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A New Infeasible Interior-Point Algorithm with
Full Nesterov-Todd Step for Semi-Definite
Optimization
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We present a new full Nesterov and Todd step infeasible interior-point algorithm for
semi-definite optimization. The algorithm decreases the duality gap and the
feasibility residuals at the same rate. In the algorithm, we construct strictly feasible
iterates for a sequence of perturbations of the given problem and its dual problem.
Every main iteration of the algorithm consists of a feasibility step and some
centering steps. We show that the algorithm converges and finds an approximate
solution in polynomial time. A numerical study is made for the numerical
performance. Finally, a comparison of the obtained results with those by other
existing algorithms is made.
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1. Introduction

Here, we use the matrix inner product A ¢« B = Tr(ATB). Let S™, S} and S}, denote the cone of
symmetric, symmetric positive semi-definite and symmetric positive definite n X n matrices,
respectively, |I. Iz and |l. ll, denote the Frobenius norm and the spectral norm for matrices, respectively.

1
For any Q € ST, let the expression Q2 denote its symmetric square root. For any V € S™, let A5, (V)
and Ay ,x (V) denote the smallest eigenvalue and largest eigenvalue of V, respectively.

We consider the semidefinite optimization (SDO) problem in the standard form,

min C ¢ X
s.t. Ai o X = bi,i = 1,2,...,m (P)
X =0,

where A; € S™, b = (by, by, ..., b,,)T € R™,C € S™and X > 0 means that X is positive semi-definite.
Moreover, the matrices A4; are linearly independent. The dual problem of (P) is given by
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max bTy

m
s.t. Z yid; +5=C, D)
i=1

S=0,
withy € R™ and S € S™.

In 1984, Karmarkar [5] proposed a polynomial-time algorithm, the so-called interior-point methods
(IPMs) for solving linear optimization (LO) problems. This method was extended to SDO, with an
important contribution made by Nesterov and Todd [13, 17]. For a comprehensive study of IPMs for
SDO, we refer to [2, 4, 20, 15]. We assume that (P) and (D) satisfy the interior-point condition (IPC),
i.e.; there exist X°, y° and S° such that

m
Ao X° = b, i=1,2,...,m,2yi0Ai+S°:C, X°>0,8°>0,
i=1

where X9 > 0 means that Xis positive definite.

It is well known that finding an optimal solution of (P) and (D) is equivalent to solving the following
system:

Ai'Xz bi,i = 1,2,...,m, X
S

L yiAi+S=C, 0, )

The basic idea of primal-dual IPM is to replace the third equation in (1), the so-called complementarity
condition for (P) and (D), by the parameterized equation XS = uE, with pu > 0, where E is the
n by n identity matrix. Thus, one may consider

Ai'Xzbi, i=1,2,...,m, X?O,
=1 Yidi +S=C, S#0, ()
XS = uE.

For each p > 0, the parameterized system (2) has a unique solution (X (u),y(u), S(w)).see [9, 14],
which is called a p-center of (P) and (D). The set of u-centers is said to be the central path of (P) and
(D). The central path converges to the solution pair of (P) and (D) as u reduces to zero [14].

A natural way to define a search direction for an IPM is to follow the Newton approach and linearize
the third equation in (2) by replacing X,y and S with X + AX,y + Ay and S + AS respectively. This
leads to

Ao AX =0, i=12,..,m,
SAX + XAS = uE — XS.

The system (3) can be rewritten as
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AjsAX =0, i=12,..,m,
Z?il AyiAi + AS = 0, (4)
AX + XASS™1 = us~1 — X.

It is clear that AS is symmetric due to the second equation in (4). However, a crucial observation is that
AX is not necessarily symmetric, because XASS™! may not be symmetric. Several researchers have
proposed methods for symmetrizing the third equation in (4) such that the resulting new system had a
unique symmetric solution. Among them, we consider the symmetrization scheme yielding the
Nesterov-Todd (NT)-direction [13, 18]. In the NT-scheme, we replace the term XASS™? in the third
equation of (4) by PASPT and obtain

AjeAX =0, i=12,..,m,
Y™ Ay A+ AS =0, (5)
AX + PASPT = uS™1 — X,

where
i1 111 -1 1o 11 -1
P:= X2(X25X2)2 Xz [= §2 (§52X52)25= . (0)
1
Let D = Pz. Then, D can be used to scale X and S to the same matrix V defined by [2]

