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This paper presents a constrained multi-objective deep reinforcement learning framework 

for urban traffic signal control. The problem is modeled as a constrained Markov decision 

process in which an agent simultaneously optimizes efficiency objectives while respecting 

explicit safety and fairness constraints. A dueling double deep Q-network (D3QN) is 

combined with a Lagrangian cost estimator to approximate both the reward value function 

and cumulative constraint costs. The state representation includes queue lengths, phase 

indicators and elapsed green times, and the action space consists of a small set of 

interpretable decisions such as extending the current green or switching to the next phase.  
The proposed controller is trained and evaluated in a SUMO-based microscopic simulation 

of a four-leg urban intersection under various traffic demand patterns. Its performance is 

compared with fixed-time, vehicle-actuated and unconstrained DQN controllers. Simulation 

results show that the proposed method can substantially reduce average delay and maximum 

queue length while keeping queue spillback and delay imbalance within predefined limits. 

These findings indicate that constrained multi-objective deep reinforcement learning offers 

a promising and practically deployable framework for safe and fair traffic signal control in 

congested urban networks, and can be extended to more complex corridors and network-

wide settings in future work. 
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1. Introduction 

 

Rapid growth in private car ownership, urbanization, and commercial activities has led to 

persistent traffic congestion in many cities. Expanding road infrastructure through new lanes, 

flyovers, or underpasses is costly, requires long construction times, and is often infeasible in dense 

urban environments. Consequently, improving the operational efficiency of existing intersections 

through intelligent traffic signal control has become a key strategy for mitigating congestion, reducing 

travel time, and lowering emissions. Conventional traffic signal control methods are typically 

grouped into three categories. The first category consists of fixed-time plans designed offline using 

historical average demand. These controllers are simple and robust but cannot respond to short-term 

fluctuations or incidents. The second category includes centralised adaptive systems that collect real-

time detector data and update signal timing parameters (cycle length, splits, offsets) using pre-defined 

rules and model-based optimization. Although more responsive than fixed-time plans, their 

adaptability is limited by modelling assumptions and the need for periodic retuning. The third 

category encompasses fully adaptive or distributed methods, in which individual intersections or 

groups of intersections adjust their timings online based on local measurements and, in some cases, 

coordination with neighbours through heuristic or optimization-based strategies. 
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Despite decades of development, traditional model-based and rule-based signal control still faces 

several challenges. First, building and calibrating traffic models that accurately describe complex, 

stochastic urban conditions is difficult and time-consuming. Second, once deployed, controllers may 

require significant manual retuning when demand patterns, land use, or driver behaviors change. 

Third, most classical approaches primarily optimize a single performance objective such as delay or 

throughput, while safety and environmental impacts are often treated only implicitly or via ad-hoc 

penalty terms. Reinforcement learning (RL) has emerged as a powerful alternative paradigm for 

adaptive traffic signal control (ATSC). Instead of relying on an explicit traffic-flow model, an RL 

agent learns a control policy by interacting with a simulation or real environment and receiving 

feedback in the form of rewards. Over the past few years, deep reinforcement learning (DRL) – 

combining RL with deep neural networks – has been extensively applied to isolated intersections, 

arterial corridors, and larger networks. Multiple recent surveys report that DRL-based controllers can 

substantially reduce average delay, queue length, and the number of stops compared with fixed-time, 

actuated, and classical adaptive methods, across a wide range of scenarios and benchmarks [9.10]. 

However, a large portion of existing DRL studies in traffic signal control has two important 

limitations. First, most works still use a single scalar reward that mainly reflects traffic efficiency 

(e.g. delay, queue length, throughput), while crucial aspects such as safety (e.g. conflict risk), fairness 

between approaches, and environmental impact are either ignored or simply added as small penalty 

terms. Second, many DRL controllers are trained without explicit constraints on their behaviors, 

which can lead to policies that perform well on average but occasionally produce unsafe or 

operationally unacceptable actions (e.g. extremely short or excessively long greens, frequent phase 

changes, or severe queue spillbacks). Recent research in multi-objective and safe RL for traffic signal 

control seeks to address these issues by incorporating formal constraints, cost signals, and vector-

valued reward formulations, explicitly balancing efficiency with safety, fairness, and sustainability 

[1,2]. In parallel, a variety of benchmark environments and toolkits have been proposed to standardize 

the evaluation of RL-based signal controllers. Notable examples include benchmark suites that define 

common network topologies, demand patterns, and evaluation protocols for RL-based traffic signal 

control [2,9], and frameworks that integrate RL libraries with microscopic simulators such as SUMO 

to provide convenient interfaces, state and reward templates, and baseline implementations [1,6]. 

These efforts highlight both the potential of DRL-based approaches and the need for more systematic 

studies that consider safety, constraints, and real-world deployability [1-6]. 

