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optimization problems with an application 
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In this paper, we investigate a solution procedure for a fuzzy  linear fractional optimization problem in which 

the input parameters  are considered as convex fuzzy numbers. By applying a specific fuzzy  ranking method 

which is based on the α-cut concept, and according to  Charnes and Cooper’s approach of variable 

transformation, the solution  of the original fuzzy linear fractional optimization model is transformed into the 

solution of at most two semi-infinite linear programs that are dissimilar  among themselves via a sign in a 

constraint and in the objective  function. An appropriate cutting plane algorithm (CPA) of Fang is utilized to 

obtain the optimal solution of the semi-infinite linear programs.  Further, the application of our presented 

algorithm in improvement facility location  theory is discussed properly. Finally, an illustrative example is 

given to clarify the solution procedure. 
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1. Introduction 

   Fractional optimization is concerned with situations where a ratio between physical and/or 

economical functions, for example cost/time, cost/quality, cost/ productivity, inventory/sales, 

output/employee, or some other quantities that measure the relative effectiveness of an underlying 

system, is minimized or maximized. Such optimization models have recently been a subject of wide 

interest in nonlinear programming and literature survey unveils numerous applications of them. These 

applications arise in various subjects in operational research, e.g., resource location-allocation, 

transportation and logistics, production, finance, stochastic processes, game theory, applied linear 

algebra, information theory, large scale programming and etc. (see e.g.  [7], [13], [24], [25], [26]). 

   A fractional optimization problem with linear numerator and denominator of the objective function 

and linear constraints is called a linear fractional optimization (LFO) problem. Many practical 

problems like cutting stock problems, product planning, financial problems, blending problems, 

capital budgeting problems and etc. [2] are formulated as LFO models. In general case, a LFO 

problem is stated as: 

  Maximize    Z(𝑋) =
∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑐

∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑑

,                                 

                                                

                           subject to                  ∑𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤  𝑏𝑖,  𝑖 = 1,… ,𝑚,                   (1) 

 
                                                                     𝑥𝑗 ≥ 0,  𝑗 = 1,… , 𝑛, 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

06
 ]

 

                             1 / 16

http://iors.ir/journal/article-1-871-en.html


Fuzzy Linear Fractional Optimization Problem with an Application 77 

 

where for every index 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛, the parameters/variables 𝑎𝑖𝑗, 𝑏𝑖 ,  𝑐𝑗 ,  𝑑𝑗 ,  𝑥𝑗  and d 

are real numbers. 

   There are available several methods available for solving LFO problems (see e.g. [2], [3], [26]) 

such that one of the very useful approaches for mathematicians is the method of variable 

transformation which was developed by Charnes and Cooper [5] in 1965. They showed that a LFO 

problem can be solved via solving two corresponding linear programming models. Later in 1968, 

Zionts [29] presented an idea about Charnes and Cooper's technique. He demonstrated that if the LFO 

problem carries out a finite optimal solution, then for all practical variants, the denominator 

 ∑𝑑𝑗

𝑛

𝑗=1

𝑥𝑗 + 𝑑 

cannot have two different signs on the feasible solution region of the LFO problem. Consequently, 

only one of the two corresponding linear programs must be solved according to the sign of 

denominator. 

   In the real world decision problems, which are formulated as LFO models, we may not know the 

exact values of the input parameters and the uncertainty may not be of a probabilistic type. In this 

case, it would be suitable to interpret the uncertain parameters of the LFO problem as fuzzy numerical 

data which can be represented by means of fuzzy numbers. In the past years, several papers have 

appeared to LFO problems in the fuzzy framework, such that in 1992, Dutta, Rao and Tiwari [10] 

purposed a LFO problem where the coefficients of the numerator or denominator, or both, of the 

objective function are fuzzy numbers. They showed that this problem can be converted to an 

equivalent fuzzy linear programming problem. Li and Chen (1996) in the paper [19], investigated 

another fuzzy programming approach for the LFO problem with fuzzy coefficients. The authors 

presented the concept and mathematical definition of the fuzzy optimal value (FOV) and introduced 

an approximate algorithm for solving the FOV. A goal programming procedure has been presented 

by Pal, Moitra and Maulik [21] in 2003 for a multi-objective LFO problem in which an imprecise 

aspiration level is defined to each of the fractional objectives, such that these fuzzy objectives are 

termed as fuzzy goals. In 2006, Dash, Panda and Nanda [9] considered a generalized fractional 0-1 

programming problem in which the objective is formed in fuzzy environment and the decision 

variables are restricted to be 0 or 1. They proved that this problem can be transformed to a nonlinear 

programming problem. In 2007, Mehra, Chandra and Bector [20] proposed two new concepts of 

(α,β)-acceptable optimal solution and (α,β)-acceptable optimal value for a specific class of fuzzy 

linear fractional optimization problem in which it is assumed that the numerator of the problem is a 

nonnegative fuzzy number and the denominator of the problem is a positive fuzzy number. They 

developed a method to obtain the (α,β)-acceptable optimal solution and (α,β)-acceptable optimal 

value of the problem. Their proposed method is not able to find the optimal solution and optimal 

objective value of the problem. Moreover, for ordering the fuzzy numbers, they utilized a model of 

fuzzy ranking method introduced by Wu [27]. Pop and Stancu-Minasian [22] derived a solution 

method to the fully fuzzified linear fractional programming problems, where all the parameters and 

variables are limited to be only triangular fuzzy numbers. Their method contains the transformation 

of the problem of maximizing a function with triangular fuzzy value to a deterministic multiple 

objective linear fractional programming problem with quadratic constraints. Moreover, in order to 

evaluate the fuzzy constraints, they applied the Kerre's ranking method. In 2024, Prasad et al. [23] 

provided a fuzzy goal programming approach to the fractional linear program with triangular fuzzy 

parameters. The the intuitionistic fuzzy linear fractional programming problem was treated by 

Karthick and Saraswathi [17] and a solution method was developed where it directly tackles the 
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problem in its fuzzy domain. In 2025, using the splitting technique, an approach was proposed to 

fully fuzzy linear fractional transportation problem in [8]. 

