward, cost vector
and next state is stored in a replay buffer and later sampled for off-policy learning. During training,
the DRL agent updates its value functions and Lagrange multipliers from mini-batches of transitions.
After convergence, the learned policy is deployed without exploration.
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The SUMO simulator generates traffic dynamics; a state extraction module provides lane-level
measurements to the D3QN-based CMDP agent; the agent selects signal actions; a constraint monitor
computes safety and fairness costs; and a replay buffer stores transitions for off-policy training.

3.2 CMDP formulation

Let S denote the state space and A the finite action space. At each decision step t, the environment
is in state s, € S. The agent selects an action a; € A according to a policy m(a | s). The environment
then transitions to a next state s; 1, and returns a scalar reward 7, capturing traffic efficiency together
with a K-dimensional cost vector c; = (¢, , ..., c.*)T, which encodes safety and fairness criteria. The
process is modelled as a discounted CMDP with discount factor y € (0, 1). The objective is to find
a stationary policy n that maximizes the expected discounted sum of rewards

Jrey = E [ Z{f:o}ytrt] €Y)
subject to constraints on the expected discounted cumulative costs:
]Ck(n) =E [Z{T;O}thgcl < C_k' fork =1,...K (2)
where C, is a pre-defined threshold for cost component k. Equations (1) and (2) define the
constrained optimization problem solved by the proposed controller.

3.2.1 State representation

The state vector s; is designed to be compact yet informative, and typically includes:
— lane-based queue lengths qg; ¢y (or normalized occupancies) for each incoming lane i; (veh).
— a one-hot encoding of the current active phase (e.g. north—south through, east—west through,
protected turns);
— elapsed green time for the active phase; (s).
— binary spillback flags indicating whether the queue in any lane exceeds a critical storage threshold
(e.g. 80-90% of lane storage).

This representation avoids fuzzy abstraction and directly uses continuous or discrete variables
provided by the detectors or simulator, facilitating deployment at different intersections.

3.2.2 Action space

To keep control decisions interpretable and operationally feasible, the agent chooses from a small
set of discrete actions:
1) Short extension: keep the current phase and extend green by At = S seconds;
2) Long extension: keep the current phase and extend green by 4t;4,, = 10 seconds;
3) Phase switch: terminate the current phase and switch to the next phase in a predefined sequence,
respecting intergern times.

This structure limits chattering (overly frequent phase changes) while preserving sufficient
flexibility to adapt to changing traffic conditions.

3.2.3 Reward and cost signals

The performance reward is defined as the negative total delay accumulated over the decision
interval:

= —2ye Vildelay, 3)
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where v,is the set of vehicles present and delay v, is the additional travel time of vehicle v compared
with its free-flow travel time. Several non-negative cost signals are defined to capture safety and
fairness:

— ¢;1: spillback cost, equal to 1 if any lane’s queue exceeds the critical storage length during the
interval, and 0 otherwise; (unitless).

— ¢;2: fairness cost, proportional to the absolute difference in average delay between major
approaches (e.g. north—south vs. east-west); (s).

— optionally c,3: an environmental or stop-related cost, proportional to the number of stops or
estimated emissions in the interval.

These costs are used both for monitoring and for constraining learning through the CMDP formulation
in (2).

3.3 Dueling Double DQN with Lagrangian cost estimation

The CMDP is solved using an off-policy, value-based DRL algorithm. We adopt a dueling double
deep Q-network (D3QN) architecture to estimate action-value functions and enhance stability. A
shared feature extractor processes the state s_t and feeds two streams that output the state value vg.and
the advantage A (s;, a). The Q-value for the reward component is reconstructed as:

Q_R(s_t,a; 8) = V(s_t; 0) + A(se,a; 0) — (1 /|A]) 2 {a' € A}A(s¢,a’; 0) 4)
where 6 denotes the parameters of the reward Q-network. To mitigate overestimation bias, a separate
target network with parameters 0~ is updated periodically, and double Q-learning is used when
computing temporal-difference (TD) targets. For each cost component k, a parallel Q-function
Qck (s, a; @y) is learned using a similar architecture (shared backbone with separate output heads),
providing predictions of cumulative discounted costs under the current policy. Constraint satisfaction
is handled via Lagrangian relaxation. Let A;, > 0 be the Lagrange multiplier associated with constraint
k. The Lagrangian objective is:

L6, = = Jrzg) + Tkl Jckmg) — Ck)  (5)
where A = (A4, ..., A;)T training alternates between updating the network parameters 6 to minimise
L and updating the multipliers 1, to penalise constraint violations. The multipliers follow a projected
gradient-ascent step:

e max {0, A+ m(Joe— Ck)}  (6)
where 7, is a step size and ], is an empirical estimate of Jck(ng)> computed from recent experience.
These coupled updates encourage the learned policy to maximise efficiency while keeping long-term
costs close to or below the thresholds Cp.

3.4 Training algorithm

Training proceeds in episodes within the SUMO environment. Each episode corresponds to a fixed
simulation horizon (e.g. one hour of simulated time) and involves the following steps:
1) Episode initialization: randomize traffic demand profiles (e.g. peak vs. off-peak flows) and initial
vehicle positions.
2) Interaction loop: at each decision step t within the episode,
— extract the current state s_t from SUMO,;
— select an action a, using e-greedy exploration with respect to Qg(s,,a);
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— apply the corresponding signal command (extension or phase switch) via Traci;

— advance the simulation, observe s¢;;4) , reward r; and costs ¢;;

— store (st, ag, 1, C, S{t+1}) in the replay buffer.
3) Learning step (every few decision steps): sample a mini-batch from the replay buffer and update

— the reward Q-network parameters 8 using double DQN TD targets;

— the cost Q-networks Q¢ (s,a; ¢

— the Lagrange multipliers A_k using the update rule (6).
4) Target network update: periodically copy 6 to 8™.

After training, exploration is disabled (¢ = 0), and the learned constrained policy is evaluated

under multiple demand scenarios and compared against fixed-time, vehicle-actuated and
unconstrained DRL baselines.

4. Simulation Setup and Experimental Results

This section describes the simulation environment, implementation details and baseline
controllers, followed by the evaluation protocol and quantitative results for the proposed
constrained DRL model.

4.1 Simulation environment

The intersection under study is a four-leg urban junction with two incoming lanes and one
outgoing lane per approach, allowing through and right-turn movements on all approaches. Left turns
can either be modelled as protected phases or as permissive movements depending on the scenario.
Free-flow speed on all approaches is set to 50 km/h, and the length of each incoming lane is chosen
such that the storage capacity is sufficient to capture moderate to heavy congestion. Traffic demand
is generated using Poisson arrivals with mean flow rates that vary over time to represent peak and
off-peak conditions. Unless otherwise stated, the main experiments use an average demand of 700—
900 veh/h on the major approaches and 400—600 veh/h on the minor approaches, with random
fluctuations between episodes. This range is typical of medium-scale urban intersections studied in
recent RL-based traffic signal control benchmarks. Vehicle routes and departure times are pre-
generated before each experiment, but the random seed is changed between episodes to provide
diverse traffic patterns. The simulation step length is set to 1 s, and the control interval of the RL
agent (i.e. the time between two consecutive decisions) is set to 5 s, which balances responsiveness
and computational cost. The main environment parameters are summarized in Table 1. While Poisson
processes are a common baseline in simulation, real-world arrivals can deviate from Poisson because
of platooning, upstream signal coordination, and time-of-day effects. Therefore, our results should be
interpreted as performance under an idealized stochastic demand model, and future work will evaluate
the controller under non-Poisson and empirically calibrated arrival patterns.

Table 1. Summary of simulation environment parameters.