1 1 1 1
—D7'XD™'=—DSD =— (D! :
7= (D7XSD)z (7)

Vi= 5 Vi

Note that the matrices D and V are symmetric and positive definite. If we define

Ap= i#DAiD, i=12..,m,

\/_

Dy:= \/i_#D‘lAXD‘l, (8)
1

Ds:= =DASD,

then the NT-search directions can be written as the solution of the following system:

AjeDy =0, i=12,..,m,
2?;1 AyiAi + DS = 0, (9)
DX+DS :V_l_V.

A crucial observation is that the right-hand side of the third equation in (9) equals the negative gradient
of the logarithm barrier function ¥ (V), i.e.,

DX + DS = —VW(V),
where

t2 -1
2

W) = Z (W), W(t) = —log(b).
i=1
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Here, we replace Y (t) by Y (t) = %(t — 1)2, which leads to

AieDy =0, i=12..,m,
Z.{Zl Ayigi + DS = O, (10)
DX + DS =E-V.

The new search directions Dy and Ds are obtained by solving (10), and so AX and AS can be computed
via (8). Then, the new iterates are given by

Xt=X+4X,yt =y +4y,St =S+ 4S.

Note that this can be seen as a search direction induced by a kernel function 1 (t) as described in [1, 3,
7, 19] for SDO; these methods are called feasible IPMs. However, this kernel function does not satisfy
some of the properties kernel functions; in particular, lim,_y+3(t) = +oo. These methods start with a
strictly feasible interior point and maintain feasibility during the process. However, a problem is how to
find an initial feasible interior point. For this problem, the so-called infeasible IPMs (IIPMs)methods.
These methods start with an arbitrary positive point (not necessarily feasible) and feasibility is reached
as progress is made to the optimal solution. The first IIPMs were proposed by Lustig [11]. Global
convergence was shown by Kojima et al. [9], whereas Zhang [21] proved an O(n?L) iteration bound for
IIPMs under certain conditions for LO and extended it to SDO [22]. In 2009, Mansouri and Roos [12]
proposed the first full-Newton step IIPM for the SDO problem, which is an extension of the work for
LO by Roos [16]. Liu and Sun [10] adopted the basic analysis used in [12] to the SDO problem based

on the kernel function ¥(t) = %(t - 1)2.

Here, we develop a different analysis of the mentioned works for the full-Newton step IPMs and 1IPMs.
We provide search directions and show that the iteration bound coincides with the best known bound
for IIPMs, while tendering a simple analysis. By a numerical example, we investigate the advantage of
our algorithm than the existing algorithms.

The semainder of out work is organized as follows. In Section 2, after recalling some necessary results,
we give a new analysis for the full-NT step, which includes a feasible condition, the effect of a full-NT
step on the proximity measure and the convergence of the full-NT step. In Section 3, we first propose
the perturbed problems corresponding to (P) and (D), and then give a description of the full-NT step
ITPMs based on the new search directions. Furthermore, we present our algorithm. In subsection 3.3, we
analyze the feasibility step used in the algorithm. This includes a feasible condition and the effect of
full-NT step on the proximity function after parameter updating. We derive the complexity bound of the
algorithm in subsection 3.6. Finally, the conclusion and some remarks are given in Section 4.

2. A New Analysis of Full-NT Step

A primal-dual pair (X, S) is called an e-solution of (P) and (D), if Tr(XS) < €. Assume that a pair
(X°,5°) with X° > 0 and S° > 0 is given ‘close to’ (X(u), S(w)), for some u = u°, in the sense of the
proximity measure o(X°, S u°®). This quantity is defined as follows:

oX, S; w:=oc(V):=IE-V I, (11)
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where Vis defined by (7). Due to the first two equations of (10), Dy and Ds are orthogonal. Using the
third equation of (10), we obtain

I Dy + Ds II3=Il Dx 2 +1l Ds 2=l Ey 3= a(V)2.

This implies that Dy and Ds are both zero if and only if E —V = 0. In this case, X and S satisfy
XS = uE, indicating that X and S are the p-centers.