   In this paper, considering an almost different strategy, we attempt to provide an efficient solution 

algorithm for a fuzzy linear fractional program in which all input parameters along the constraints 

and numerator of the objective function are convex fuzzy numbers. In particular, an application of 

our results in the improvement facility location theory is also discussed properly. 

Table1. The list of important notations along the paper 

Notation Description 

𝑍(⋅) 

𝑥𝑗 

objective function of the fuzzy fractional program 

decision variables of the fuzzy fractional program 

𝑀̃ 

Γ 

convex fuzzy number 

set of convex fuzzy numbers 

𝑀̃𝛼 = [𝑀̃
𝐿(𝛼), 𝑀̃𝑅(𝛼)] α-cut of 𝑀̃ 

𝑯𝜶(. ) appraisal function 

𝛺𝛼 feasible region of semi-infinite fractional program 

𝑇 = (𝑉(𝑇), 𝐸(𝑇)) tree network with vertex set 𝑉(𝑇) and edge set 𝐸(𝑇) 

𝑤̃𝑜𝑖 weight of vertex 𝑣𝑖  for commodity 𝑜 

𝑙𝑒 

𝑃[𝑣𝑖 , 𝑣𝑗] 

length of edge 𝑒 

unique path between vertices 𝑣𝑖 and 𝑣𝑗 

𝑑(𝑣𝑖 , 𝑣𝑗) 

𝑑̅(𝑣𝑖 , 𝑣𝑗) 

distance between vertices 𝑣𝑖 and 𝑣𝑗 under original lengths 

distance between 𝑣𝑖 and 𝑣𝑗 under modified lengths 

𝑥𝑒 modification amount of 𝑙𝑒 in  facility location model 

𝑢𝑒 maximum permissible amount of 𝑥𝑒 

 

   This paper is organized as follows. In the next section, using a specific appraisal function and fuzzy 

ranking method, the fuzzy linear fractional optimization problem with fuzzy parameters is 

transformed into a crisp semi-infinite linear fractional program. Furthermore, we define the concepts 

of α-optimal solution and α-optimal objective value of the problem under investigation. In section 3, 

we show that our fuzzy fractional model can finally be reduced to at most two semi-infinite linear 

programs. Then, a CPA approach of Fang is utilized to solve the semi-infinite programs and we 

consequently conclude a General-CPA algorithm for finding the α-optimal solution and α-optimal 

objective value of the original fuzzy LFO problem in section 4. Further, the application of our 

presented solution approach in the improvement facility location theory is expressed in section 5. In 

section 6, an illustrative example is finally considered in order to show the efficiency of the provided 

method.  

   Furthermore, the fundamental notations employed in the paper, are summarized in Table 1. 
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2. Problem formulation  

In this paper, we investigate the following specific fuzzy linear fractional optimization (FLFO) 

problem:  

                                               Maximize       𝑍̃(𝑋) =
∑ 𝑐𝑗̃
𝑛
𝑗=1 𝑥𝑗 + 𝑐̃

∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑑

 

                               subject to                    ∑𝑎̃𝑖𝑗𝑥𝑗

𝑛

𝑗=1

⪯ 𝑏𝑖̃,  𝑖 = 1,… ,𝑚,                    (2) 

                                            𝑥𝑗 ≥ 0,             𝑗 = 1,… , 𝑛. 

where for i = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, the parameters 𝑎̃𝑖𝑗 , bĩ, cj̃ and c̃ are fuzzy numbers and 𝑑𝑗, 𝑥𝑗 and 

d are real numbers due to the special structure of our considered application at the last of this paper. 

Furthermore, the notation "⪯" denotes the fuzzy inequality relation between two fuzzy numbers. 

   In this paper, we assume that all fuzzy parameters of the FLFO problem (2) are  convex fuzzy 

numbers which are defined as follows (see e.g. [18], [28]) : 

Definition 2.1. A convex fuzzy number 𝑀̃ is a fuzzy set on the real line ℝ with a membership  function  

𝑀̃(. ), such that its α-cut set 

𝑀̃𝛼 = {
{𝑒|𝑒 ∈  ℝ, 𝑀̃(𝑒)  ≥ 𝛼},                        𝑖𝑓  𝛼 ∈ (0,1],

𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑜𝑓 {𝑒|𝑒 ∈ ℝ,   𝑀̃(𝑒) > 𝛼},             𝑖𝑓  𝛼 = 0,
  

constructs a closed interval [𝑀̃𝐿(𝛼), 𝑀̃ℝ(𝛼)] on the real space ℝ, where 

𝑀̃𝐿(𝛼) = min𝑥∈ℝ{ 𝑀̃𝛼}  
and                       

𝑀̃𝑅(𝛼) = max𝑥∈ℝ{ 𝑀̃𝛼}  

are respectively the left and right real valued continuous functions in α ∈ [0,1]. 
  In particular,  if a convex fuzzy number 𝑀̃ is triangular, written as triple 𝑀̃ = (m1,m2,m3), then its 

α-cut set can clearly be obtained as 

𝑀̃𝛼 = [𝑀̃
𝐿(𝛼), 𝑀̃𝑅(𝛼)] = [(m2 −m1)α + m1,m3 − (m3 −m2)α], ∀𝛼 ∈ [0,1]. 

Now, let Γ  be the set of all convex fuzzy numbers. If 𝑀̃1, … , 𝑀̃n ∈ Γ  and  λ1, … , 𝜆𝑛 be real scalars, 

then we can observe that 

𝑀̃ =∑𝜆𝑗

𝑛

𝑗=1

𝑀̃j ∈ Γ.  

