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An efficient solution algorithm for fuzzy linear fractional
optimization problems with an application

Behrooz Alizadeh !, Fahimeh Baroughi 2, Sahar Bagheri 3

In this paper, we investigate a solution procedure for a fuzzy linear fractional optimization problem in which
the input parameters are considered as convex fuzzy numbers. By applying a specific fuzzy ranking method
which is based on the a-cut concept, and according to Charnes and Cooper’s approach of variable
transformation, the solution of the original fuzzy linear fractional optimization model is transformed into the
solution of at most two semi-infinite linear programs that are dissimilar among themselves via a sign in a
constraint and in the objective function. An appropriate cutting plane algorithm (CPA) of Fang is utilized to
obtain the optimal solution of the semi-infinite linear programs. Further, the application of our presented
algorithm in improvement facility location theory is discussed properly. Finally, an illustrative example is
given to clarify the solution procedure.
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1. Introduction

Fractional optimization is concerned with situations where a ratio between physical and/or
economical functions, for example cost/time, cost/quality, cost/ productivity, inventory/sales,
output/employee, or some other quantities that measure the relative effectiveness of an underlying
system, is minimized or maximized. Such optimization models have recently been a subject of wide
interest in nonlinear programming and literature survey unveils numerous applications of them. These
applications arise in various subjects in operational research, e.g., resource location-allocation,
transportation and logistics, production, finance, stochastic processes, game theory, applied linear
algebra, information theory, large scale programming and etc. (see e.g. [7], [13], [24], [25], [26]).

A fractional optimization problem with linear numerator and denominator of the objective function
and linear constraints is called a linear fractional optimization (LFO) problem. Many practical
problems like cutting stock problems, product planning, financial problems, blending problems,
capital budgeting problems and etc. [2] are formulated as LFO models. In general case, a LFO
problem is stated as:

n
Maximize Z(X) = M,
j=1 d] Xj +d

n

subject to Z aijxj < b, i=1,.,m, (D

~.
=
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where for every index i = 1,...,m,j = 1,...,n, the parameters/variables a;;, b;, G, dj, x;j and d
are real numbers.

There are available several methods available for solving LFO problems (see e.g. [2], [3], [26])
such that one of the very useful approaches for mathematicians is the method of variable
transformation which was developed by Charnes and Cooper [5] in 1965. They showed that a LFO
problem can be solved via solving two corresponding linear programming models. Later in 1968,
Zionts [29] presented an idea about Charnes and Cooper's technique. He demonstrated that if the LFO
problem carries out a finite optimal solution, then for all practical variants, the denominator

n
j=1

cannot have two different signs on the feasible solution region of the LFO problem. Consequently,
only one of the two corresponding linear programs must be solved according to the sign of
denominator.

In the real world decision problems, which are formulated as LFO models, we may not know the
exact values of the input parameters and the uncertainty may not be of a probabilistic type. In this
case, it would be suitable to interpret the uncertain parameters of the LFO problem as fuzzy numerical
data which can be represented by means of fuzzy numbers. In the past years, several papers have
appeared to LFO problems in the fuzzy framework, such that in 1992, Dutta, Rao and Tiwari [10]
purposed a LFO problem where the coefficients of the numerator or denominator, or both, of the
objective function are fuzzy numbers. They showed that this problem can be converted to an
equivalent fuzzy linear programming problem. Li and Chen (1996) in the paper [19], investigated
another fuzzy programming approach for the LFO problem with fuzzy coefficients. The authors
presented the concept and mathematical definition of the fuzzy optimal value (FOV) and introduced
an approximate algorithm for solving the FOV. A goal programming procedure has been presented
by Pal, Moitra and Maulik [21] in 2003 for a multi-objective LFO problem in which an imprecise
aspiration level is defined to each of the fractional objectives, such that these fuzzy objectives are
termed as fuzzy goals. In 2006, Dash, Panda and Nanda [9] considered a generalized fractional 0-1
programming problem in which the objective is formed in fuzzy environment and the decision
variables are restricted to be 0 or 1. They proved that this problem can be transformed to a nonlinear
programming problem. In 2007, Mehra, Chandra and Bector [20] proposed two new concepts of
(a,p)-acceptable optimal solution and (a,B)-acceptable optimal value for a specific class of fuzzy
linear fractional optimization problem in which it is assumed that the numerator of the problem is a
nonnegative fuzzy number and the denominator of the problem is a positive fuzzy number. They
developed a method to obtain the (a,)-acceptable optimal solution and (a,f)-acceptable optimal
value of the problem. Their proposed method is not able to find the optimal solution and optimal
objective value of the problem. Moreover, for ordering the fuzzy numbers, they utilized a model of
fuzzy ranking method introduced by Wu [27]. Pop and Stancu-Minasian [22] derived a solution
method to the fully fuzzified linear fractional programming problems, where all the parameters and
variables are limited to be only triangular fuzzy numbers. Their method contains the transformation
of the problem of maximizing a function with triangular fuzzy value to a deterministic multiple
objective linear fractional programming problem with quadratic constraints. Moreover, in order to
evaluate the fuzzy constraints, they applied the Kerre's ranking method. In 2024, Prasad et al. [23]
provided a fuzzy goal programming approach to the fractional linear program with triangular fuzzy
parameters. The the intuitionistic fuzzy linear fractional programming problem was treated by
Karthick and Saraswathi [17] and a solution method was developed where it directly tackles the
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problem in its fuzzy domain. In 2025, using the splitting technique, an approach was proposed to
fully fuzzy linear fractional transportation problem in [8].