2.1. Some Basic Results
Here, we recall some useful results.Let 0 < a < 1. Define
X% =X+ adX,S* =S + adSs.
We recall two useful lemmas in [2], which will be used later.
Lemma 1. (Lemma 6.1 in [2]) Suppose that X > 0 and S > 0. If
det(X*S%*) > 0, Vo< a<a,
thenX® > 0 and S% > 0.

Lemma 2. (Lemma A.1 in [2]) Let Q € ST, and let M € R™™ be skew-symmetric. Then, det(Q +
M) > 0. Moreover, if the eigenvalues of Q + M are real, then

0< Amin(Q) < Amin(Q + M) < Amax(Q + M) < Amax(Q)-

The next lemma gives some upper bounds for the 2-norm and the Frobenius norm of Dyg, where
Dys: = %(DXDS + DgDy).
Note that Dy is a symmetric matrix.
Lemma 3. (lemmas 6.2 and 7.3 in [2]) Let Dy € S™ and D € S™ be such that Tr(DxDs) = 0. Then,
I Dxs ll,< % Il Dx + Ds I, Il Dys llp< g |l Dy + Ds Il
This implies that
I Dxs 1< 300V, 1 Dys llp< “Eo ()2, (12)
The next lemma gives a fundamental property about the proximity measure a (V).

Lemma 4.We have

1-0V) <A4(V)<1+0a(V), i=12,..,n,
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where A;(V) is the ith eigenvalue of V.

Proof. Since E — V is a symmetric matrix, we have

V) =TH(E =V = ) M((E-V)) = ) (1= L)Y
i=1 i=1

m
and this proves the lemma.
2.2. Properties of The Full-NT Step
Using (8), we obtain

X* =X+AX = JuD(V + Dx)D,

St =S+ AS=./uD"Y(V + Ds)D~L.

Therefore,

X*tS*T =uD(V + Dy)(V + Dg)D™L.
The last matrix is similar to u(V + Dy)(V + Ds). Thus, we have

X*tST~u(V + Dy)(V + D).

To simplify the notation, in the sequel we let

1
M: = (DXV - VDx) + E(DXDS - DsDx),

where M is skew-symmetric. From the third equation in (10), we obtain, by multiplying both sides from
the left by V,

VDy +VDg =V —V?2, (13)
Now, we may write, using (13),
(V + Dx)(V + Dg) = V2 + VDg + DyV + Dy Dy
=V —VDyx + DyV + DyDs.

By subtracting and adding %DSDX to the last expression, we get

1 1
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= V + DXS + M.
Therefore,
X*tSt~u(V + Dxg + M). (14)

We want the new iterates be positive definite. We call the NT step is strictly feasible, if X* > 0 and
S* > 0. The next lemma gives a sufficient condition for strict feasibility of the full NT step.

Lemmab. Let X > 0 and S > 0. Then, the iterates (X*,y*,S™) are strictly feasible if V + Dys > 0.
Proof. Consider «,0 < a < 1, and define
X*=X+aAX,y* =y +aAy,§% =S + aAS.

Considering Lemma 1, it suffices to show that the determinant of X%S%is positive, forall 0 < a < 1.
We may write

aca

= VZ + a(VDS + DXV) + aszDs
= V2 + a(VDX + VD_S‘) + a(DXV - VDx) + aszDs.
Using (13), we get

X*Ss%

~V2 + a(V - VZ) + a(DXV - VDx) + azDXDS
=(1—a)V?2+aV + a(DxV —VDy) + a?DyDs.

2
By subtracting and adding % D¢ Dy to the right-hand side of the above expression, we obtain

X*s¢

~1=a)V?+a(l—a)V + a?(V + Dys) + a(aM + (1 — a)(DxV — VDy)).

The matrix aM + (1 — a)(DxV — VDy) is skew-symmetric, for 0 < a < 1. Lemma 2 therefore implies
that the determinant of X*S% is positive if the symmetric matrix (1 — a)V? + a(1 — @)V + a?(V +
Dys) is positive definite. The latter is true for 0 < a < 1,because V + Dyg > 0 and Vand V? are
positive definite. Thus, det(X*S%) > 0. In addition, since by assumption, X = X > 0and S® = S > 0,
Lemma 1 implies that X* = X* > 0 and S* = S* > 0. This completes the proof. O

Corollary 6. The new iterates (X*,S™) are strictly feasible, if
Il Dxs l2< Amin (V).