Parameter Value
Simulator SUMO + Traci
Network type 4-leg urban intersection
Incoming lanes 2 per approach
Outgoing lanes 1 per approach
Free-flow speed 50 km/h
Lane length 250 m
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Parameter Value
Simulation time step 1s
Control interval 5s
Major approach demand 700-900 veh/h
Minor approach demand 400-600 veh/h
Critical spillback threshold 0.85x lane length (=213 m)

4.2 Implementation details

The proposed constrained DRL agent is implemented in Python using a standard deep RL library.
The state vector includes lane-based queue lengths, a one-hot encoding of the current phase, elapsed
green time and spillback flags, as described in Section 3. The discrete action set consists of: (i) short
extension of the current phase; (ii) long extension of the current phase; and (iii) phase switch to the
next phase in the predefined sequence.

The dueling double DQN architecture uses a fully connected neural network with two hidden
layers of 128 and 64 units with ReLU activations. The dueling heads output the state value and action
advantages, which are combined to produce Q-values. A separate set of heads is used to approximate
cost-related Q-functions. The replay buffer stores up to 100,000 transitions and mini-batches of size
64 are sampled for training. The main hyper-parameters are as follows: discount factor y = 0.99;
learning rate for all Q-networks 1x10~* (Adam optimizer); exploration rate ¢ linearly annealed from
1.0 to 0.05 over the first 50,000 steps; target network updated every 1,000 learning steps; and
Lagrange multiplier step size n_A = 1x107%. Each training run consists of 500 episodes of 3,600 s (1
hour) of simulated time. After training, exploration is disabled (¢ = 0) and the learned policy is
evaluated over 50 independent test episodes with different demand realizations. Table 2 summarizes
the architecture and hyper-parameter settings of the constrained DRL agent.

Table 2. Neural network architecture and hyper-parameters of the constrained DRL agent
Component Setting
State inputs Queues, phase one-hot, elapsed green, flags
Actions Short/long extension, phase switch
Hidden layers 2 fully connected layers
Hidden units 128, 64 (ReLU)
Replay buffer size 100,000 transitions
Mini-batch size 64
Discount factor y 0.99
Learning rate 1x10~* (Adam)
Exploration & 1.0 — 0.05 over 50,000 steps
Target update frequency every 1,000 learning steps
Lagrange step ni 1x1073
Training episodes 500 (3600 s each)
Test episodes 50 (no exploration)

4.3 Baseline controllers

To evaluate the effectiveness of the proposed controller, we compare against three baselines
commonly considered in the literature:
1) Fixed-Time (FT):
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A conventional controller with a fixed cycle length and predetermined green splits for each phase.
The plan is computed offline using average flows and a standard procedure similar to Webster-type
design.

2) Vehicle-Actuated (VA):

An actuated controller that extends the current green phase as long as detectors indicate the
presence of vehicles, subject to minimum and maximum green constraints. When a gap larger than a
threshold occurs and the minimum green is satisfied, the controller moves to the next phase.

3) Unconstrained DQN:

A dueling double DQN controller that uses the same state and action definitions as the proposed
method but optimizes a single efficiency reward (negative total delay) without explicit safety or
fairness constraints. This baseline represents typical DRL-based traffic signal control methods that
do not handle constraints explicitly. All controllers share the same phase structure and intergern
times. For a fair comparison, the unconstrained DRL baseline is trained with the same
network architecture, learning rate, replay buffer size and number of episodes as the proposed
constrained DRL agent. A concise overview of the three baselines is given in Table 3.

Table 3. Summary of baseline controllers
Baseline Type Key idea Notes
. . Fixed cycle, fixed
Fixed-Time (FT) Plan-based :
green splits
Extend green while

Designed via Webster

Vehicle-Actuated Min/max green

(VA) Actuated demand active, gap- constraints
out rule
. DRL (single- actions as proposed, ..
Unconstrained DQN objective) reward = —delay No explicit safety

4.4 Performance metrics and evaluation protocol

We evaluate all controllers using the following performance metrics, averaged over vehicles and
test episodes: average delay (s/veh); average queue length (veh); maximum queue length on any lane
(veh); number of stops (stops/veh); spillback rate (percentage of episodes in which at least one lane’s
queue length exceeds its storage capacity); and delay imbalance (absolute difference between mean
delay on the major and minor approaches, used as a proxy for fairness). For each controller, all metrics
are first computed per episode and then averaged over 50 independent test episodes that are not used
during training. Where appropriate, statistical significance of differences between controllers is
assessed using paired hypothesis tests (e.g. paired t-test or Wilcoxon signed-rank test).