In this paper, considering an almost different strategy, we attempt to provide an efficient solution
algorithm for a fuzzy linear fractional program in which all input parameters along the constraints
and numerator of the objective function are convex fuzzy numbers. In particular, an application of
our results in the improvement facility location theory is also discussed properly.

Tablel. The list of important notations along the paper

Notation Description
AQ) objective function of the fuzzy fractional program
X; decision variables of the fuzzy fractional program
M convex fuzzy number
r set of convex fuzzy numbers

M, = [M'(a), MR (a)]  a-cutof M

H,(.) appraisal function
0, feasible region of semi-infinite fractional program
T = (V(T),E(T)) tree network with vertex set V(T) and edge set E(T)
Woi weight of vertex v; for commodity o
L, length of edge e
Plv;, v;] unique path between vertices v; and v;
d(vi, vj) distance between vertices v; and v; under original lengths
d (Vi, vj) distance between v; and v; under modified lengths
X modification amount of [, in facility location model
U, maximum permissible amount of x,

This paper is organized as follows. In the next section, using a specific appraisal function and fuzzy
ranking method, the fuzzy linear fractional optimization problem with fuzzy parameters is
transformed into a crisp semi-infinite linear fractional program. Furthermore, we define the concepts
of a-optimal solution and a-optimal objective value of the problem under investigation. In section 3,
we show that our fuzzy fractional model can finally be reduced to at most two semi-infinite linear
programs. Then, a CPA approach of Fang is utilized to solve the semi-infinite programs and we
consequently conclude a General-CPA algorithm for finding the a-optimal solution and a-optimal
objective value of the original fuzzy LFO problem in section 4. Further, the application of our
presented solution approach in the improvement facility location theory is expressed in section 5. In
section 6, an illustrative example is finally considered in order to show the efficiency of the provided
method.

Furthermore, the fundamental notations employed in the paper, are summarized in Table 1.
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2. Problem formulation

In this paper, we investigate the following specific fuzzy linear fractional optimization (FLFO)
problem:

n ~ ~
Yi=1Gx +¢

Maximi 7ZX) = =—r———
aximize X) Z7=1 4%t d

n

subject to Z ajxj < E, i=1,..,m, 2)
j=1
ijO, j=1,..,n

where fori = 1,...,m, j =1, ...,n, the parameters Eil-j,ﬁl, ¢ and T are fuzzy numbers and d;, x; and
d are real numbers due to the special structure of our considered application at the last of this paper.
Furthermore, the notation "<" denotes the fuzzy inequality relation between two fuzzy numbers.

In this paper, we assume that all fuzzy parameters of the FLFO problem (2) are convex fuzzy
numbers which are defined as follows (see e.g. [18], [28]):

Definition 2.1. A convex fuzzy number M is a fuzzy set on the real line R with a membership function
M(.), such that its a-cut set

P {{e|e ER, M) =a}, if a€(01],
* | closure of {ele € R, M(e) > a}, if a=0,

constructs a closed interval [1\77 L), M ]R(a)] on the real space R, where
M" (@) = mingep{ Mo}
and

MR () = maxyer{ M}

are respectively the left and right real valued continuous functions in a € [0,1].
In particular, if a convex fuzzy number M is triangular, written as triple ¥ = (m;, m,, m5), then its
a-cut set can clearly be obtained as

Ma = [ML(Q)'MR(Q)] = [(m; —my)a+ m;, m3 — (m3 — my)a], Va € [0,1].