Proof. With V € S™ and Dy € S™, we have
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Ai(V + DXS) = Amin (V) - Mmax(DXS)l
= Amin(V)_" DXS ||2 , L= 1,2, e, N

By Lemma 5, Xt and S™ are strictly feasible, if V + Dy > 0, and this holds if || Dyg ll,< Amin(V).
The proof is complete. m

Lemma 7. Let o(V) be defined as (11) and X,S > 0. If o(V) < 2v/2 — 2, then the full NT step is
strictly feasible.

Proof. From (12) and Lemma 4, we have
Il Dys ll,< %0’(]/)2 and 1 —0(V) < Agin(V).
By Corollary 6, the full NT step is strictly feasible, if
Il Dxs ll2< Amin(V).
This last inequality holds, if

1
ZO‘(V)Z <1-a),

which leads to ¢/(V) < 24/2 — 2. This completes the proof. i
The next lemma gives the effect of full NT step on the duality gap.
Lemma 8. If (V) < 2v/2 — 2, then
Tr(X*S*) < (2V2 — Dnu.
Proof. Using (14), the skew-symmetry of M, Tr(DyDs) = 0 and Lemma 4, we have

Tr(X*S*) = uTr(V + Dys + M) = uTr(V + Dys)
= u(Tr(V) + Tr(Dys)) = WTr (V) = 1 ) 2,(V)
i=1

S nﬂlmax(v) = n.u(l + O-(V)) < nM(Z\/E - 1)'
which proves the lemma. ]
. xtst
We denote the NT scaling of 0 by (V*)2. So, from (14), we have
+o+
(V)2 2oV 4 Dys + M (15)

Lemma 9. The following holds:
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Amin(VH) = \jl —o(V) - %U(V)Z.

Proof. Using (15), we get
Amin (V) = Amin(V + Dxs + M).
Since M is skew-symmetric, Lemma 2 implies that
Amin((V)?) = Apin (V + Dxs)

= Amin(V) =1l Dxs Il

>1-0()—50()?
Where the last inequality follows by (12) and Lemma 4. i
The following lemma describes the effect of a full-NT step on the proximity measure.

Lemma 10. Let X,S > 0 and pu > 0. Moreover, let (V) < 2v/2 — 2. Then,

V2
50 < a(V) + TO‘(V)Z
o(X*,S* W <

1+ J1 — (V) —50(V)?
Proof. Using (15), we have
oX*, ST =IE -V g

=l (E—(VHHE+VH I

<—1E—-—UD2 |5
= T a2V e

On the other hand, we have
| E—V —Dys—MII*?= %", (4;(V + Dxs + M) — 1)?
=Xt ((L(V + Dxs + M))? = 24,(V + Dyxs + M) + 1)
=Yt AV + Dys + M))> =237 4,(V + Dys + M) +n
= Tr((V + Dyxs + M)?) — 2Tr(V + Dys + M) +n,

where the last equality is true by (1;(V + Dxs + M))? = 2;((V + Dxs + M)?), for each i. Using the
skew-symmetry of M, we obtain Tr(V + Dys + M) = Tr(V + Dys) and

Tr((V + Dys + M)?) = Tr((V + Dys)? + (V + Dyg)M + M(V + Dyg) — MMT).
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Since (V 4+ Dys)M + M(V + Dys) is skew-symmetric, we obtain
Tr((V + Dxs + M)?) = Tr((V + Dxs)* — MMT) < Tr((V + Dxs)?),
where the inequality follows since the matrix MMT is positive semidefinite. Hence,
| E—=V —Dys — M I?< Tr((V + Dxs)?) — 2Tr(V + Dys) + n
=Tr((E — (V + Dxs))*) =l E =V — Dxs II%.

Therefore,

a(Xt,St; Il E—V —Dxs g

< —_—
T W

o) + Zo(v)?

1 +J1 —o(V) —;o(V)>2

where the last inequality follows from Lemma 9, the triangle inequality, (11) and (12). This completes
the proof. ]

The following corollary guarantees the convergence of the full NT step.

Corollary 11. If a(V): = o(X, S; 1) < % theno(X*,S*; ) < ga(V).