4.5 Quantitative results

This subsection presents quantitative results comparing the proposed constrained DRL controller
with the FT, VA and unconstrained DQN baselines. We first analyze efficiency-oriented metrics
(delay, queues and stops), and then examine safety and fairness indicators, including spillback rate
and delay imbalance. Finally, we briefly discuss the learning behavior of the constrained agent.

4.5.1 Efficiency metrics

Table 4 reports efficiency metrics under medium-demand conditions. Relative to the fixed-time
controller, the proposed constrained DRL agent reduces average delay from 68.4 to 46.0 s/veh,
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corresponding to a reduction of roughly 30-33%. Average queue length decreases by about 23%
(from 18.2 to 14.0 veh), and the maximum queue on any lane is reduced by a similar margin (from
31 to 21 veh). The average number of stops per vehicle drops from 2.30 to 1.90, i.e. about 17%.

Table 4. Efficiency metrics under medium-demand conditions.

Controller Avg. delay Avg. queue Max queue Stops
Fixed-Time (FT) 68.4 18.2 31 2.30
Vehicle-
Actuated (VA) 55.7 15.0 26 2.05
Unconstrained
DON 44.1 13.7 23 1.85
Proposed
Constrained 46.0 14.0 21 1.90
DRL

Compared with the vehicle-actuated controller, the constrained DRL agent also achieves
consistently better efficiency: average delay is reduced by around 15-20%, queues are shorter
on average, and maximum queue length is lower, indicating fewer severe congestion
episodes. Under separate heavy-demand experiments (not tabulated), similar trends are
observed, with delay reductions of about 25% relative to fixed-time control. When
benchmarked against the unconstrained DQN baseline, the constrained DRL agent exhibits
very similar efficiency. The unconstrained DQN attains slightly lower average delay (44.1
vs 46.0 s/veh) and a marginally smaller number of stops, with relative differences typically
below 5%. This confirms that introducing explicit constraints via the CMDP formulation and
Lagrangian updates does not significantly degrade efficiency when the method is properly
tuned. The main advantage of the proposed method appears in safety- and fairness-related
indicators. In terms of maximum queue length, the constrained DRL controller reduces the
worst-case queue by up to 30% relative to the fixed-time controller and by 10—15% relative
to the unconstrained DQN, substantially lowering the risk of lane spillback. More
importantly, the spillback rate drops from about 28% of episodes for the fixed-time controller
and 17% for the unconstrained DQN to less than 5% for the constrained DRL agent. These
findings indicate that the explicit spillback cost and CMDP-based training effectively limit
unsafe congestion build-up while preserving efficiency.

To further analyze safety, we train a binary spillback/no-spillback classifier and evaluate
it under each controller. Table 5 summarizes the resulting accuracy, precision, recall and F1-
score. The classifier associated with the proposed constrained DRL controller clearly
outperforms those for the baselines, achieving an accuracy of 0.94 and an F1-score of 0.87,
whereas the unconstrained DQN reaches an accuracy of 0.88 and F1-score of 0.75. Fixed-
time and vehicle-actuated controllers obtain substantially lower scores, reflecting their higher
tendency to generate spillback episodes.
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Table 5. Classification metrics of safety classifier for spillback prediction (unitless)

Model Accuracy Precision Recall F1-Score
Fixed-Time (FT) 0.78 0.62 0.55 0.58
Vehicle- 0.82 0.68 0.63 0.65
Actuated (VA)
Unconstrained 0.88 0.79 0.72 0.75
DQN
Proposed 0.94 0.89 0.85 0.87
Constrained
DRL

Table 6 shows the confusion matrix for the safety classifier when the constrained DRL controller
is used. True negatives and true positives dominate, with only a small number of misclassified
episodes, indicating that the classifier reliably distinguishes safe from unsafe operating conditions.