Now, let I' be the set of all convex fuzzy numbers. If 1\771, ., 1\71n €l and 24, ..., 4, be real scalars,

then we can observe that
n
=1

Furthermore, according to the extension principle in fuzzy theory (see [18], [20], [28]) we can
certainly conclude the following property for all a € [0,1]:

M@ =Y W@ @) = ) A Ff@.
j=1 j=1
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Now, according to our own experiments, we suggest an appraisal function to evaluate our solutions
in order to determine a best solution, so-called the a-optimal solution for the FLFO model under
investigation:

Definition 2.2. Let Z(X) be the objective function of the FLFO model (2). For a given a € [0,1], the
appraisal function H,(.) is defined as follows:

)y Ef(a)xj +&*(a)

n
j—1d;xj+d

H, (Z(X)) -

In the purposed solution approach, we first apply the appraisal function H,(.) in order to transform
the problem (2) into the following linear fractional program with only fuzzy parameters on the
constraints:

Maximize H, (Z(X))

n
subject to Z a;jx; 3)

=
IA
ey
I
=
E

Remark 2.1. A generalization is to take a finite subset {@;, ..., @, } of [, 1] for a given « € [0, 1] and
maximize simultaneously the p appraisal functions Hg, (Z(X)), ..., H a, (Z(X)) subject to the same

constraints of the problem (3). In this case, we have to solve a multiple objective FLFO problem. We
are not going to discuss on this issue within this paper.

Note that we are allowed to apply the appraisal function H,(.) for both “maximization” and
“minimization” models. Now, we are faced with a reduced optimization problem in which the fuzzy
parameters are only seen in the constraints. Then, we are required to apply a fuzzy ranking method
for evaluating the fuzzy inequalities and find the minimum of some fuzzy numbers. The various
methods for ranking of fuzzy inequalities have been suggested in the literature [6]. Each method
appears to have some advantages as well as disadvantages. In the context of each application, some
methods seem more appropriate than others. In this paper in the position of decision maker, we are
interested in applying a fuzzy ranking method which is based on the concept of a-cuts in fuzzy theory.
Our fuzzy ranking method could be considered as an extension of Buckley's approach [4] and it seems
to be reliable in our point of view.

Definition 2.3. (Fuzzy ranking method) Let My, M, € T and a € [0,1] be an arbitrary comparison
level. Then we say that M; < M, at the level a, if and only if

MR(s) < Mi(s), Vs € [a,1].

Given a € [0,1], If we apply Definitions 2.3 for the constraints of the FLFO problem (3), then this
problem is converted to the following crisp semi-infinite linear fractional program:

Y71 & (00)x; + R (a)

;L=1djx]' + d

Maximize H, (Z(X)) =
n

subject to Z lej(s)xj < bF(s), Vse[al], i=1,..,m, (€))

Jj=1
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Xj = 0, j=1,..,n

Given « € [0,1], the feasible solution region of the reduced LFO model (4) is defined as follows:

n
Qy ={X ER"| x; 20, Zdij(s)x]- < EiL(s),Vs € [o, 1], j=1.,ni=1,...m
j=1

Throughout this paper, we call any member X = (x4, ..., x,) € Q4 as an “a-feasible solution” of the
FLFO problem (2).

Definition 2.4. Given «a € [0,1], X* = (x], ..., x5,) € Qy is called an a-optimal solution of the
original FLFO problem (2), if and only if for all X = (xy, ..., x,) € Q, the following inequality
holds:

H,(200) < H,(Z(x))

The corresponding objective value H, (Z 0.4 *)) is called the “a-optimal objective value” of the
FLFO problem (2).

Moreover, in this paper it is assumed that
(i) for any a € [0,1], the feasible solution set Q, is regular, i.e., Q, is nonempty and bounded,
(i) for any X = (x4, ..., xp) € Qq, Xi-1djxj+d #0

In the next section, we will attempt to show that for a given a € [0,1] the a —optimal solution and
a-optimal objective value of the FLFO problem (2) can be found by solving at most two crisp semi-
infinite linear programming models.