3. AFull NT Step IIPM

In the case of an infeasible method, we call the triplet (X,y,S) an e-solution of (P) and (D) if the
norms of the residual vectors (1,); = b; —A; * X,i = 1,2,..,m, and g = C — ¥ y;A; — S do not
exceed €, and also X ¢ S < ¢. In what follows, we present an infeasible-start algorithm that generates an
e-solution of (P) and (D), if it exists, or establishes that no such solution exists.

3.1. The Perturbed Problems

We assume (P) and (D) have an optimal solution (X*,y*,S*) with X* « §* = 0. As usual for IIPMs,
we start the algorithm with (X°,y°,5%) = &(E,0,E) and u°® = &2, where € is a positive number such
that

X*+S5* < ¢E. (16)

The initial values of the primal and dual residual vectors are (7';?)1' =b;—A;+X%i=12,..,m, and
rg =C— X, yPA; — S° In general, (r)); # 0,i = 1,2,...,m, and r{ # 0. The iterates generated by
the algorithm will be infeasible for the (P) and (D), but they will be feasible for perturbed versions of
(P) and (D) as given below. For any v, 0 < v < 1, consider the perturbed problem as
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min (C —vr) e X
sit.by—Aje X =v(r)), i=12,..,m, (R)
X =0,

and its dual as

max Yy (b —v(p))yi
s.t. C— YT, v A — S =vr) (Dy)
S=0.

Note that if v = 1, then X = X% and (y,S) = (y°,5°) yield strictly feasible solutions of (P,) and (D, ),
respectively. We conclude that if v = 1, then (B,) and (D,) are strictly feasible, which means that both
perturbed problems (B,) and (D,,) satisfy IPC. More generally, one has the following result (Lemma 4.1
in [12]).

Lemma 12. Let the original problems (P) and (D, be feasible. Then, for each v satisfying 0 <v < 1,
the perturbed problems (B,) and (D,,) are strictly feasible.

Assuming that (P) and (D) are both feasible, it follows from Lemma 12 that the problems (B,) and (D,,)
satisfy IPC, for each 0 < v < 1. Then, their central paths exist, meaning that the system

bi _Ai o X = V(Tpo)i, i = 1,2, ., m, (17)
C— X yidi — S =vrg, (18)
XS = uE, (19)

has a unique solution, for any u > 0. For 0 < v < 1 and u = vu°, we denote this unique solution in
the sequel by (X(u,v), y(u,v), S(u,v)), where X(u) is the u-center of (B,) and (y(u),S(w)) is the u-
center of (D,). By taking v =1, one has (X(1), y(1), S(1)) = (X% y° S° = (¢E, 0, éE) and
X095% = uOE. Hence, X° is the u°-center of the perturbed problem (P;) and (y°, S°) is the u°-center of
the perturbed problem (D,).

3.2. Description of the Full-NT Step 1IPM

are the p-centers of (P,) and (D,,), respectively. We measure proximity of the iterate (X, y, S) to
the u-centers of the perturbed problems (P,) and (D,,) by the quantity o(X, S; u) as defined by (11).

Initially, we have a(X, S; u) = 0. In the sequel, we assume that at the start of each iteration, just
before the u- and v-update, 6(X, S; u) < t, where 7 is a positive threshold value. This certainly holds
at the start of the first iteration, since we then have a(X, S; u) = 0.

Now, we describe a main iteration of our algorithm. The algorithm begins with an infeasible interior-
point (X, y, S) such that (X, y, S) is feasible for the perturbed problems (P,) and (D,), with u = vu®
and such that X ¢S < (2V2—Dnu and o(X, S; u) < 1. We reduce v to vt = (1 —80)v, with
6 € (0,1), and find new iterate (X*, y*, S*) that is feasible for the perturbed problems (P,+) and
(D,+) such that o(X*,S*; u*) < 7. Every iteration consists of a feasibility step, a y-update and a few
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centering steps. First, we find a new point (X/, y/, §/) which is feasible for the perturbed problems
with vt:= (1 — @)v. Then, u is decreased to u*:= (1 — @)u. Generally, there is no guarantee that
o(X’, ST; ut) < 1. So, a few centering steps is applied to produce a new point (X*, y*, S*) such
that o(X™*, S*; u*) < 7. This process is repeated until the algorithm terminates. We now summarize
the steps of the algorithm as Algorithm 1 below.