  Furthermore, according to the extension principle in fuzzy theory (see [18], [20], [28]) we can 

certainly conclude the following property for all α ∈ [0,1]: 
 

𝑀̃𝐿(α) =∑λ𝑗

𝑛

𝑗=1

𝑀̃𝑗
𝐿(α)       ,         𝑀̃𝑅(𝛼) =∑𝜆𝑗

𝑛

𝑗=1

𝑀̃𝑗
𝑅(𝛼). 
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Now, according to our own experiments, we suggest an appraisal function to evaluate our solutions 

in order to determine a best solution, so-called the 𝛼-optimal solution for the FLFO model under 

investigation: 

Definition 2.2. Let  𝑍̃(𝑋) be the objective function of the FLFO model (2). For a given α ∈ [0,1], the 

appraisal function  𝑯𝜶(. ) is defined as follows: 

𝑯𝜶 (𝑍̃(𝑋)) =
∑ 𝑐̃𝑗

𝑅(α)𝑥𝑗
𝑛
𝑗=1 + 𝑐̃𝑅(α)

∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑑

 

In the purposed solution approach, we first apply the appraisal function 𝑯𝜶(. ) in order to transform 

the problem (2) into the following linear fractional program with only fuzzy parameters on the 

constraints: 

                                                 Maximize          𝑯𝜶 (𝑍̃(𝑋))   

                               subject to        ∑ 𝑎̃𝑖𝑗𝑥𝑗

𝑛

𝑗=1

⪯ 𝑏𝑖̃,  𝑖 = 1,… ,𝑚,                              (3) 

                    𝑥𝑗 ≥ 0,             𝑗 = 1,… , 𝑛. 

Remark 2.1. A generalization is to take a finite subset {𝛼1, … , 𝛼𝑝}   of  [𝛼, 1] for a given 𝛼 ∈ [0, 1] and 

maximize simultaneously the 𝑝 appraisal functions 𝑯𝜶𝟏(𝑍̃(𝑋)), … ,𝑯𝜶𝒑(𝑍̃(𝑋))  subject to the same 

constraints of the problem (3). In this case, we have to solve a multiple objective FLFO problem. We 

are not going to discuss on this issue within this paper.  

    Note that we are allowed to apply the appraisal function 𝑯𝜶(. )  for both “maximization” and 

“minimization” models. Now, we are faced with a reduced optimization problem in which the fuzzy 

parameters are only seen in the constraints. Then, we are required to apply a fuzzy ranking method 

for evaluating the fuzzy inequalities and find the minimum of some fuzzy numbers. The various 

methods for ranking of fuzzy inequalities have been suggested in the literature [6]. Each method 

appears to have some advantages as well as disadvantages. In the context of each application, some 

methods seem more appropriate than others. In this paper in the position of decision maker, we are 

interested in applying a fuzzy ranking method which is based on the concept of α-cuts in fuzzy theory. 

Our fuzzy ranking method could be considered as an extension of Buckley's approach [4] and it seems 

to be reliable in our point of view. 

 Definition 2.3. (Fuzzy ranking method) Let 𝑀̃1, 𝑀̃2 ∈ Γ and α ∈ [0,1] be an arbitrary comparison 

level. Then we say that 𝑀̃1 ⪯ 𝑀̃2  at the level α, if and only if 

𝑀̃1
𝑅(𝑠) ≤ 𝑀̃2

𝐿(𝑠),  ∀𝑠 ∈ [α, 1]. 

    Given α ∈ [0,1], If we apply Definitions 2.3 for the constraints of the FLFO problem (3), then this 

problem is converted to the following crisp semi-infinite linear fractional program: 

                               Maximize     𝑯𝜶 (𝑍̃(𝑋)) =
∑ 𝑐̃𝑗

𝑅(α)𝑥𝑗
𝑛
𝑗=1 + 𝑐̃𝑅(α)

∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑑

 

            subject to       ∑ 𝑎̃𝑖𝑗
𝑅 (𝑠)𝑥𝑗

𝑛

 𝑗=1

≤ 𝑏̃𝑖
𝐿(𝑠),  ∀𝑠 ∈ [α, 1],  𝑖 = 1,… ,𝑚,           (4) 
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                                                      𝑥𝑗 ≥ 0,  𝑗 = 1,… , 𝑛.  

  Given  α ∈ [0,1], the feasible solution region of the reduced LFO model (4) is defined as follows:  

         

Ωα = {𝑋 ∈ ℝ
𝑛|  𝑥𝑗 ≥ 0,   ∑ 𝑎̃𝑖𝑗

𝑅 (𝑠)𝑥𝑗

𝑛

𝑗=1

≤ 𝑏̃𝑖
𝐿(𝑠), ∀𝑠 ∈ [α, 1], 𝑗 = 1,… , 𝑛, 𝑖 = 1,… ,𝑚  } 

Throughout this paper, we call any member 𝑋 = (𝑥1, … , 𝑥𝑛) ∈ Ωα  as an “𝛼-feasible solution” of the 

FLFO problem (2). 

Definition 2.4.  Given α ∈ [0,1], 𝑋∗ = (𝑥1
∗, … , 𝑥𝑛

∗) ∈ Ωα is called an α-optimal solution of the 

original FLFO problem (2), if   and only if for all 𝑋 = (𝑥1, … , 𝑥𝑛) ∈ Ωα, the following inequality 

holds:  

𝑯𝜶 (𝑍̃(𝑋)) ≤ 𝑯𝜶 (𝑍̃(𝑋
∗)) 

The corresponding objective value  𝑯𝜶 (𝑍̃(𝑋
∗))  is called the “𝛼-optimal objective value” of the 

FLFO problem (2). 

 Moreover, in this paper it is assumed that 

    (i) for any α ∈ [0,1], the feasible solution set Ωα is regular, i.e., Ωα is nonempty and bounded, 

   (ii) for any 𝑋 = (𝑥1, … , 𝑥𝑛) ∈ Ωα,  ∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑑 ≠ 0 

  In the next section, we will attempt to show that for a given α ∈ [0,1] the α −optimal solution and 

α-optimal objective value of the FLFO problem (2) can be found by solving at most two crisp semi-

infinite linear programming models. 