3. Equivalent semi-infinite programs

Semi-infinite linear programming (SILP) deals with linear optimization problems in which the
dimension of the decision space or the number of constraints (but not both) is infinite [1], [12]. Since
for any a € [0,1], the feasible solution region € is a regular set, then we can also apply Charnes and
Cooper's technique of variable transformation (see e.g. [5], [26]) to the problem (4). In this case, we
will obtain the following two crisp SILP problems with infinite number of constraints:

n

Maximize Z &R (@)y; + R ()0
=1

R

s.t. &TJR(s)y]- - E;L(S)e <0 Vs€lal], i=1,..,m,
=1
n
D dy+do=1 (5)
j=1
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y]' > 0, ] = 1, ,n,
0=>0,
and
n
Maximize z —E}R(a) y; — R ()8,
=1
n
sit. Z TRy —b'()0<0 vselall, i=1,..m,
=1
n
Z —dy;—do =1, (6)
=1

where the crisp SILP problems (5) and (6) are obtained from (4) by taking the critical transformation

1
0=F——
2?21 d] Xj +d
yj = ij, j=1,..,n (7

Similar to [5], we can for a given a € [0,1] observe that if Q, is a regular set, then for solving the
problem (4), it is sufficient to solve the crisp SILP problems (5) and (6). The solution which gives
the largest value for objective function of the problem (4), is chosen as an optimal solution. If one
knows the sign of either the numerator or the denominator of the objective function of the problem
(4) at an optimal solution, then it is sufficient to solve exactly one of either the problem (5) or the
problem (6). Moreover, we can conclude the following proposition in a similar way as discussed in

[5]:

Proposition 3.1. For an optimal solution (X, ...,%,) of the optimization problem (4), if either
Yi=1d; % +d > 0and (y7, ..., yn,07) is an optimal solution of the (5), or ¥, d; X, + d < 0 and
V1, «-» Y, 0%) is an optimal solution of the (6), then
Y1 yy’i)

(.Xl, ...,.Xn) = <§, ,§

is also an optimal solution of the problem (4).
Now for convenience and also due to describe the problems (5) and (6) in an identical format, we
assume that forj = 1, ..., n,

('ch (a),d;, éR (), d), if the problem (5) is considered,
(pjmypi7) = —(EJR(a), d;, éR(a),d), if the problem(6) is considered.

Further, let S = [a, 1] and
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gij(s) = d‘ljR(s), i=1..mj=1,..,n,
bi(s) = b,"(s), i=1,..,m

Therefore, each of the crisp SILP problems (5) and (6) can be written as the following uniform form

n
Maximize G(y,0) = Z p; yj + pb,

j=1
n

s.t. gij(8)y; —bi(s)86 <0, VseS, i=1,..,m,
=1
n
eryj+r9=1, ®
=1
yJZO, j=1,...,n,
6=0.

where S is a compact set with an infinite cardinality and for i = 1, ...,m,j = 1, ..., n, the functions
gij(s) and b;(s) are real valued continuous functions defined on S. In the next section, we will

introduce an efficient algorithm for solving the SILP problem (8).

4. The General-CPA algorithm for FLFO model

There may exist various solution methods for solving SILP problems ( see e.g. [1], [12], [15], [16]).
According to [14], algorithms for SILP problems can be classified into discretization methods, local
reduction methods, exchange methods, simplex-like methods and descent methods. In this paper, the
SILP problem (8) has the infinite number of constraints and finite number of variables. Then, based
on a recent survey [16], the so-called " cutting plane algorithm " is a suitable technique to solve such
problems. In this section, we consider a straightforward variation of the CPA approach presented in
[11] and prepare it for solving the crisp SILP model (8). Then, we provide a General-CPA algorithm
for finding the a-optimal solution and a -optimal objective value of the FLFO problem under
investigation. Mainly, the CPA approach derives a sequence of optimal solutions of corresponding
linear programming models in a symmetric manner. In any iteration of this algorithm, m new
constraints are actually inserted to the previous constraints until an optimal solution is obtained. At
the kth iteration of the CPA approach, if

S = {st, ..., s}
where
st ={st ..., sL}es™, t=1,..,k

then we should solve the following crisp linear programming problem with ( km + 1) constraints:
n

Maximize G(y,0) = Z p; Vi + pb,

j=1
Subject to
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n
Zgij(sil)yj —b(sh)e<o0, i=1,..,m,
j=1

n
> 0y(s2yy ~ b0, i=1,.m
j=1

) :
> 0y(sE)y; —bi(s5)0 <0, i=1,..,m (LPY)
j=1

n
eryj+r9= 1,
j=1

ijO, j=1,...,n,
6=>0.