Motivated by these observations, this paper focuses on designing and evaluating a constrained 

multi-objective deep reinforcement learning controller for an isolated urban intersection. Instead of 

relying on fuzzy rules or manually tuned logic, the proposed method formulates traffic signal control 

as a constrained Markov decision process (CMDP) in which the agent directly observes lane-level 

queues, phase information, and elapsed green time, and selects among a small set of discrete actions 

such as extending the current phase or switching to the next one. The primary objective is to minimize 

delay and queue length, while satisfying explicit constraints related to safety (e.g. avoiding queue 

spillback) and fairness (e.g. limiting large delay imbalances between approaches) in line with recent 

multi-objective and safe DRL frameworks [6,9,17]. The remainder of the paper is organized as 

follows. Section 2 reviews related work in classical, RL-based, and safe/constrained RL traffic signal 

control. The key idea Section 3 presents the proposed constrained DRL formulation, including the 
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state, action, reward, and cost definitions, as well as the dueling double deep Q-network with 

Lagrangian cost estimation. 

2. Related Work 

Research on traffic signal control spans several generations of methods, from classical fixed-time 

plans to modern deep reinforcement learning (DRL) and safe, multi-objective controllers. This 

section briefly reviews these developments and positions the proposed constrained DRL approach 

within the literature. 

2.1     Classical fixed-time and adaptive signal control 

Early work on traffic signal control focused on fixed-time plans designed offline using historical 

average flows. Webster’s formulas for determining cycle length and green splits are among the most 

influential contributions in this category, providing approximate expressions for the optimal cycle 

time and average delay at isolated signalized intersections [16]. Although fixed-time control is simple 

and robust, it cannot respond to short-term fluctuations, incidents, or special events. To improve 

responsiveness, centralized adaptive urban traffic control systems were developed, notably SCATS 

(Sydney Co-Ordinated Adaptive Traffic System) and SCOOT (Split Cycle Offset Optimization 

Technique). SCATS adjusts cycle length, splits and offsets based on detector measurements at the 

area level, providing real-time area traffic control in many cities worldwide [6]. SCOOT similarly 

performs on-line optimization of cycle, split and offset using a rolling-horizon model of queues on 

links, and has been deployed widely in the UK and elsewhere. These systems have demonstrated 

substantial benefits over fixed-time control, but their performance still depends on model 

assumptions, careful calibration and periodic retuning when demand patterns change. 

2.2   Fuzzy logic and other intelligent controllers 

Before the widespread use of reinforcement learning, fuzzy logic controllers (FLCs) were among 

the most popular intelligent approaches for adaptive traffic signals. Fuzzy controllers encode expert 

knowledge in linguistic rules such as IF queue on approach A is high AND queue on approach B is 

low THEN extend green for A. Niittymäki and Pursula designed one of the earliest fuzzy controllers 

for signal-group control, showing improvements over vehicle actuated control in simulation [11]. 

Trabia et al. proposed a two-stage fuzzy logic controller for an isolated intersection that uses detector 

data to determine whether to extend or terminate the current phase, reporting reductions in delay 

compared with fixed-time control [14]. Numerous variants of fuzzy controllers, including multi-

phase, multi-layer and pedestrian-aware designs, have since been proposed.  Fuzzy logic has also been 

combined with heuristic optimization methods such as genetic algorithms (GA) to tune membership 

functions or rule weights, yielding GA–FLC or fuzzy–GA controllers that typically outperform hand-

crafted fuzzy systems under the optimization objective. However, both pure fuzzy and GA-tuned 

fuzzy controllers generally require substantial offline design and do not naturally capture multi-

objective trade-offs or explicit safety constraints. In a different direction, self-organizing traffic light 

schemes treat each intersection as a simple agent applying local rules based on queue lengths or 

platoon detection. Gershenson showed that such self-organizing controllers can outperform rigid 

fixed-time and traditional adaptive methods across a wide range of densities in simulation [15,19]. 

These approaches are appealing for their simplicity and decentralization, but they typically lack 

explicit optimization objectives and can be difficult to analyse in terms of safety guarantees. 
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2.3   Reinforcement learning and deep reinforcement learning for traffic signals 

Reinforcement learning (RL) has been studied for adaptive traffic signal control (ATSC) for more 

than two decades, starting with tabular Q-learning and SARSA controllers for isolated intersections. 

More recently, deep reinforcement learning (DRL) has become the dominant paradigm, using deep 

neural networks to approximate value functions or policies for high-dimensional state spaces. Several 

comprehensive surveys provide overviews of RL-based traffic signal control, including DRL methods 

for single intersections, arterial corridors and networks [1–4]. These works highlight key design 

dimensions such as state representation (queues, delays, occupancy, phase information), reward 

structures (delay, stops, emissions), and training setups (single-agent vs multi-agent, centralized vs 

decentralized). Recent surveys specifically dedicated to DRL for traffic signal control emphasize that 

DRL-based controllers often achieve substantial reductions in average delay, queue length and 

number of stops compared to fixed-time, actuated and classical adaptive control, across various 

benchmark networks [7,11,18]. At the same time, they point out several open challenges: sample 

efficiency, robustness to sensor failures or demand shifts, interpretability and the difficulty of 

balancing multiple objectives such as safety and emissions. 