Algorithm 1: A Full NT Step IIPM.
Input:

accuracy parameter € > 0,

barraier update parameter 6,0 < 0 < 1,

threshold parameter 0 <t < %
begin
X:=EE y:=0; S:=EE; w=p =<22; v=1;
while max(X ¢ S, I rp llg, Il rq llg) > € do
begin
feasibility step:
solve (23) and obtain
X,y,9):= (X,y,5) + (A'X, Aly, ATS);

u — update:
p=(1-0)w
centering step:
while 6(X,S; ) > tdo
begin
solve (10) and obtain

X,y,9):= (X,y,S) + (AX, Ay, AS)
end

end
end.

3.3. Analysis of the Feasibility Step

First, we describe the feasibility step in details. The analysis will follow in the sequel. Suppose that
we have strictly feasible iterate (X, y, S) for (B,) and (D,). This means that (X, y, S) satisfies (17)
and (18) with 4 = v&2. We need displacements ANX, A y and A Ssuch that

Xf::X-{-AfX’ _’yf:=y+Afy, Sf:=S+AfS, (20)

are feasible for (P,+) and (D,+). One may easily verify that (X/, y/, §/) satisfies (17) and (18), with
v replaced by v*, only if the first two equations in the following system are satisfied.

AjeNX=0v(Er), i=12..m
Y ANy A+ NS = ovr 21)
AX +PASPT = s~ — x.
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The third equation is inspired by the third equation in the system (5) that we used to define search
directions for the feasible case.

According to (21), after the feasibility step, the iterates satisfy the affine equations in (17) and (18),
with v replaced by v*. The hard part in the analysis will be to guarantee that X/, S/ are positive definite

. . 1
and to guarantee that the new iterate satisfies a(X/,S/; u*) < >

Let (X, y, S) denote the iterate at the start of an iteration with X ¢S < (2v/2 — 1)nu and o(X,
S; u) <t. This is certainly true at the start of the first iteration, because X e S% =nu% and
a(X° S% u% = 0. Defining

f._ L p-1afyp-1 f._ 1 pAf
Dy,:=—=D""A' XD D¢e:=—=DA SD 22
X f_# ) S /—# ) ( )

with D as defined in (6), one can easily check that the system (21), which defines the search directions

ATX, ATy and A’S, by considering y(t) = %(t — 1)2, can be expressed in terms of the scaled search

directions D)j; and Dsf as follows:

fy: A
7Ly "2 A+ D] = = 6vDriD, (23)

Vi Vi
D) +pl =E-v,

where A = DA;D. To get the search directions ATX and A’S in the original X and S spaces, we use
(22), which gives

AN X =./[uDD[D,A'S = JuD~*D{ D
The new iterates are obtained by taking a full step, as given by (20). Hence, we have

X =X+ NX=\yub(V +D))D,
S/ =S+ A'Ss=yud"2(V +D[)D1.

(24)
Using (24) and the third equation of (23), we get
X ST ~uv + D))V + D))
= u(V2 +VvD{ + D}V + D{D{) 2s)

= u(V —VD} +DJv +DJ[D])
= W+ Df + 1)

where M/:= (D{V —VD]) +5(D4Df — DID]) and Df == (D! + DI DJ). Note that M is

skew-symmetric and D)];S is symmetric.
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The proof of the next lemma is similar to the proof of Lemma 5, and is thus omitted.

Lemma 13. Let X, S > 0. Then, the iterate (x/, y/, S7) is strictly feasible, if V + DJ¢ > 0.

In the sequel, we denote

1 f f
w(V): = 5\/" DY 1% +1 D] 112,
which implies || D}; lr< 2w(V) and || Dsf < 2w(V). Moreover,
I DL Iz<Il D} Izl DL llp< %(n DS 1% +1 DL 12) = 2w(V)?,

1A:(Df)| <l DL llp< 2w(V)2,  i=12,..,n.

We proceed by deriving an upper bound for o(X/, S¥, u*). Recall from (11) that

o(x/,s5ut):=a(V)=IE -V |lp, where (V/)?=—=D"1X/s/D.