Assume that (yk, Gk) = (y{‘, o YK, Gk) is an optimal solution of the problem (LPk). Then, as a
critical note the "constraint violation functions" are defined as follows:

n
@OF*1(s) = by(s)8* — Zgij(s)y}‘, vs€s, i=1..m
=

Since g;;(s) and b;(s) are continuous functions on the compact set S, then the function ek*1(s)
achieves its minimum value over the interval S . Therefore, we let

k+1 _ - k+1 —
s;¢ T = arg minges @7 (s), Vi=1,..,m

If

n
of () = b(at T - ) gyl 20 1=t
j=1

then (yk, 9") is a feasible solution of the SILP problem (8) and also it will be an optimal solution.
Otherwise, (yk, ok ) is not an optimal solution and in this case, we let

— (el k+1
Skr1=1{s" ..., s},
where
1 _ gck+1 1
skHl = (gl | sktlr e s,

and construct the linear program (LPk+1) with additional mconstraints . If this process is iterated,
then the produced sequence {(yk, Bk)}k will converge to the optimal solution of the SILP problem

(8). Now, based on all explanations above, we can summarize the CPA approach for the SILP problem
(8) as follows ( see [11]):
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CPA approach. Solves the crisp SILP problem (8)
1: Begin

2:Setl ={1,...,m}.

3: Setk =1.

4: For all i € I choose any s} € S.

5: SetS; = {s'}suchthat s! = (si,...,s}).

6

7

8

Obtain the optimal solution (yk, 9") of the problem (LPX).
:Foralli € I, find s¥*! = arg mingeg ¥ *1(s).
: If there exists i € I, such that @f**(sf*1) < 0 then
9:  setSpyq = Sk U{skt1},
10. update k = k + 1 and return to step 6,
11. else
12:  stop; (yk, gk ) is an optimal solution of the SILP model (8).
13: End

The convergence proof of the generated sequence {(yk, 6")} , foan optimal solution of the problem
(8) is described in the following as analyzed in more details in Fang et al. [11].

Proposition 4.1. If the feasible space of the SILP problem (8) is nonempty and {(yk,ﬂk)}k is a

bounded sequence generated by CPA approach, then there exists a subsequence of
{(y, Sk)}k converging to an optimal solution (y*, 0*) of the SILP model (8).

Now, we are ready to present the General-CPA algorithm for determining the a-optimal solution
and a -optimal objective value of the FLFO problem under investigation as follows:
General-CPA algorithm: solves the FLFO model

1. Begin
2. Forsgn=+1,-1 do

2.1. Let (pj,rj,p, r) = sgn X (EJR(a), d;,c®(a),d)
2.2. Apply CPA approach to the SILP model (8) and get an optimal
solution (ys*gn, Bs*gn) and the optimal objective value, say G (Vsgn, Osgn)-
3. Let G(y*,0%) = max{G(Vegn, Osgn): sgn= +1,—1}
4. An a -optimal solution of FLFO model is derived by

xf"—y;f

j =g J= 1,..,n

5. End

Finally, we conclude that

Proposition 4.2. The General-CPA algorithm can determine the a —optimal solution and a-optimal
objective value of the FLFO problem, correctly.

Now, we are going to explain an application for our studied FLFO problem and the provided
solution technique in the next section.
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5. Application in improvement facility location theory

Facility location problems are well-known optimization models in operations research which have
many applications in theory and practice. In a classical facility location problem on a system (network
or real space), we wish to find the best locations for installing one or more facilities on the underlying
system to serve the existing customers in the best possible way according to a specific criterion. On
the other hand, an improvement facility location problem aims to modify some input parameters of
the classical model in the cheapest possible way with respect to some modification bound, until the
current location of a predetermined facility is improved as much as possible. In this section, we show
that how the considered FLFO problem and our presented solution approach can be applied to the
fractional improvement (objective-bounded inverse) multiple commodity median facility location
problems on tree networks in fuzzy environment.