3. Equivalent semi-infinite programs  

Semi-infinite linear programming (SILP) deals with linear optimization problems in which the 

dimension of the decision space or the number of constraints (but not both) is infinite [1], [12]. Since 

for any α ∈ [0,1], the feasible solution region Ωα is a regular set, then we can also apply Charnes and 

Cooper's technique of variable transformation (see e.g. [5], [26]) to the problem (4). In this case, we 

will obtain the following two crisp SILP problems with infinite number of constraints: 

 

                Maximize ∑𝑐𝑗̃
𝑅(𝛼)𝑦𝑗

𝑛

𝑗=1

+ 𝑐̃𝑅(α)θ                                      

                                                            

                                                        s.t.       ∑𝑎𝑖𝑗̃
𝑅(𝑠)𝑦𝑗

𝑛

𝑗=1

− 𝑏𝑖̃
𝐿
(𝑠)θ ≤ 0 ∀𝑠 ∈ [α, 1],  𝑖 = 1,… ,𝑚, 

                                       

                                                          ∑𝑑𝑗𝑦𝑗 + 𝑑𝜃 = 1,                                                       (5)

𝑛

𝑗=1
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                                                                   𝑦𝑗 ≥ 0,  𝑗 = 1,… , 𝑛, 

                                                                 θ ≥ 0,    

and  
                                       

Maximize     ∑−𝑐𝑗̃
𝑅(α)

𝑛

𝑗=1

𝑦𝑗 − 𝑐̃
𝑅(α)θ,         

                                                                  s.t.   ∑𝑎𝑖𝑗̃
𝑅(𝑠)𝑦𝑗

𝑛

𝑗=1

− 𝑏𝑖̃
𝐿
(𝑠)θ ≤ 0 ∀𝑠 ∈ [α, 1],  𝑖 = 1,… ,𝑚, 

                                                            

                                                                ∑−𝑑𝑗𝑦𝑗 − 𝑑𝜃 = 1

𝑛

𝑗=1

,                                                (6)   

                                                                          𝑦𝑗 ≥ 0,  𝑗 = 1,… , 𝑛,  

                                                                          θ ≥ 0,  

where the crisp SILP problems (5) and (6) are obtained from (4) by taking the critical transformation 

 

θ =
1

∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑑

 

 

                                                                    𝑦𝑗 = θ𝑥𝑗 ,  𝑗 = 1,… , 𝑛.                                      (7) 

   Similar to [5], we can for a given α ∈ [0,1] observe that if Ω𝛼 is a regular set, then for solving the 

problem (4), it is sufficient to solve the crisp SILP problems (5) and (6). The solution which gives 

the largest value for objective function of the problem (4), is chosen as an optimal solution. If one 

knows the sign of either the numerator or the denominator of the objective function of the problem 

(4) at an optimal solution, then it is sufficient to solve exactly one of either the problem (5) or the 

problem (6). Moreover, we can conclude the following proposition in a similar way as discussed in 

[5]: 

 

 Proposition 3.1. For an optimal solution (𝑥1, … , 𝑥𝑛) of the optimization problem (4), if either 
∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗̂ + 𝑑 >  0 and (𝑦1

∗, … , 𝑦𝑛
∗, θ∗) is an optimal solution of the (5), or ∑ 𝑑𝑗

𝑛
𝑗=1 𝑥𝑗̂ + 𝑑 < 0 and 

(𝑦1
∗, … , 𝑦𝑛

∗, θ∗) is an optimal solution of the (6), then 

 

(𝑥1
∗, … , 𝑥𝑛

∗) = (
𝑦1
∗

θ∗
, … ,

𝑦𝑛
∗

θ∗
) 

 

is also an optimal solution of the problem (4). 

    Now for convenience and also due to describe the   problems (5) and (6) in an identical format, we 

assume that for 𝑗 = 1,… , 𝑛, 

 

(𝑝𝑗 , 𝑟𝑗, 𝑝, 𝑟) = {
(𝑐𝑗̃

𝑅(𝛼), 𝑑𝑗 , 𝑐̃
𝑅(𝛼), 𝑑),           if the problem (5) is considered,

−(𝑐𝑗̃
𝑅(𝛼), 𝑑𝑗, 𝑐̃

𝑅(𝛼), 𝑑),         if the problem(6) is considered.
  

 

Further, let 𝑆 = [α, 1] and 
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                           𝑔𝑖𝑗(𝑠) = 𝑎𝑖𝑗̃
𝑅(𝑠),     𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 

          𝑏𝑖(𝑠) = 𝑏𝑖̃
𝐿
(𝑠),       𝑖 = 1,… ,𝑚.  

Therefore, each of the crisp  SILP problems (5) and (6) can be written as the following uniform form 

                       

Maximize   𝐺(𝑦, 𝜃) =∑𝑝𝑗

𝑛

𝑗=1

𝑦𝑗 + 𝑝θ,                

                       s. t.                   ∑𝑔𝑖𝑗(𝑠)𝑦𝑗

𝑛

𝑗=1

− 𝑏𝑖(𝑠)θ ≤ 0,  ∀𝑠 ∈ 𝑆,  𝑖 = 1,… ,𝑚, 

                                                         

                                            ∑𝑟𝑗

𝑛

𝑗=1

𝑦𝑗 + 𝑟θ = 1,                                                    (8) 

                    𝑦𝑗 ≥ 0,                                  𝑗 = 1,… , 𝑛, 

                                                                    θ ≥ 0. 

where 𝑆 is a compact set with an infinite cardinality and for 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, the functions  

𝑔𝑖𝑗(𝑠) and 𝑏𝑖(𝑠) are real valued continuous functions defined on 𝑆. In the next section, we will 

introduce an efficient algorithm for solving the SILP problem (8).  

 

4. The General-CPA algorithm for FLFO model 

    There may exist various solution methods for solving SILP problems ( see e.g. [1], [12], [15], [16]). 