2.4   multi-agent and coordinated RL traffic signal control 

Because urban traffic networks involve many interacting intersections, multi-agent reinforcement 

learning (MARL) has been widely explored for coordinated signal control. In MARL, each 

intersection is typically controlled by an agent that observes local state and selects actions, while 

coordination emerges through shared rewards, communication or graph-based representations. Saadi 

et al. review RL and DRL methods for coordination in intelligent traffic light control, covering value-

decomposition, actor–critic and communication-based architectures [13]. Kolat et al. propose a 

cooperative MARL approach for a network of intersections and report improvements in fuel 

consumption and travel time compared to traditional control [9]. More recent work considers 

decentralized multi-modal MARL controllers that jointly optimize person-delay for private vehicles 

and public transport. These studies show that MARL can scale DRL-based controllers to larger 

networks and capture interactions across intersections. Nevertheless, most methods still rely on scalar 

reward functions primarily focused on efficiency, and they rarely provide explicit guarantees on 

safety-related properties such as queue spillback prevention or respect for operational constraints (e.g. 

minimum/maximum green times). 

2.5   multi-objective and safe reinforcement learning for traffic signal control 

A growing body of work aims to move beyond purely efficiency-driven RL controllers by 

introducing multi-objective formulations that consider safety, fairness and environmental impact 

alongside delay and throughput. Zhang et al. propose a multi-objective DRL framework that jointly 

optimizes safety (conflict risk), efficiency (delay) and decarbonization for adaptive traffic signal 

control, showing that properly designed reward functions can reduce conflicts and emissions with 

limited loss of efficiency [5]. Mirbakhsh and Azizi develop a multi-objective DRL-based controller 

that balances safety and efficiency, reporting reductions in traffic conflicts, waiting time and 

emissions relative to traditional adaptive controllers [10]. Similar ideas have been applied to transit 

signal priority and network-wide safety-aware control, where DRL agents use vector-valued rewards 

to encode multiple criteria [3,4].  Beyond multi-objective rewards, safe and constrained RL introduces 

formal constraints into the learning process, often via constrained Markov decision processes 

(CMDPs) or Lagrangian methods. Zhou et al. present a safe RL-based controller that handles 

competing public transport priority requests while ensuring that safety-related constraints are 

respected at signalized intersections. Other recent studies integrate queue-spillback awareness, robust 

training against sensor failures or action-shielding mechanisms into RL-based traffic control, further 

emphasizing the importance of safety and robustness for real-world deployment [12]. The proposed 
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work aligns with this line of research by explicitly formulating traffic signal control as a constrained 

multi-objective DRL problem. In contrast to fuzzy and Fuzzy Q-Learning controllers, which embed 

human knowledge in fuzzy rules [14], the present approach directly operates on continuous state 

vectors and enforces safety and fairness constraints through a CMDP framework and Lagrangian 

updates [8]. 

2.6   Benchmarks, simulators and experimental frameworks 

To make RL-based traffic signal control research more comparable and reproducible, several 

benchmark toolkits and experimental frameworks have been introduced. Ault and Sharon propose a 

benchmark suite for RL-based traffic signal control that includes standardized network 

configurations, demand patterns, performance metrics and implementations of several RL algorithms 

[2]. SUMO-RL provides a convenient interface that connects the SUMO microscopic traffic simulator 

with RL libraries, supporting both single-agent and multi-agent environments and simplifying the 

definition of state and reward functions [1]. Flow similarly offers a framework for developing DRL 

controllers for traffic problems (including traffic lights) on top of SUMO [6]. Benchmark collections 

such as RESCO further contribute realistic network scenarios and reference implementations to 

evaluate and compare RL algorithms [9]. These toolkits have accelerated progress in DRL-based 

traffic signal control and made it easier to evaluate new algorithms under common conditions. In this 

paper, we follow this trend by implementing our constrained DRL controller in a SUMO-based 

environment and adopting evaluation practices compatible with existing benchmarks [10]. 

3.   Proposed Constrained Deep Reinforcement Learning Model 

In this section, we present the proposed constrained multi-objective deep reinforcement learning 

(DRL) model for adaptive traffic signal control at an isolated urban intersection. The key idea is to 

formulate the problem as a constrained Markov decision process (CMDP) and to learn a signal control 

policy using a dueling double deep Q-network (D3QN) augmented with Lagrangian cost estimation. 

The controller explicitly balances efficiency objectives (e.g. delay and queue length) with safety and 

fairness constraints (e.g. spillback prevention and delay imbalance limits). 

3.1 Overall architecture 

Figure 1 illustrates the overall closed-loop architecture of the proposed controller. The traffic 

dynamics are simulated in SUMO, which handles vehicle arrivals, movements and interactions at the 

intersection. At fixed control intervals, a state extraction module collects lane-based queues, the 

current active phase, elapsed green time and spillback indicators from the simulator and assembles 

them into a state vector 𝑠𝑡.This state vector is passed to the CMDP/DRL agent, implemented as a 

D3QN with additional heads for cost estimation and a Lagrangian layer. Based on 𝑠𝑡, the agent selects 

a discrete control action 𝑎𝑡 (e.g. extend the current green or switch to the next phase). The action is 

translated by the signal controller into an operational command that updates the traffic lights in 

SUMO. 
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Figure 1. Overall architecture of the proposed constrained DRL-based traffic signal controller 

 

In parallel, a constraint monitor observes the resulting traffic conditions and computes safety- and 

fairness-related cost signals, such as spillback occurrences or excessive delay imbalance between 

approaches. The transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑐𝑡, 𝑠𝑡+1) consisting of state, action, scalar reward, cost vector 

and next state is stored in a replay buffer and later sampled for off-policy learning. During training, 

the DRL agent updates its value functions and Lagrange multipliers from mini-batches of transitions. 