Let a tree network T = (V(T), E (T)) with vertex set V(T) = {vy, ..., v, } and the edge set E(T) be
given. For any vertex v; € V(T), corresponding to the commodity o, a fuzzy weight w,; is associated
which is interpreted as demand for commodity o at the customer site v;. Any edge e € E(T) has a
nonnegative length l,. Based on the edge lengths of the underlying tree network, the travel distance
required for transporting any commodity 0,0 = 1,..., 0, from v; to the demand center v;

d(vi,vj)z Z L,

e€P[vvj]
where P[vi, vj] denotes the unique path between vertices v;, v; on tree network T'. In the classical
multiple commodity median facility location problem on the tree T in the fuzzy environment, the goal
is to find the optimal solution of the following optimization model as the best location for establishing
our facility, where we have O type of commodities on the system:

Minimize Z Z Woid(v;, x),
0=1v;€V(T)
subject to x € V(T).

In contrast to the above classical model, the fuzzy fractional improvement (objective-bounded
inverse) multiple commodity median facility location problem is stated as follows: Consider the
underlying tree network T with vertex weights W,; and the edge lengths [, . Suppose that a
predetermined vertex vy is given as the current facility location which has already been established
on the system. The goal is to modify the edge lengths of T in the best possible way with respect to
modification restrictions such that the position of the facility location vy is improved as much as
possible under the perturbed edge lengths.

For everye € E(T)1, et ¢, be the cost coefficient for reducing the length [, which is uncertain
due to the economic instability and then it is considered as a fuzzy number. Furthermore, let d, .e €
E(T) , be the quality coefficient corresponding to the improvement of the lengths [, . We wish to
modify the edge lengths such that the optimal objective value of the classical multiple commodity
median location model becomes less than or equal to a given fuzzy value A. Note that we are not
permitted to reduce the edge lengths arbitrarily. Hence, any reduction on the length [, should obey
the specific bound u,. If x, denotes the reduction amount of the length [, , then, we should modify
the lengths I,,e € E(T) to [, = I, — x, such that all the following statements are satisfied:
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1. The overall modification ratio of cost/quality

ZeeE(T) Eéxe +C
ZeeE(T) dexe +d

7(X) =

is minimized, where ¢ and d are the initial fuzzy cost and crisp quality factor on the system.
2. The fuzzy objective value of the classical median model at the predetermined facility location

v, does not proceed the given aspiration bound 4, i.e.,
0

Woid(v;, v5) < A. 9)
0=1 v;€V(T)

where d(v;, vs) is the travel distance between v; and v, under the new length I, e € E(T) .
3. The modification amounts x, obey the bounds

0<x,<u, Ve € E(T)

To the best of our knowledge, the fractional case of the inverse/improvement facility location
models on the fuzzy environment have not been discussed until now. Now, let us rewrite the left side
of the inequality (9) as follows, since we know that there exists unique path between any two points
on tree networks:

0 o
Woia(vi: vs) = Z Z Woi Z (le - xe)
0=1 v;eV(T) o=1v;eV(T) e€P[v;,vg]
(0] 0
:z Woi Z le_z Z Woi Z Xe -
o=1v;eV(T) e€P|[v;,vg] o=1v;eV(T) e€P|v;,vg]

Considering the above discussions, the inequality (9) can finally be written as the following fuzzy
inequality:
W,x, = 7.
e€E(T)

where we have

<t
Il
1e
I
B

Woi Z le

0=1v;eV(T) e€P[v;,vg]
and also
0
M/e - z z wo} ’
o=1tel,

such that the index set I, is as

I, ={t: e € Plv;,vg,], t =1, ...,n}L
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Altogether, the fractional improvement multiple commodity median location problem on the
underlying tree network T is mathematically formulated as the following specific FLFO problem:

ZeeE(T) Qxe +C
ZeeE(T) dexe +d

Minimize Z(X) =

Wexe 27,
e€E(T)
0<x,<u, Ve € E(T).

where ¢, , W, for all e € E(T) and ¢, ¥ are convex fuzzy numbers. This FLFO model can be solved
by the above provided solution approach efficiently.

6. An illustrative example

Let us consider the following FLFO problem with the given membership functions for the fuzzy
parameters:
le + (ﬁxz +1

Maximi Z(X) =
aximize X) Yt 20, £ 1

)

subject to 3x; + 2x, < 6,
9%, + 3x, < 12, (10)
X1,%X = 0.

where the membership functions of the fuzzy coefficients on the objective function are defined as
follows:

1
Z(x)= Ex, . 0£x<2,9 ’ . ~ 2x, 0Sx<§,
Zx+=, 2<x<-. 5(x) = 8 14 1 7
107 10 2 ——x+—, -—<x<-.
10”7 100 2 4
and

X, 0<x<1,

ix)={-4 14 7

— —, 1<x<-.