According to [14], algorithms for SILP problems can be classified into discretization methods, local 

reduction methods, exchange methods, simplex-like methods and descent methods. In this paper, the 

SILP problem (8) has the infinite number of constraints and finite number of variables. Then, based 

on a recent survey [16], the so-called " cutting plane algorithm " is a suitable technique to solve such 

problems. In this section, we consider a straightforward variation of the CPA approach presented in 

[11] and prepare it for solving the crisp SILP model (8). Then, we provide a General-CPA algorithm 

for finding the 𝛼-optimal solution and 𝛼 -optimal objective value of the FLFO problem under 

investigation. Mainly, the CPA approach derives a sequence of optimal solutions of corresponding 

linear programming models in a symmetric manner. In any iteration of this algorithm, 𝑚 new 

constraints are actually inserted to the previous constraints until an optimal solution is obtained. At 

the 𝑘th iteration of the CPA approach, if 

 

𝑆𝑘 = {𝑠
1, … , 𝑠𝑘} 

where 

𝑠𝑡 = {𝑠1
𝑡 , … , 𝑠𝑚

𝑡 } ∈ 𝑆𝑚,   𝑡 = 1,… , 𝑘, 

then we should solve the following crisp linear programming problem with ( 𝑘𝑚 + 1) constraints: 

Maximize    𝐺(𝑦, 𝜃) =∑𝑝𝑗

𝑛

𝑗=1

𝑦𝑗 + 𝑝θ,                                                                           

                 Subject to  
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                     ∑𝑔𝑖𝑗(𝑠𝑖
1)𝑦𝑗  − 𝑏𝑖(𝑠𝑖

1)θ ≤ 0,     𝑖 = 1,… ,𝑚,

𝑛

𝑗=1

 

                      ∑𝑔𝑖𝑗(𝑠𝑖
2)𝑦𝑗

𝑛

𝑗=1

− 𝑏𝑖(𝑠𝑖
2)θ ≤ 0,        𝑖 = 1,… ,𝑚, 

⋮  

                                   ∑𝑔𝑖𝑗(𝑠𝑖
𝑘)𝑦𝑗

𝑛

𝑗=1

− 𝑏𝑖(𝑠𝑖
𝑘)θ ≤ 0,      𝑖 = 1,… ,𝑚,     (LPk) 

    ∑𝑟𝑗

𝑛

𝑗=1

𝑦𝑗 + 𝑟θ = 1,                                    

   𝑦𝑗 ≥ 0,                                 𝑗 = 1,… , 𝑛, 

                                                    θ ≥ 0.  

 

    Assume that (𝑦𝑘 , θ𝑘) = (𝑦1
𝑘 , … , 𝑦𝑛

𝑘, θ𝑘) is an optimal solution of the problem (LPk). Then, as a 

critical note the "constraint violation functions" are defined as follows: 

 

φ𝑖
𝑘+1(𝑠) = 𝑏𝑖(𝑠)θ

𝑘 −∑𝑔𝑖𝑗(𝑠)𝑦𝑗
𝑘

𝑛

𝑗=1

,  ∀𝑠 ∈ 𝑆,  𝑖 = 1,… ,𝑚. 

Since 𝑔𝑖𝑗(𝑠) and 𝑏𝑖(𝑠) are continuous functions on the compact set 𝑆, then the function φ𝑖
𝑘+1(𝑠) 

achieves its minimum value over the interval 𝑆 . Therefore, we let 

 

𝑠𝑖
𝑘+1 = arg min𝑠∈𝑆 𝜑𝑖

𝑘+1(𝑠),           ∀ 𝑖 = 1,… ,𝑚. 
If  

φ𝑖
𝑘+1(𝑠𝑖

𝑘+1) = 𝑏𝑖(𝑠𝑖
𝑘+1)θ𝑘 −∑𝑔𝑖𝑗(𝑠𝑖

𝑘+1)𝑦𝑗
𝑘

𝑛

𝑗=1

≥ 0,     𝑖 = 1,… ,𝑚, 

then (𝑦𝑘 , θ𝑘) is a feasible solution of the SILP problem (8) and also it will be an optimal solution. 

Otherwise, (𝑦𝑘 , θ𝑘) is not an optimal solution and in this case, we let 

 

𝑆𝑘+1 = {𝑠
1, … , 𝑠𝑘+1}, 

 

where 

 

𝑠𝑘+1 = {𝑠1
𝑘+1, … , 𝑠𝑚

𝑘+1} ∉ 𝑆𝑘 

 

and construct the linear program (LPk+1)   with additional  m   constraints . If this process is iterated, 

then the produced sequence {(𝑦𝑘 , θ𝑘)}
𝑘
 will converge to the optimal solution of the SILP problem 

(8). Now, based on all explanations above, we can summarize the CPA approach for the SILP problem 

(8) as follows ( see  [11]): 
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CPA approach. Solves the crisp SILP problem (8) 

1: Begin 

2: Set 𝐼 = {1,… ,𝑚}. 
3:  Set 𝑘 = 1. 

4: For all 𝑖 ∈  𝐼 choose any 𝑠𝑖
1 ∈ 𝑆. 

5:    Set 𝑆1 = {𝑠
1} such that 𝑠1 = (𝑠1

1, … , 𝑠𝑚
1 ). 

6:    Obtain the optimal solution (𝑦𝑘 , θ𝑘) of the problem (LPk). 

7: For all 𝑖 ∈ 𝐼, find 𝑠𝑖
𝑘+1 = arg min𝑠∈𝑆 𝜑𝑖

𝑘+1(𝑠). 

8: If there exists  𝑖 ∈ 𝐼, such that φ𝑖
𝑘+1(𝑠𝑖

𝑘+1) < 0  then 

9:      set 𝑆𝑘+1 = 𝑆𝑘 ∪ {𝑠
𝑘+1}, 

10.    update 𝑘 = 𝑘 + 1 and return to step 6, 

11.  else 

12:    stop; (𝑦𝑘 , θ𝑘) is an optimal solution of the SILP model (8). 

13:  End 

   

The convergence proof of the generated sequence {(𝑦𝑘 , θ𝑘)}
𝑘
 to an optimal solution of the problem 

(8) is described in the following as analyzed in more details in Fang et al. [11]. 

Proposition 4.1. If the feasible space of the SILP problem (8) is nonempty and {(𝑦𝑘, θ𝑘)}
𝑘
 is a 

bounded sequence generated by CPA approach, then there exists a subsequence of 

{(𝑦𝑘 , θ𝑘)}
𝑘
 converging to an optimal solution (𝑦∗, θ∗) of the SILP model (8). 