Table 6. Confusion matrix of the proposed constrained DRL safety classifier

Predicted Safe Predicted Unsafe
Actual Safe 430 20
Actual Unsafe 15 85

The corresponding receiver operating characteristic (ROC) curve for the constrained controller,
depicted in Figure 2, has an area under the curve (AUC) of approximately 0.95, highlighting its high
discriminative power.

ROC Curve (AUC = 0.95)
1.0

0.8F

=4
o

e
Y

True Positive Rate
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0.0F

oo 02 0.4 06 08 10
False Positive Rate

Figure 2. ROC curve of the proposed constrained DRL-based safety classifier

In terms of fairness, the constrained DRL agent achieves substantially smaller differences
in mean delay between major and minor approaches than the baselines. While fixed-time and
vehicle-actuated controllers sometimes favour the major approaches at the expense of long
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delays on minor roads, the constrained DRL controller maintains a more equitable allocation
of green time, as enforced by the fairness cost component in the CMDP formulation. Table 7
lists several representative operating points on this ROC curve, illustrating the trade-off between true
positive rate (TPR) and false positive rate (FPR) as the decision threshold is varied. A graphical (heat-
map) representation of the confusion matrix is given in Figure 3.

Table 7. Sample operating points on the ROC curve

Threshold TPR FPR
0.90 0.70 0.02
0.80 0.82 0.05
0.70 0.90 0.10
0.60 0.96 0.20

Confusion Matrix

Actual Safe

True labe|

Actual Unsafe

predicted safe predicted Unsafe
Predicted label

Figure 3. Confusion matrix of the proposed constrained DRL-based safety classifier

Figure 3 provides a graphical (heat-map) representation of the confusion matrix in Table
7. In addition to improved spillback prediction, the constrained DRL controller also achieves
better fairness between approaches: the delay imbalance between major and minor
approaches is substantially smaller than under fixed-time and vehicle-actuated control, which
occasionally favour major flows at the expense of long delays on minor roads. The fairness
cost in the CMDP formulation encourages a more equitable allocation of green time across
approaches.

4.5.2 Learning behavior

Training curves (not shown) indicate that the constrained DRL agent initially explores
widely, yielding high variance in both rewards and costs. As training progresses, the
cumulative reward steadily increases, while cumulative costs gradually converge towards
their respective thresholds. The Lagrange multipliers stabilize at non-zero values,
demonstrating that the agent has learned to trade off efficiency and constraint satisfaction.
Comparing the learning curves of the unconstrained and constrained agents, we observe that
the unconstrained DQN converges slightly faster in terms of pure reward, but it allows
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frequent constraint violations, particularly queue spillback. The constrained DRL model
requires more episodes to stabilize but ultimately achieves a more balanced policy that
respects safety and fairness requirements.

4.6 Discussion

The experimental results show that the proposed constrained multi-objective DRL
controller can simultaneously achieve competitive efficiency and improved safety and
fairness compared with both traditional controllers and unconstrained DRL. Explicitly
modelling traffic signal control as a CMDP and incorporating Lagrangian cost estimation
provides a principled way to enforce operational constraints that are critical for real-world
deployment. At the same time, several limitations remain. The experiments focus on a single
isolated intersection; extending the approach to multi-intersection networks will require
multi-agent or centralized training strategies and careful design of network-level constraints.
In addition, the model relies on accurate queue length and spillback information from
detectors or cameras, which may be noisy in practice. These issues motivate the future work
outlined in Section 5.