0t 1S3

Moreover, the membership functions of fuzzy parameters in the constraints of the problem (10) are
given as follows:

0, x <2, 0, x <1,
x—2, 2<x<3, x—1, 1<x<2,
1 3—x, 2<x<3,
E(S—x), 3<x<5, 0, x>3.

0, x = 5.
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0, x <3, 0, x <8,
1 ~ x—8, 8<x<9,
é(x)_ §(x—3), 3Sx<6, 9(x)_ 10_x' 9Sx<10,
)1 0, x = 10.
5(9—36), 6Sx<9,
0, x=09.
0, x < 10,
1
. E(x—lO), 10<x <12,
12(x) = 1
§(15—x), 12 < x < 15,

0, x = 15.

For given o = 0.6, if we use Definition 2.3 for evaluating the fuzzy inequalities in the constraints
and apply Definition 2.2 on the objective function, then the FLFO problem (10) is transformed into
the following crisp semi-infinite linear fractional program:

o ~ 3% +x, +2
Maximize H, (Z(X)) St 1
subjectto (5 —25)x; + (3 —5s)x, < (3 + 3s), Vs € [a, 1],
(10 = $)x; + (5 — 25)x, < (10 + 29),
X1,%3 =0, (11D
where, for @ = 0.6, we get
2R(0.6)=3 , 05R0.6)=1, 1R(0.6) =2.

Since for all feasible solution of the problem (11), the sign of the denominator of the objective
function is positive, then based on Proposition 3.1, the solution of the problem (11) is converted to
the solution of the following SILP problem:

Maximize 3y, +y, + 26,
subjectto (5—2s8)y; + 3—5)y, —(3+3s5)0 <0,
(10 —9s)y; + (5—2s)y, —(10+2s)0 <0 Vs € [0.6,1],
yi+2y,+60 =1,
Y1, Y2 2 0. (12)
6 =>0.

Now, we apply our CPA algorithm to the SILP problem (12) for given a = 0.60 and for the initial
parameter s* = (si,s1) = (0.60,0.70), and therefore we get

y; = 0.543689 , y; =0.000000 , 6* = 0.456311.

Consequently, by considering the variable transformation (12), the a-optimal solutions and the a-
optimal objective values of the FLFO problem (10) are derived as

xj = 1191488 , x; =0.000000 , H,(Z(X"))= 2543689
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This obtained solution yields the following corresponding fuzzy objective value
Z(X*) =[0.000000, 1.315534, 4.281551]

7. Concluding remarks

In this paper, we considered a FLFO problem in which the parameters are considered as convex
fuzzy numbers. Applying an appraisal function for evaluating the objective values and a fuzzy ranking
method to the constraints, the original FLFO problem was transformed into to a semi-infinite linear
fractional program. We demonstrated that if the Charnes and Cooper's technique of variable
transformation is called, then the solution of the semi-infinite linear fractional programming model is
equivalently transformed into the optimal solutions of at most two SILP models that are dissimilar
among themselves through a sign in a constraint and in the objective function. Analogously, a
compatible CPA approach by Fang et al. [11] was applied to obtain the optimal solution of the SILP
models. Then, we provided a General-CPA algorithm for obtaining the a-optimal solution and a-
optimal objective value of the FLFO problem under investigation. At the end, we discussed an
application of the investigated FLFO problem and the provided solution algorithm in improvement
facility location theory on tree networks, properly.

As a concluding remark, if we consider our FLFO problem with the objective function

where, the parameters (T], d are also convex fuzzy numbers in addition, then we can, in this case,
suggest the following appraisal function

o1 ER (0% + ¢R (a) 1187 (@x; + e (@)

~ _ j=1 ~ _ j=1
Ha (Z(X)) B Ty df(00x; + dE () or Ha (Z(X)) B Ty df (@)x; + dR ()

for a given a € [0,1] according to our initiative point of view. Here, we can also apply the above
provided solution procedure in order to solve our FLFO problem. Here, the idea of Remark 2.1 can
also be taken into account. We know that a decision maker can define various appraisal functions and
ranking methods according to the structure of the problem under investigation and based on his/her
own idea for solving the optimization problems in uncertain environments. Hence, our applied
procedure for the considered FLFO problem together with the concentration on the improvement
facility location models may not be so eminent, but it is certainly interesting in our point of view.
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