 Now, we are ready to present the General-CPA algorithm for determining the 𝛼-optimal solution 

and 𝛼 -optimal objective value of the FLFO problem under investigation as follows: 

 

  General-CPA algorithm: solves the FLFO model 

1. Begin 

2. For sgn= +1, -1 do 

                    2.1. Let (𝑝𝑗 , 𝑟𝑗, 𝑝, 𝑟) = sgn × (𝑐𝑗̃
𝑅(𝛼), 𝑑𝑗, 𝑐̃

𝑅(𝛼), 𝑑)  

                    2.2. Apply CPA approach to the SILP model (8) and get an optimal 

                           solution (𝑦𝑠𝑔𝑛
∗ , 𝜃𝑠𝑔𝑛

∗ ) and the optimal objective value, say 𝐺(𝑦𝑠𝑔𝑛
∗ , 𝜃𝑠𝑔𝑛

∗ ). 

3.  Let   𝐺(𝑦∗, 𝜃∗) = max{𝐺(𝑦𝑠𝑔𝑛
∗ , 𝜃𝑠𝑔𝑛

∗ ):   sgn =  +1,−1}   

4.  An α -optimal solution of FLFO model is derived by        

                                     𝑥𝑗
∗ =

𝑦𝑗
∗

𝜃∗
,   𝑗 = 1,… , 𝑛.   

5. End     

Finally, we conclude that 

Proposition 4.2. The General-CPA algorithm can determine the α −optimal solution and α-optimal 

objective value of the FLFO problem, correctly. 

Now, we are going to explain an application for our studied FLFO problem and the provided 

solution technique in the next section. 
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5. Application in improvement facility location theory 

    Facility location problems  are well-known optimization models in operations research which have 

many applications in theory and practice. In a classical facility location problem on a system (network 

or real space), we wish to find the best locations for installing one or more facilities on the underlying 

system to serve the existing customers in the best possible way according to a specific criterion. On 

the other hand, an improvement facility location problem aims to modify some input parameters of 

the classical model in the cheapest possible way with respect to some modification bound, until the 

current location of a predetermined facility is improved as much as possible. In this section,  we show 

that how the considered FLFO problem and our presented solution approach can be applied to the 

fractional improvement (objective-bounded inverse) multiple commodity median facility location 

problems on tree networks in fuzzy environment. 

   Let a tree network 𝑇 = (𝑉(𝑇), 𝐸(𝑇)) with vertex set 𝑉(𝑇) = {𝑣1, … , 𝑣𝑛} and the edge set 𝐸(𝑇) be 

given. For any vertex 𝑣𝑖 ∈ 𝑉(𝑇), corresponding to the commodity 𝑜, a fuzzy weight 𝑤̃𝑜𝑖 is associated 

which is interpreted as demand for commodity  𝑜 at the customer site  𝑣𝑖.  Any edge 𝑒 ∈ 𝐸(𝑇) has a 

nonnegative length 𝑙𝑒.  Based on the edge lengths of the underlying tree network, the travel distance 

required for transporting any commodity 𝑜, 𝑜 = 1, . . . , 𝑂,  from 𝑣𝑗 to the demand center 𝑣𝑖  

 

𝑑(𝑣𝑖 , 𝑣𝑗) = ∑ 𝑙𝑒
𝑒∈𝑃[𝑣𝑖,𝑣𝑗]

 

where  𝑃[𝑣𝑖, 𝑣𝑗] denotes the unique path between vertices 𝑣𝑖, 𝑣𝑗  on tree network 𝑇. In the classical 

multiple commodity median facility location problem on the tree T in the fuzzy environment, the goal 

is to find the optimal solution of the following optimization model as the best location for establishing 

our facility, where we have  𝑂 type of commodities on the system: 

                                       

           Minimize ∑ ∑ 𝑤̃𝑜𝑖𝑑(𝑣𝑖, 𝑥),

𝑣𝑖∈𝑉(𝑇)

𝑂

𝑜=1

 

                         subject to         𝑥 ∈ 𝑉(𝑇).                                
 

    In contrast to the above classical model, the fuzzy fractional improvement (objective-bounded 

inverse) multiple commodity median facility location problem is stated as follows: Consider the 

underlying tree network 𝑇  with vertex weights  𝑤̃𝑜𝑖 and the edge lengths 𝑙𝑒 . Suppose that a 

predetermined vertex  𝒗𝒔 is given as the current facility location which has already been established 

on the system. The goal is to modify the edge lengths of  𝑇 in the best possible way with respect to 

modification restrictions such that the position of the facility location 𝒗𝒔 is improved as much as 

possible under the perturbed edge lengths. 

For every  𝑒 ∈ 𝐸(𝑇)     ,l et  𝑐𝑒̃  be the cost coefficient for reducing the length  𝑙𝑒 which is uncertain 

due to the economic instability and then it is considered as a fuzzy number. Furthermore, let  𝑑𝑒  ,𝑒 ∈
𝐸(𝑇) , be the quality coefficient corresponding to the improvement of the lengths  𝑙𝑒 . We wish to 

modify the edge lengths such that the optimal objective value of the classical multiple commodity 

median location model becomes less than or equal to a given fuzzy value  Δ̃. Note that we are not 

permitted to reduce the edge lengths arbitrarily. Hence, any reduction on the length 𝑙𝑒 should obey 

the specific bound 𝑢𝑒. If  𝑥𝑒 denotes the reduction amount of the length 𝑙𝑒  , then, we should modify 

the lengths 𝑙𝑒 , 𝑒 ∈ 𝐸(𝑇)  to   𝑙𝑒̃ = 𝑙𝑒 − 𝑥𝑒  such that all the following statements are satisfied: 
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1.  The overall modification ratio of cost/quality 

 

𝑍̃(𝑋) =
∑ 𝑐𝑒̃𝑥𝑒𝑒∈𝐸(𝑇) + 𝑐̃

∑ 𝑑𝑒𝑥𝑒𝑒∈𝐸(𝑇) + 𝑑
               

 

     is minimized, where  𝑐̃  and 𝑑  are the initial fuzzy cost and crisp quality factor on the system. 