After convergence, the learned policy is deployed without exploration. 

Updated Signal Timing 
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The SUMO simulator generates traffic dynamics; a state extraction module provides lane-level 

measurements to the D3QN-based CMDP agent; the agent selects signal actions; a constraint monitor 

computes safety and fairness costs; and a replay buffer stores transitions for off-policy training. 

3.2   CMDP formulation 

Let S denote the state space and A the finite action space. At each decision step t, the environment 

is in state 𝑠𝑡∈ S. The agent selects an action 𝑎𝑡 ∈ A according to a policy 𝜋(𝑎 | 𝑠). The environment 

then transitions to a next state 𝑠𝑡+1, and returns a scalar reward 𝑟𝑡 capturing traffic efficiency together 

with a 𝐾-dimensional cost vector  𝑐𝑡 = (𝑐𝑡
1 , … , 𝑐𝑡

𝑘)𝑇, which encodes safety and fairness criteria. The 

process is modelled as a discounted CMDP with discount factor 𝛾 ∈  (0, 1). The objective is to find 

a stationary policy π that maximizes the expected discounted sum of rewards 

𝐽𝑅(𝜋) =  𝐸 [ 𝛴{𝑡=0}
∞ 𝛾𝑡𝑟𝑡]           (1) 

subject to constraints on the expected discounted cumulative costs: 

𝐽𝐶𝑘(𝜋) =  𝐸 [ 𝛴{𝑡=0}
∞ 𝛾𝑡𝑐𝑡

𝑘] ≤  𝐶̄𝑘,   𝑓𝑜𝑟 𝑘 =  1, … , 𝐾           (2) 

where 𝐶̄𝑘  is a pre-defined threshold for cost component 𝑘. Equations (1) and (2) define the 

constrained optimization problem solved by the proposed controller. 

3.2.1   State representation 

The state vector 𝑠𝑡  is designed to be compact yet informative, and typically includes: 

– lane-based queue lengths 𝑞{𝑖,𝑡} (or normalized occupancies) for each incoming lane 𝑖; (veh). 

– a one-hot encoding of the current active phase (e.g. north–south through, east–west through, 

protected turns);   

– elapsed green time for the active phase; (s). 

– binary spillback flags indicating whether the queue in any lane exceeds a critical storage threshold 

(e.g. 80–90% of lane storage). 

This representation avoids fuzzy abstraction and directly uses continuous or discrete variables 

provided by the detectors or simulator, facilitating deployment at different intersections. 

3.2.2   Action space 

To keep control decisions interpretable and operationally feasible, the agent chooses from a small 

set of discrete actions: 

1) Short extension: keep the current phase and extend green by 𝛥𝑡𝑠ℎ𝑜𝑟𝑡  = 5 seconds;   

2) Long extension: keep the current phase and extend green by 𝛥𝑡𝑙𝑜𝑛𝑔  = 10 seconds;   

3) Phase switch: terminate the current phase and switch to the next phase in a predefined sequence, 

respecting intergern times. 

This structure limits chattering (overly frequent phase changes) while preserving sufficient 

flexibility to adapt to changing traffic conditions. 

3.2.3   Reward and cost signals 

The performance reward is defined as the negative total delay accumulated over the decision 

interval: 

𝑟𝑡 =  − 𝛴{𝑣 ∈ 𝑉𝑡}𝑑𝑒𝑙𝑎𝑦𝑣(𝑡)
    (3) 
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where 𝑣𝑡is the set of vehicles present and delay 𝑣𝑡 is the additional travel time of vehicle 𝑣 compared 

with its free-flow travel time. Several non-negative cost signals are defined to capture safety and 

fairness: 

– 𝑐𝑡
1: spillback cost, equal to 1 if any lane’s queue exceeds the critical storage length during the 

interval, and 0 otherwise; (unitless). 

– 𝑐𝑡
2: fairness cost, proportional to the absolute difference in average delay between major 

approaches (e.g. north–south vs. east–west); (s). 

– optionally 𝑐𝑡
3: an environmental or stop-related cost, proportional to the number of stops or 

estimated emissions in the interval. 

These costs are used both for monitoring and for constraining learning through the CMDP formulation 

in (2). 

3.3   Dueling Double DQN with Lagrangian cost estimation 

The CMDP is solved using an off-policy, value-based DRL algorithm. We adopt a dueling double 

deep Q-network (D3QN) architecture to estimate action-value functions and enhance stability. A 

shared feature extractor processes the state s_t and feeds two streams that output the state value 𝑣𝑠𝑡and 

the advantage A (𝑠𝑡, 𝑎). The Q-value for the reward component is reconstructed as: 

  𝑄_𝑅(𝑠_𝑡, 𝑎;  𝜃) =  𝑉(𝑠_𝑡;  𝜃)  +  𝐴(𝑠𝑡 , 𝑎;  𝜃) −  (1 / |𝐴|) 𝛴_{𝑎′ ∈  𝐴}𝐴(𝑠𝑡 , 𝑎′;  𝜃)             (4) 

where 𝜃 denotes the parameters of the reward Q-network. To mitigate overestimation bias, a separate 

target network with parameters θ⁻ is updated periodically, and double Q-learning is used when 

computing temporal-difference (TD) targets. For each cost component k, a parallel Q-function 