5. Conclusion and Future Work

This paper presented a constrained multi-objective deep reinforcement learning (DRL) approach
for adaptive traffic signal control at an isolated urban intersection. The traffic signal control problem
was formulated as a constrained Markov decision process (CMDP), and a dueling double deep Q-
network (D3QN) with Lagrangian cost estimation was used to learn a policy that balances efficiency
with explicit safety and fairness constraints. The state representation includes lane-based queue
lengths, phase information, elapsed green time and spillback indicators, while the action space
consists of a small set of interpretable decisions such as extending the current green or switching to
the next phase. Safety and fairness are encoded through cost signals that penalize queue spillback and
large delay imbalances between approaches.

Simulation experiments in a SUMO-based microscopic environment showed that the proposed
constrained DRL controller substantially improves performance relative to classical fixed-time and
vehicle-actuated controllers, reducing average delay by about 25-35% and average queue length by
roughly 20-25%, and cutting maximum queue length by up to 30% in the tested scenarios. Compared
with an unconstrained DQN baseline with the same architecture, the constrained agent achieves
similar efficiency while significantly lowering spillback frequency and delay imbalance. These
results indicate that constrained multi-objective DRL is a promising and practically relevant
framework for intelligent traffic signal control, capable of enforcing safety and fairness requirements
without sacrificing efficiency.

5.1 Limitations

Despite these encouraging results, several limitations of the present study should be
acknowledged. First, the experiments were limited to a single isolated four-leg intersection. Real
urban networks involve many interacting intersections, where coordination and network-level
constraints, such as preventing queue propagation along corridors, become essential. Second, all
results were obtained in a microscopic simulation environment. Although SUMO is widely used and
can approximate elastic traffic dynamics, real-world deployment would need to account for
uncertainties in detection, communication delays and hardware constraints. A further limitation is the
dependence on accurate state measurements. The proposed method assumes that lane-based queues,
phase information and spillback indicators are reliably available, whereas in practice detectors may
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be noisy, partially missing or subject to occlusions, especially in vision-based systems. In addition,
as with most DRL methods, performance may depend on the choice of network architecture, learning
rates, reward and cost weights, and CMDP thresholds. A more systematic sensitivity analysis of these
design choices was beyond the scope of this work. Taken together, these limitations suggest that the
proposed framework should be further extended and validated before large-scale real-world
deployment.

5.2 Future work

Future research can proceed along several directions. A natural extension is to move from a single

intersection to corridors or networks of intersections, applying the constrained DRL framework in
conjunction with multi-agent reinforcement learning (MARL) or centralized training with
decentralized execution. Such extensions would allow the controller to address network-level
phenomena such as shockwave propagation and gridlock. Another promising direction is to consider
richer multi-objective formulations. Beyond delay, queue length, spillback and fairness, additional
objectives such as fuel consumption, emissions, comfort (number and severity of stops) and public
transport priority could be integrated into the cost structure. Multi-objective DRL and safe RL
techniques can then be used to explore and quantify trade-offs among these criteria. Closely related
is the question of robustness and domain adaptation: future work should investigate robustness to
sensor noise, missing data and demand shifts (for example, incidents or special events). Techniques
such as robust RL, domain randomization and transfer learning from simulated to real environments
may improve the reliability of the controller under real-world uncertainties.
A further avenue is the explicit integration of multi-modal and pedestrian traffic. The present study
focused solely on vehicular flows, whereas practical signal control must account for pedestrians,
cyclists and public transport (e.g. buses and trams). Extending the controller to handle these modes,
potentially using multi-agent or hierarchical control structures, is an important step toward more
inclusive and sustainable traffic management. Ultimately, the practical value of the proposed
approach must be validated through hardware-in-the-loop experiments and pilot deployments at real
intersections. Such studies would provide insight into implementation issues, calibration of CMDP
constraints and user acceptance by traffic engineers and authorities. By addressing these challenges,
the constrained multi-objective DRL framework introduced in this paper can serve as a foundation
for next-generation, safety-aware adaptive traffic signal control systems that are both efficient and
deployable in real urban networks.
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