1
u
Lemma 14. Let V + D,’:S >0and ut = (1 —6)u. Then,

a(V) +2w(V)? + 6vn

f
O'(V )S 1_9+\/(1_9)(1_0-(V)—2W(V)2)

Proof. Using (25) and (28), we get

f
V+Dyg+MS

2~
) 1-6 '’

and have
AY: ! ) f
Amin((V ) ) = m/‘lmin(v + DXS + M )
Since M/ is skew-symmetric, Lemma 2 implies that

32 1 f
Amin((V ) ) = m’lmin(v + st)

1
= = (min (V)= Dfs )

> (1—a(V) —2w(V)?),

101

(26)

27)

(28)

29

(30)

where the last inequality follows from (27) and Lemma 4. Using (28), (29) and the triangle inequality,

we get

oV =N E =V llg=Il (E +VH™YE - VH) I
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<—— | E—-(V))?
T vy £~ V7 e
~ 1 . V+D,’;S+1v1fII
14 Agin (V) 1-6 F
1 f f
<
= (1-6)(1+Amin (V1)) (o) 11 6 + Dis + M7 ). Gl

Since 0F + D)];s is symmetric and M/ is skew-symmetric, we have

n
I 0F + Df + M/ 3= )" 2,(0F + Dfs + M/)?
i=1

n
- Z (6 + 2,(DLs + MF))?
i=1

< (JIE, 6% + \/2;;1 A(Dhs + MF)2)2

= (6vn + /Tr(D,{S + Mf)?2)2

< (6Vn+1 DJ 17)2 < (6vn + 2w (V)?)2, (32)

Substituting (30) and (32) into (31), the result follows. o

Because we need to have O'(Vf ) < %, by Lemma 14, it suffices to have

o(V)+2w(V)?+6vn
1-0+/(1-0)(1-a(V)—2w(V)32)

1
<= (33)

At this stage, we let

1 3a
T—g, B—Wﬁ, a<l. (34)
The left-hand side of (33) is monotonically increasing with respect to 2w(V)?, then for n > 1 and
o(V) < t, one can verify that

w(v) < == o(V) <. (35)
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3.4. Upper Bound for w(V)

In this subsection, we intend to find an upper bound for w(V'), to be able to set a default value for 6.

For this purpose, consider the system (23). By eliminating D{ from the system (23), we have

AjeD] = —Ov(rp)“ i=12,..,m,

—ym A\/f‘A +Df = (E—V) ——6vDrgD (36)

After some manipulations (for more details, see [8]), we get

2

I DS 12 +1 DL 12< 20(V)? + 37 (Tr(x + $)2).

sznﬂn(V

Lemma 15 (Lemma 5.14 in [12]). Let (X, y, S) be feasible for the perturbed problems (B,) and (D,,)
and let (X°, y°, §%) = (¢E, 0, éE) and (X*, y*, S*) be as defined by (16). Then,

VETr(X +§) < S o X +vné2. (37)
Corollary 16. Using the same notation as in Lemma 15, we have
Tr(X +8) < (1 + (1 + o(V)))né. (38)
Proof. Using the inequality (37) and u = vé?, we get
Tr(X + 5) < Tr(%)f +né. (39)
Using XS~uV? = D1XSD and Lemma 4, we deduce that
Tr(% =Tr(V2) = 3%, (V2 <Y, (1 +0(N)? = n(l + (V)%

which by substituting into (39), the result easily follows. i

Finally, using (38) and Lemma 4, we obtain

362%n?

oy L+ (A +a())H)? (40)

I D 12 +1 D] 12< 20(V)? +
3.5. Value for

At this stage, we choose T = g. Sinceo(V) <t = % and the right-hand side of (40) is monotonically
increasing in o (V), we have
I D 13 +1 DL 13< = + 3(o)26%n>.

Using 6 = the above inequality becomes

\/_’
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f f 1 145 9a’n
I Dy IE +1l Dy IF< o+ 3(T0)% X oy (41)
From (35) we know that w(V) < % is needed in order to have o(V/) < % Due to (41), this will hold,
if
1 145, 9a¢’n _ 1
32+3(56) X 100 = 2’
If we take
— L 42
a= 2\/%’ ( )

then the above inequality is satisfied.