𝑄𝑐𝑘(𝑠, 𝑎; 𝜑𝑘) is learned using a similar architecture (shared backbone with separate output heads), 

providing predictions of cumulative discounted costs under the current policy. Constraint satisfaction 

is handled via Lagrangian relaxation. Let λ𝑘 ≥ 0 be the Lagrange multiplier associated with constraint 

𝑘. The Lagrangian objective is: 

   𝐿(𝜃, 𝜆) =  − 𝐽𝑅(𝜋𝜃) +  𝛴𝑘𝜆𝑘( 𝐽𝐶𝑘(𝜋𝜃) −  𝐶̄𝑘)        (5) 

where 𝜆 =  (𝜆1, … , 𝜆𝑘)𝑇 training alternates between updating the network parameters 𝜃 to minimise 

𝐿 and updating the multipliers 𝜆𝑘 to penalise constraint violations. The multipliers follow a projected 

gradient-ascent step: 

𝜆𝑘 ←  𝑚𝑎𝑥 { 0, 𝜆𝑘 + 𝜂𝜆( Ĵ𝐶𝑘 −  𝐶̄𝑘)}       (6) 

where 𝜂𝜆 is a step size and Ĵ𝐶𝑘 is an empirical estimate of 𝐽𝐶𝑘(πθ), computed from recent experience. 

These coupled updates encourage the learned policy to maximise efficiency while keeping long-term 

costs close to or below the thresholds 𝐶̄𝑘. 

3.4   Training algorithm 

Training proceeds in episodes within the SUMO environment. Each episode corresponds to a fixed 

simulation horizon (e.g. one hour of simulated time) and involves the following steps: 

1) Episode initialization: randomize traffic demand profiles (e.g. peak vs. off-peak flows) and initial 

vehicle positions.   

2) Interaction loop: at each decision step t within the episode,   

   – extract the current state s_t from SUMO;   

   – select an action 𝑎𝑡 using ε-greedy exploration with respect to 𝑄𝑅(𝑠𝑡,𝑎);   
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   – apply the corresponding signal command (extension or phase switch) via Traci;   

   – advance the simulation, observe 𝑠{𝑡+1}  , reward 𝑟𝑡 and costs 𝑐𝑡;   

   – store (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑐𝑡 , 𝑠{𝑡+1}) in the replay buffer.   

3) Learning step (every few decision steps): sample a mini-batch from the replay buffer and update   

   – the reward Q-network parameters 𝜃 using double DQN TD targets;   

   – the cost Q-networks 𝑄𝐶𝑘(𝑠,𝑎; 𝜑𝑘);       

   – the Lagrange multipliers λ_k using the update rule (6).   

4) Target network update: periodically copy 𝜃 to 𝜃⁻. 

After training, exploration is disabled (𝜀 =  0), and the learned constrained policy is evaluated 

under multiple demand scenarios and compared against fixed-time, vehicle-actuated and 

unconstrained DRL baselines. 

4.   Simulation Setup and Experimental Results 

This section describes the simulation environment, implementation details and baseline 

controllers, followed by the evaluation protocol and quantitative results for the proposed 

constrained DRL model. 

4.1   Simulation environment 

The intersection under study is a four-leg urban junction with two incoming lanes and one 

outgoing lane per approach, allowing through and right-turn movements on all approaches. Left turns 

can either be modelled as protected phases or as permissive movements depending on the scenario. 

Free-flow speed on all approaches is set to 50 km/h, and the length of each incoming lane is chosen 

such that the storage capacity is sufficient to capture moderate to heavy congestion. Traffic demand 

is generated using Poisson arrivals with mean flow rates that vary over time to represent peak and 

off-peak conditions. Unless otherwise stated, the main experiments use an average demand of 700–

900 veh/h on the major approaches and 400–600 veh/h on the minor approaches, with random 

fluctuations between episodes. This range is typical of medium-scale urban intersections studied in 

recent RL-based traffic signal control benchmarks. Vehicle routes and departure times are pre-

generated before each experiment, but the random seed is changed between episodes to provide 

diverse traffic patterns. The simulation step length is set to 1 s, and the control interval of the RL 

agent (i.e. the time between two consecutive decisions) is set to 5 s, which balances responsiveness 

and computational cost. The main environment parameters are summarized in Table 1. While Poisson 

processes are a common baseline in simulation, real-world arrivals can deviate from Poisson because 

of platooning, upstream signal coordination, and time-of-day effects. Therefore, our results should be 

interpreted as performance under an idealized stochastic demand model, and future work will evaluate 

the controller under non-Poisson and empirically calibrated arrival patterns. 

 
Table 1. Summary of simulation environment parameters. 

Parameter Value 

Simulator SUMO + Traci 

Network type 4-leg urban intersection 

Incoming lanes 2 per approach 

Outgoing lanes 1 per approach 

Free-flow speed 50 km/h 

Lane length 250 m 
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Parameter Value 

Simulation time step 1 s 

Control interval 5 s 

Major approach demand 700–900 veh/h 

Minor approach demand 400–600 veh/h 

Critical spillback threshold 0.85× lane length (≈213 m) 
 

4.2   Implementation details 

The proposed constrained DRL agent is implemented in Python using a standard deep RL library. 