2.  The fuzzy objective value of the classical median model at the predetermined facility location 

𝒗𝒔  does not proceed the given aspiration bound Δ̃, i.e., 

                                                   ∑ ∑ 𝑤̃𝑜𝑖𝑑̅(𝑣𝑖, 𝒗𝒔)

   𝑣𝑖∈𝑉(𝑇)

⪯ Δ̃.

𝑂

0=1

                                         (9) 

         where 𝑑̅(𝑣𝑖 , 𝒗𝒔)  is the travel distance between 𝑣𝑖  and  𝒗𝒔 under the new length 𝑙𝑒̃ , 𝑒 ∈ 𝐸(𝑇) . 
  3.    The modification amounts  𝑥𝑒 obey the bounds 

 

   0 ≤ 𝑥𝑒 ≤ 𝑢𝑒 ,         ∀𝑒 ∈ 𝐸(𝑇) 

    To the best of our knowledge, the fractional case of the inverse/improvement facility location 

models on the fuzzy environment have not been discussed until now. Now, let us rewrite the left side 

of the inequality (9) as follows, since we know that there exists unique path between any two points 

on tree networks: 

  

                            ∑ ∑ 𝑤̃𝑜𝑖𝑑̅(𝑣𝑖, 𝒗𝒔)

   𝑣𝑖∈𝑉(𝑇)

 

𝑂

0=1

=∑ ∑ 𝑤̃𝑜𝑖
𝑣𝑖∈𝑉(𝑇)

𝑂

𝑜=1

∑ (𝑙𝑒 − 𝑥𝑒)

𝑒∈𝑃[𝑣𝑖,𝑣𝑠]

 

      

                                              = ∑ ∑ 𝑤̃𝑜𝑖
𝑣𝑖∈𝑉(𝑇)

𝑂

𝑜=1

∑ 𝑙𝑒
𝑒∈𝑃[𝑣𝑖,𝑣𝑠]

−∑ ∑ 𝑤̃𝑜𝑖
𝑣𝑖∈𝑉(𝑇)

𝑂

𝑜=1

∑ 𝑥𝑒
𝑒∈𝑃[𝑣𝑖,𝑣𝑠]

. 

 

Considering the above discussions, the inequality (9) can finally be written as the following fuzzy 

inequality: 

 

∑ 𝑊̃𝑒𝑥𝑒
𝑒∈𝐸(𝑇)

≥ γ̃. 

where we have 

 

γ̃ = ∑ ∑ 𝑤̃𝑜𝑖 ∑ 𝑙𝑒
𝑒∈𝑃[𝑣𝑖,𝑣𝑠]𝑣𝑖∈𝑉(𝑇)

𝑂

𝑜=1

− Δ̃, 

and also 

𝑊̃𝑒 =∑∑𝑤̃𝑜𝑗
𝑡∈𝐼𝑒

𝑂

𝑜=1

,  

such that the index set 𝐼𝑒 is as  

 

𝐼𝑒 = {𝑡:  𝑒 ∈ 𝑃[𝑣𝑡 , 𝒗𝒔, ],  𝑡 = 1, … , 𝑛}.  
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    Altogether, the fractional improvement multiple commodity median location problem on the 

underlying tree network T is mathematically formulated as the following specific FLFO problem: 

  Minimize          𝑍̃(𝑋) =
∑ 𝑐𝑒̃𝑥𝑒𝑒∈𝐸(𝑇) + 𝑐̃

∑ 𝑑𝑒𝑥𝑒𝑒∈𝐸(𝑇) + 𝑑
, 

 

s.t.    

        ∑ 𝑊̃𝑒
𝑒∈𝐸(𝑇)

𝑥𝑒 ≥ 𝛾̃, 

                                   0 ≤ 𝑥𝑒 ≤ 𝑢𝑒         ∀𝑒 ∈ 𝐸(𝑇). 
 

where 𝑐𝑒̃ , 𝑊̃𝑒, for all 𝑒 ∈ 𝐸(𝑇) and 𝑐̃, 𝛾̃ are convex fuzzy numbers. This FLFO model can be solved 

by the above provided solution approach efficiently. 

 

6. An illustrative example 

  Let us consider the following FLFO problem with the given membership functions for the fuzzy 

parameters: 

Maximize       𝑍̃(𝑋) =
2̃𝑥1 + 0.5̃𝑥2 + 1̃

𝑥1 + 2𝑥2 + 1
,                          

 
                                 subject to                    3̃𝑥1 + 2̃𝑥2 ⪯ 6̃, 
                                                                        9̃𝑥1 + 3̃𝑥2 ⪯ 12̃,                                    (10) 

  𝑥1, 𝑥2 ≥ 0. 
 

where the membership functions of the fuzzy coefficients on the objective function are defined as 

follows: 

 

2̃(𝑥) = {

1

2
𝑥,           0 ≤ 𝑥 < 2,

−4

10
𝑥 +

18

10
,     2 ≤ 𝑥 ≤

9

2
.
    , 

 

0.5̃(𝑥) = {
2𝑥,                  0 ≤ 𝑥 <

1

2
,

−
8

10
𝑥 +

14

10
,      

1

2
≤ 𝑥 ≤

7

4
.

 

and 

1̃(𝑥) = {
𝑥,                   0 ≤ 𝑥 < 1,
−4

10
𝑥 +

14

10
,      1 ≤ 𝑥 ≤

7

2
.
 

 

Moreover, the membership functions of fuzzy parameters in the constraints of the problem (10) are 

given as follows: 

 

 

3̃(𝑥) =

{
 
 

 
 

0 ,          𝑥 < 2,
𝑥 − 2, 2 ≤ 𝑥 < 3,
1

2
(5 − 𝑥),   3 ≤ 𝑥 < 5,

0, 𝑥 ≥ 5.