3.6. Complexity Analysis

We have seen that if at the start of an iteration the iterate satisfies o(x,s; u) < 7, with 7 = g, then
after the feasibility step, with 8 as defined in (34) and a as in (42), the iterate is strictly feasible and
satisfies o(X/,87; u*) < %

After the feasibility step, we perform a few centering steps in order to get the iterate (X*, y*, S%)
satisfying o(X*, S*; u™) < t. By Corollary 11, after k centering steps, we will have the iterate
(X*, y*, §7) still feasible for (P,+) and (D,,+) satistifing

o(X*, 5% pt) <2 G,
From this, one easily deduces that a(X*, S*; u*) < 7 will hold after at most

log, 271

log,0.8 (43)

centering steps. According to (43), and since T = é, at most seven centering steps suffice to get the

iterate (X*, y*, S*) that satisfies a(X*, S*; u*) < 7. So, each main iteration consists of at most eight
so-called inner iterations.

In each main iteration, both the duality gap and the norms of the residual vectors are reduced by the
factor 1 — 6. Hence, the total number of main iterations is bounded above by

GOg £

1. max{n& In) I, rg I}

Due to (34), (42) and the fact that we need at most eight inner iterations per main iteration, we may
state the main result of the paper.
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Theorem 17. If (P) and (D) are feasible and & > 0 is such that X* + S* < ¢E, for some optimal
solution X* of (P) and (y*, S*) of (D), then after at most

160 max{né&% I ry llp, Il g ¢}

3 nlog -

inner iterations, the algorithm finds an g-optimal solution of (P) and (D).

Example 1. To illustrate an application of the algorithm, let us consider the problems (P) and (D) with
the following data:

01 0 0 0 1 0 0 -2 2 0 2 2 -1 -1 1
[1200—1 [02102] [20211]
o o 0o 0o 1 =21 -2 0 1 -1 2 0o 1 o
A=l0 0 0 -2 —1I'%2T|2 0 0o o0 ol %T|-1 1 1 -2 o |
10—11—1—2 [02102J [1100—2]
B 3 -3 1 1]
3 5 3 1 2 —2
-3 3 -11 2 2
C_l 1 1 —3—1'b_—2'
1 2 2 -1 -1

The starting point, as usual for IIPMs, is (X°,y% 8% = (¢E, 0, éE) with ¢ =1 and we obtain a
primal-dual optimal solution as follows:

0.0714 —0.0718 0.0167 0.0650 —0.1580

—0.0718 0.0725 —0.0182 —0.0603 0.1674 0.8584
X* = 0.0167 —0.0182 0.0103 —0.0085 —0.0770 « _ [1.0937
0.0650 —0.0603 —0.0085 0.1486 0.0060 ' y 0.7832|’

[—0.1580 0.1674  —0.0770 0.0060 0.6017J

[1.4334 05749  —0.0290 —0.4044 02167 1
[0.5749  1.0954 0.3395 0.2167  —0.1125|
5*=|‘0-0290 0.3395 1.1877  0.2167  0.0477 |
—0.4044 0.2167 02167 0.2835  —0.1415]
l0.2167 —0.1125 0.0477 —0.1415 0.0959J

With a tolerance € = 1073, the algorithm reaches this solution in 182 iterations, taking 1809.358530
seconds. Now, a comparison of the results obtained by our proposed algorithm and the ones obtained by
three other algorithms can be seen in Table 1. It can b seen that the required iteration number and the
needed time by our proposed algorithm are perfered to the ones required by the other algorithms.
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Table 1. Comparative results

Method INo. of iterations  [Time (in seconds)
Our proposed 182 1809.35
algorithm

Algorithm in [12] 229 2581.33
)Algorithm in [10] 369 5765.32
IAlgorithm in [6] 369 3830.86

Kheirfam

4. Conclusion

We presented a full NT step infeasible interior-point algorithm for semi-definite optimization. The
centering steps in [10, 12] and also the feasibility step in [12] were induced by the classic logarithm
barrier function. We used a kernel function to induce both the centering and the feasibility steps and
analyzed the algorithm based on these search directions, giving an analysis different from the one in
[10, 12]. The resulting complexity coincides with the best known iteration bound for IIPMs, while the
practical performance of the algorithm is better than the existing algorithms.
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