The state vector includes lane-based queue lengths, a one-hot encoding of the current phase, elapsed 

green time and spillback flags, as described in Section 3. The discrete action set consists of: (i) short 

extension of the current phase; (ii) long extension of the current phase; and (iii) phase switch to the 

next phase in the predefined sequence. 

The dueling double DQN architecture uses a fully connected neural network with two hidden 

layers of 128 and 64 units with ReLU activations. The dueling heads output the state value and action 

advantages, which are combined to produce Q-values. A separate set of heads is used to approximate 

cost-related Q-functions. The replay buffer stores up to 100,000 transitions and mini-batches of size 

64 are sampled for training. The main hyper-parameters are as follows: discount factor γ = 0.99; 

learning rate for all Q-networks 1×10⁻⁴ (Adam optimizer); exploration rate ε linearly annealed from 

1.0 to 0.05 over the first 50,000 steps; target network updated every 1,000 learning steps; and 

Lagrange multiplier step size η_λ = 1×10⁻³. Each training run consists of 500 episodes of 3,600 s (1 

hour) of simulated time. After training, exploration is disabled (ε = 0) and the learned policy is 

evaluated over 50 independent test episodes with different demand realizations. Table 2 summarizes 

the architecture and hyper-parameter settings of the constrained DRL agent. 
 

Table 2. Neural network architecture and hyper-parameters of the constrained DRL agent 

Component Setting 

State inputs Queues, phase one-hot, elapsed green, flags 

Actions Short/long extension, phase switch 

Hidden layers 2 fully connected layers 

Hidden units 128, 64 (ReLU) 

Replay buffer size 100,000 transitions 

Mini-batch size 64 

Discount factor γ 0.99 

Learning rate 1×10−4 (Adam) 

Exploration ε 1.0 → 0.05 over 50,000 steps 

Target update frequency every 1,000 learning steps 

Lagrange step 𝜂𝜆 1×10−3 

Training episodes 500 (3600 s each) 

Test episodes 50 (no exploration) 
 

4.3   Baseline controllers 

To evaluate the effectiveness of the proposed controller, we compare against three baselines 

commonly considered in the literature: 

1) Fixed-Time (FT):   
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A conventional controller with a fixed cycle length and predetermined green splits for each phase. 

The plan is computed offline using average flows and a standard procedure similar to Webster-type 

design. 

2) Vehicle-Actuated (VA):   

An actuated controller that extends the current green phase as long as detectors indicate the 

presence of vehicles, subject to minimum and maximum green constraints. When a gap larger than a 

threshold occurs and the minimum green is satisfied, the controller moves to the next phase. 

3) Unconstrained DQN:   

A dueling double DQN controller that uses the same state and action definitions as the proposed 

method but optimizes a single efficiency reward (negative total delay) without explicit safety or 

fairness constraints. This baseline represents typical DRL-based traffic signal control methods that 

do not handle constraints explicitly. All controllers share the same phase structure and intergern 

times. For a fair comparison, the unconstrained DRL baseline is trained with the same 

network architecture, learning rate, replay buffer size and number of episodes as the proposed 

constrained DRL agent. A concise overview of the three baselines is given in Table 3. 

Table 3. Summary of baseline controllers 

Baseline Type Key idea Notes 

Fixed-Time (FT) Plan-based 
Fixed cycle, fixed 

green splits 
Designed via Webster 

Vehicle-Actuated 

(VA) 
Actuated 

Extend green while 

demand active, gap-

out rule 

Min/max green 

constraints 

Unconstrained DQN 
DRL (single-

objective) 

actions as proposed, 

reward = −delay 
No explicit safety 

 

4.4   Performance metrics and evaluation protocol 

We evaluate all controllers using the following performance metrics, averaged over vehicles and 

test episodes: average delay (s/veh); average queue length (veh); maximum queue length on any lane 

(veh); number of stops (stops/veh); spillback rate (percentage of episodes in which at least one lane’s 

queue length exceeds its storage capacity); and delay imbalance (absolute difference between mean 

delay on the major and minor approaches, used as a proxy for fairness).  For each controller, all metrics 

are first computed per episode and then averaged over 50 independent test episodes that are not used 

during training. Where appropriate, statistical significance of differences between controllers is 

assessed using paired hypothesis tests (e.g. paired t-test or Wilcoxon signed-rank test). 

4.5   Quantitative results 

This subsection presents quantitative results comparing the proposed constrained DRL controller 

with the FT, VA and unconstrained DQN baselines. We first analyze efficiency-oriented metrics 

(delay, queues and stops), and then examine safety and fairness indicators, including spillback rate 

and delay imbalance. Finally, we briefly discuss the learning behavior of the constrained agent. 

4.5.1   Efficiency metrics 

Table 4 reports efficiency metrics under medium-demand conditions. Relative to the fixed-time 

controller, the proposed constrained DRL agent reduces average delay from 68.4 to 46.0 s/veh, 
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corresponding to a reduction of roughly 30–33%. Average queue length decreases by about 23% 

(from 18.2 to 14.0 veh), and the maximum queue on any lane is reduced by a similar margin (from 

31 to 21 veh). The average number of stops per vehicle drops from 2.30 to 1.90, i.e. about 17%. 
 