 

 

2̃(𝑥) = {

0, 𝑥 < 1,
𝑥 − 1, 1 ≤ 𝑥 < 2,
3 − 𝑥, 2 ≤ 𝑥 < 3,

0, 𝑥 ≥ 3.
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For given α = 0.6, if we use Definition 2.3 for evaluating the fuzzy inequalities in the constraints 

and apply Definition 2.2  on the objective function, then the FLFO problem (10) is transformed into 

the following crisp semi-infinite linear fractional program: 
 

Maximize     𝑯𝜶 (𝑍̃(𝑋)) =
3𝑥1 + 𝑥2 + 2

𝑥1 + 2𝑥2 + 1
,            

                                    subject to (5 − 2𝑠)𝑥1 + (3 − 𝑠)𝑥2 ≤ (3 + 3𝑠),   ∀𝑠 ∈ [𝛼, 1], 
                                             (10 − 𝑠)𝑥1 + (5 − 2𝑠)𝑥2 ≤ (10 + 2𝑠),             

                                                             𝑥1, 𝑥2 ≥ 0,                                                                  (11)   
where, for 𝛼 = 0.6, we get 

2̃𝑅(0.6) = 3    ,    0.5̃𝑅(0.6) = 1   ,   1̃𝑅(0.6) = 2.  

   Since for all feasible solution of the problem (11), the sign of the denominator of the objective 

function is positive, then based on Proposition 3.1, the solution of the problem (11) is converted to 

the solution of the following SILP problem: 

 

                          Maximize        3𝑦1 + 𝑦2 + 2𝜃,      
                           subject to      (5 − 2𝑠)𝑦1 + (3 − 𝑠)𝑦2 − (3 + 3𝑠)𝜃 ≤ 0,      
                                                    (10 − 𝑠)𝑦1 + (5 − 2𝑠)𝑦2 − (10 + 2𝑠)𝜃 ≤ 0    ∀𝑠 ∈ [0.6,1], 
                                                     𝑦1 + 2𝑦2 + 𝜃 = 1,                                           
                                                     𝑦1, 𝑦2 ≥ 0.                                                                        (12)  
                                                     𝜃 ≥ 0. 

    

Now, we apply our CPA algorithm to the SILP problem (12) for given  α =  0.60 and for the initial 

parameter 𝑠1 = (𝑠1
1, 𝑠2

1) = (0.60,0.70), and therefore we get 

𝑦1
∗ = 0.543689  ,    𝑦2

∗ = 0.000000   ,    𝜃∗ = 0.456311. 

    Consequently, by considering the variable transformation (12), the α-optimal solutions and the α-

optimal objective values of the FLFO problem (10) are derived as 

𝑥1
∗ = 1.191488   ,    𝑥2

∗ = 0.000000   ,    𝑯𝜶 (𝑍̃(𝑋
∗)) = 2.543689 

6̃(𝑥) =

{
 
 

 
 

0,                 𝑥 < 3,
1

3
(𝑥 − 3), 3 ≤ 𝑥 < 6,

1

3
(9 − 𝑥), 6 ≤ 𝑥 < 9,

0,               𝑥 ≥ 9.

 
9̃(𝑥) = {

0, 𝑥 < 8,
𝑥 − 8, 8 ≤ 𝑥 < 9,
10 − 𝑥, 9 ≤ 𝑥 < 10,

0, 𝑥 ≥ 10.

 

 

12̃(𝑥) =

{
 
 

 
 

0,                 𝑥 < 10,
1

2
(𝑥 − 10), 10 ≤ 𝑥 < 12,

1

3
(15 − 𝑥), 12 ≤ 𝑥 < 15,

0, 𝑥 ≥ 15.
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This obtained solution yields the following corresponding fuzzy objective value 

 

𝑍̃(𝑋∗) = [0.000000, 1.315534, 4.281551]  

7. Concluding remarks 

    In this paper, we considered a FLFO problem in which the parameters are considered as convex 

fuzzy numbers. Applying an appraisal function for evaluating the objective values and a fuzzy ranking 

method to the constraints, the original FLFO problem was transformed into to a semi-infinite linear 

fractional program. We demonstrated that if the Charnes and Cooper's  technique of variable 

transformation is called, then the solution of the semi-infinite linear fractional programming model is 

equivalently transformed into the optimal solutions of at most two SILP models that are dissimilar 

among themselves through a sign in a constraint and in the objective function. Analogously, a 

compatible CPA approach by  Fang et al. [11] was applied to obtain the optimal solution of the SILP 

models. Then, we provided a General-CPA algorithm for obtaining the 𝛼-optimal solution and 𝛼-

optimal objective value of the FLFO problem under investigation.  At the end, we discussed an 

application of the investigated FLFO problem and the provided solution algorithm in improvement 

facility location theory on tree networks, properly. 

   As a concluding remark, if we consider our FLFO problem with the objective function 

 

  𝑍̃(𝑋) =
∑ 𝑐𝑗̃
𝑛
𝑗=1 𝑥𝑗 + 𝑐̃

∑ 𝑑𝑗̃
𝑛
𝑗=1 𝑥𝑗 + 𝑑̃

 

where, the parameters dj̃, 𝑑̃  are also convex fuzzy numbers in addition, then we can, in this case, 

suggest the following appraisal function 

𝑯𝜶 (𝑍̃(𝑋)) =
∑ 𝑐̃𝑗

𝑅(α)𝑥𝑗
𝑛
𝑗=1 + 𝑐̃𝑅(α)

∑ 𝑑̃𝑗
𝐿(α)𝑥𝑗

𝑛
𝑗=1 + 𝑑̃𝐿(α)

      or      𝑯𝜶 (𝑍̃(𝑋)) =
∑ 𝑐̃𝑗

𝑅(α)𝑥𝑗
𝑛
𝑗=1 + 𝑐̃𝑅(α)

∑ 𝑑̃𝑗
𝑅(α)𝑥𝑗

𝑛
𝑗=1 + 𝑑̃𝑅(α)

 

for a given α ∈ [0,1] according to our initiative point of view. Here, we can also apply the above 

provided solution procedure in order to solve our FLFO problem. Here, the idea of Remark 2.1 can 

also be taken into account. We know that a decision maker can define various appraisal functions and 

ranking methods according to the structure of the problem under investigation and based on his/her 

own idea for solving the optimization problems in uncertain environments. Hence, our applied 

procedure for the considered FLFO problem together with the concentration on the improvement 

facility location models may not be so eminent, but it is certainly interesting in our point of view. 
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