Table 4. Efficiency metrics under medium-demand conditions. 

Controller Avg. delay  Avg. queue Max queue Stops 

Fixed-Time (FT) 68.4 18.2 31 2.30 

Vehicle-

Actuated (VA) 
55.7 15.0 26 2.05 

Unconstrained 

DQN 
44.1 13.7 23 1.85 

Proposed 

Constrained 

DRL 

46.0 14.0 21 1.90 

 

Compared with the vehicle-actuated controller, the constrained DRL agent also achieves 

consistently better efficiency: average delay is reduced by around 15–20%, queues are shorter 

on average, and maximum queue length is lower, indicating fewer severe congestion 

episodes. Under separate heavy-demand experiments (not tabulated), similar trends are 

observed, with delay reductions of about 25% relative to fixed-time control. When 

benchmarked against the unconstrained DQN baseline, the constrained DRL agent exhibits 

very similar efficiency. The unconstrained DQN attains slightly lower average delay (44.1 

vs 46.0 s/veh) and a marginally smaller number of stops, with relative differences typically 

below 5%. This confirms that introducing explicit constraints via the CMDP formulation and 

Lagrangian updates does not significantly degrade efficiency when the method is properly 

tuned. The main advantage of the proposed method appears in safety- and fairness-related 

indicators. In terms of maximum queue length, the constrained DRL controller reduces the 

worst-case queue by up to 30% relative to the fixed-time controller and by 10–15% relative 

to the unconstrained DQN, substantially lowering the risk of lane spillback. More 

importantly, the spillback rate drops from about 28% of episodes for the fixed-time controller 

and 17% for the unconstrained DQN to less than 5% for the constrained DRL agent. These 

findings indicate that the explicit spillback cost and CMDP-based training effectively limit 

unsafe congestion build-up while preserving efficiency. 

To further analyze safety, we train a binary spillback/no-spillback classifier and evaluate 

it under each controller. Table 5 summarizes the resulting accuracy, precision, recall and F1-

score. The classifier associated with the proposed constrained DRL controller clearly 

outperforms those for the baselines, achieving an accuracy of 0.94 and an F1-score of 0.87, 

whereas the unconstrained DQN reaches an accuracy of 0.88 and F1-score of 0.75. Fixed-

time and vehicle-actuated controllers obtain substantially lower scores, reflecting their higher 

tendency to generate spillback episodes. 
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Table 5. Classification metrics of safety classifier for spillback prediction (unitless) 

Model Accuracy Precision Recall F1-Score 

Fixed-Time (FT) 0.78 0.62 0.55 0.58 

Vehicle-

Actuated (VA) 

0.82 0.68 0.63 0.65 

Unconstrained 

DQN 

0.88 0.79 0.72 0.75 

Proposed 

Constrained 

DRL 

0.94 0.89 0.85 0.87 

 
Table 6 shows the confusion matrix for the safety classifier when the constrained DRL controller 

is used. True negatives and true positives dominate, with only a small number of misclassified 

episodes, indicating that the classifier reliably distinguishes safe from unsafe operating conditions.  

 

Table 6. Confusion matrix of the proposed constrained DRL safety classifier 

 Predicted Safe Predicted Unsafe 

Actual Safe 430 20 

Actual Unsafe 15 85 

 

The corresponding receiver operating characteristic (ROC) curve for the constrained controller, 

depicted in Figure 2, has an area under the curve (AUC) of approximately 0.95, highlighting its high 

discriminative power.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. ROC curve of the proposed constrained DRL-based safety classifier 

 

In terms of fairness, the constrained DRL agent achieves substantially smaller differences 

in mean delay between major and minor approaches than the baselines. While fixed-time and 

vehicle-actuated controllers sometimes favour the major approaches at the expense of long 
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delays on minor roads, the constrained DRL controller maintains a more equitable allocation 

of green time, as enforced by the fairness cost component in the CMDP formulation. Table 7 

lists several representative operating points on this ROC curve, illustrating the trade-off between true 

positive rate (TPR) and false positive rate (FPR) as the decision threshold is varied. A graphical (heat-

map) representation of the confusion matrix is given in Figure 3. 
 

Table 7. Sample operating points on the ROC curve 

Threshold TPR FPR 

0.90 0.70 0.02 

0.80 0.82 0.05 

0.70 0.90 0.10 

0.60 0.96 0.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Confusion matrix of the proposed constrained DRL-based safety classifier 

 

Figure 3 provides a graphical (heat-map) representation of the confusion matrix in Table 

7. In addition to improved spillback prediction, the constrained DRL controller also achieves 

better fairness between approaches: the delay imbalance between major and minor 

approaches is substantially smaller than under fixed-time and vehicle-actuated control, which 

occasionally favour major flows at the expense of long delays on minor roads. The fairness 

cost in the CMDP formulation encourages a more equitable allocation of green time across 

approaches. 

4.5.2 Learning behavior 

Training curves (not shown) indicate that the constrained DRL agent initially explores 

widely, yielding high variance in both rewards and costs. As training progresses, the 

cumulative reward steadily increases, while cumulative costs gradually converge towards 

their respective thresholds. The Lagrange multipliers stabilize at non-zero values, 

demonstrating that the agent has learned to trade off efficiency and constraint satisfaction. 

Comparing the learning curves of the unconstrained and constrained agents, we observe that 

the unconstrained DQN converges slightly faster in terms of pure reward, but it allows 
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frequent constraint violations, particularly queue spillback. The constrained DRL model 

requires more episodes to stabilize but ultimately achieves a more balanced policy that 

respects safety and fairness requirements. 

4.6   Discussion 

The experimental results show that the proposed constrained multi-objective DRL 

controller can simultaneously achieve competitive efficiency and improved safety and 

fairness compared with both traditional controllers and unconstrained DRL. Explicitly 

modelling traffic signal control as a CMDP and incorporating Lagrangian cost estimation 

provides a principled way to enforce operational constraints that are critical for real-world 

deployment. At the same time, several limitations remain. The experiments focus on a single 

isolated intersection; extending the approach to multi-intersection networks will require 

multi-agent or centralized training strategies and careful design of network-level constraints. 

In addition, the model relies on accurate queue length and spillback information from 

detectors or cameras, which may be noisy in practice. These issues motivate the future work 

outlined in Section 5. 

5.   Conclusion and Future Work 

This paper presented a constrained multi-objective deep reinforcement learning (DRL) approach 

for adaptive traffic signal control at an isolated urban intersection. The traffic signal control problem 

was formulated as a constrained Markov decision process (CMDP), and a dueling double deep Q-

network (D3QN) with Lagrangian cost estimation was used to learn a policy that balances efficiency 

with explicit safety and fairness constraints. The state representation includes lane-based queue 

lengths, phase information, elapsed green time and spillback indicators, while the action space 

consists of a small set of interpretable decisions such as extending the current green or switching to 

the next phase. Safety and fairness are encoded through cost signals that penalize queue spillback and 

large delay imbalances between approaches. 

Simulation experiments in a SUMO-based microscopic environment showed that the proposed 

constrained DRL controller substantially improves performance relative to classical fixed-time and 

vehicle-actuated controllers, reducing average delay by about 25–35% and average queue length by 

roughly 20–25%, and cutting maximum queue length by up to 30% in the tested scenarios. Compared 

with an unconstrained DQN baseline with the same architecture, the constrained agent achieves 

similar efficiency while significantly lowering spillback frequency and delay imbalance. These 

results indicate that constrained multi-objective DRL is a promising and practically relevant 

framework for intelligent traffic signal control, capable of enforcing safety and fairness requirements 

without sacrificing efficiency. 

5.1   Limitations 

Despite these encouraging results, several limitations of the present study should be 

acknowledged. First, the experiments were limited to a single isolated four-leg intersection. Real 

urban networks involve many interacting intersections, where coordination and network-level 

constraints, such as preventing queue propagation along corridors, become essential. Second, all 

results were obtained in a microscopic simulation environment. Although SUMO is widely used and 

can approximate elastic traffic dynamics, real-world deployment would need to account for 

uncertainties in detection, communication delays and hardware constraints. A further limitation is the 

dependence on accurate state measurements. The proposed method assumes that lane-based queues, 

phase information and spillback indicators are reliably available, whereas in practice detectors may 
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be noisy, partially missing or subject to occlusions, especially in vision-based systems. In addition, 

as with most DRL methods, performance may depend on the choice of network architecture, learning 

rates, reward and cost weights, and CMDP thresholds. A more systematic sensitivity analysis of these 

design choices was beyond the scope of this work. Taken together, these limitations suggest that the 

proposed framework should be further extended and validated before large-scale real-world 

deployment. 

5.2   Future work 

Future research can proceed along several directions. A natural extension is to move from a single 

intersection to corridors or networks of intersections, applying the constrained DRL framework in 

conjunction with multi-agent reinforcement learning (MARL) or centralized training with 

decentralized execution. Such extensions would allow the controller to address network-level 

phenomena such as shockwave propagation and gridlock. Another promising direction is to consider 

richer multi-objective formulations. Beyond delay, queue length, spillback and fairness, additional 

objectives such as fuel consumption, emissions, comfort (number and severity of stops) and public 

transport priority could be integrated into the cost structure. Multi-objective DRL and safe RL 

techniques can then be used to explore and quantify trade-offs among these criteria. Closely related 

is the question of robustness and domain adaptation: future work should investigate robustness to 

sensor noise, missing data and demand shifts (for example, incidents or special events). Techniques 

such as robust RL, domain randomization and transfer learning from simulated to real environments 

may improve the reliability of the controller under real-world uncertainties. 

A further avenue is the explicit integration of multi-modal and pedestrian traffic. The present study 

focused solely on vehicular flows, whereas practical signal control must account for pedestrians, 

cyclists and public transport (e.g. buses and trams). Extending the controller to handle these modes, 

potentially using multi-agent or hierarchical control structures, is an important step toward more 

inclusive and sustainable traffic management. Ultimately, the practical value of the proposed 

approach must be validated through hardware-in-the-loop experiments and pilot deployments at real 

intersections. Such studies would provide insight into implementation issues, calibration of CMDP 

constraints and user acceptance by traffic engineers and authorities. By addressing these challenges, 

the constrained multi-objective DRL framework introduced in this paper can serve as a foundation 

for next-generation, safety-aware adaptive traffic signal control systems that are both efficient and 

deployable in real urban networks. 
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