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We present a new full Nesterov and Todd step infeasible interior-point algorithm for 
semi-definite optimization. The algorithm decreases the duality gap and the 
feasibility residuals at the same rate. In the algorithm, we construct strictly feasible 
iterates for a sequence of perturbations of the given problem and its dual problem. 
Every main iteration of the algorithm consists of a feasibility step and some 
centering steps. We show that the algorithm converges and finds an approximate 
solution in polynomial time. A numerical study is made for the numerical 
performance. Finally, a comparison of the obtained results with those by other 
existing algorithms is made. 
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1. Introduction 
 
     Here, we use the matrix inner product ܣ • ܤ ൌ Trሺܤ்ܣሻ. Let ܵ, ܵା

 and ܵାା
  denote the cone of 

symmetric, symmetric positive semi-definite and symmetric positive definite ݊ ൈ ݊ matrices, 
respectively, צ. .צ ி andצ  .ଶ denote the Frobenius norm and the spectral norm for matrices, respectivelyצ

For any ܳ א ܵାା
 , let the expression ܳ

భ
మ denote its symmetric square root. For any ܸ א ܵ, let ߣ୫୧୬ሺܸሻ 

and ߣ୫ୟ୶ሺܸሻ denote the smallest eigenvalue and largest eigenvalue of  ܸ, respectively. 

We consider the semidefinite optimization (SDO) problem in the standard form, 

min ܥ • ܺ
.ݏ ܣ  .ݐ • ܺ ൌ ܾ, ݅ ൌ 1,2, … , ݉                    ሺܲሻ
                 ܺ غ 0,

 

where ܣ א ܵ, ܾ ൌ ሺܾଵ, ܾଶ, … , ܾሻ் א ܴ, ܥ א ܵ and ܺ غ 0 means that ܺ is positive semi-definite. 
Moreover, the matrices ܣ are linearly independent. The dual problem of (P) is given by  
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max ்ܾݕ

.ݏ   .ݐ  



ୀଵ

ܣݕ  ܵ ൌ ሻܦሺ              ,ܥ

                               ܵ غ 0,

 

with ݕ א ܴ and ܵ א ܵ. 

In 1984, Karmarkar [5] proposed a polynomial-time algorithm, the so-called interior-point methods 
(IPMs) for solving linear optimization (LO) problems. This method was extended to SDO, with an 
important contribution made by Nesterov and Todd [13, 17]. For a comprehensive study of IPMs for 
SDO, we refer to [2, 4, 20, 15]. We assume that (P) and (D) satisfy the interior-point condition (IPC), 
i.e.; there exist ܺ,   and ܵ such thatݕ

ܣ • ܺ ൌ ܾ, ݅ ൌ 1,2, … , ݉,     



ୀଵ

ݕ
ܣ  ܵ ൌ ,ܥ ܺ ظ 0, ܵ ظ 0, 

where ܺ ظ 0 means that ܺis positive definite. 

It is well known that finding an optimal solution of (P) and (D) is equivalent to solving the following 
system: 

ܣ • ܺ ൌ ܾ, ݅ ൌ 1,2, … , ݉,   ܺ غ 0,
∑  

ୀଵ ܣݕ  ܵ ൌ ܵ               ,ܥ غ 0,
                                                   ܺܵ ൌ 0.

                            (1) 

The basic idea of primal-dual IPM is to replace the third equation in (1), the so-called complementarity 
condition for (P) and (D), by the parameterized equation ܺܵ ൌ ߤ with ,ܧߤ  0, where ܧ is the 
݊ by ݊ identity matrix. Thus, one may consider  

                                   
ܣ • ܺ ൌ ܾ, ݅ ൌ 1,2, … , ݉,   ܺ غ 0,
∑  

ୀଵ ܣݕ  ܵ ൌ ܵ                 ,ܥ غ 0,
                     ܺܵ ൌ .ܧߤ

                                     (2) 

 For each ߤ  0, the parameterized system (2) has a unique solution ൫ܺሺߤሻ, ,ሻߤሺݕ ܵሺߤሻ൯,see [9, 14], 

which is called a ߤ-center of (P) and (D). The set of ߤ-centers is said to be the central path of (P) and 
(D). The central path converges to the solution pair of (P) and (D) as ߤ reduces to zero [14]. 

A natural way to define a search direction for an IPM is to follow the Newton approach and linearize 
the third equation in (2) by replacing ܺ, ܺ and ܵ with ݕ  Δܺ, ݕ  Δݕ and ܵ  Δܵ respectively. This 
leads to  

                    
ܣ                 • ܺ߂ ൌ 0,    ݅ ൌ 1,2, … , ݉,
∑  

ୀଵ ܣݕ߂  ܵ߂ ൌ 0,
ܺ߂ܵ              ܵ߂ܺ ൌ ܧߤ െ ܺܵ.

                               (3) 

 The system (3) can be rewritten as  
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ܣ                   • Δܺ ൌ 0,    ݅ ൌ 1,2, … , ݉,
∑  

ୀଵ Δݕܣ  Δܵ ൌ 0,
       Δܺ  ܺΔܵܵିଵ ൌ ଵିܵߤ െ ܺ.

 (4) 

It is clear that Δܵ is symmetric due to the second equation in (4). However, a crucial observation is that 
Δܺ is not necessarily symmetric, because ܺΔܵܵିଵ may not be symmetric. Several researchers have 
proposed methods for symmetrizing the third equation in (4) such that the resulting new system had a 
unique symmetric solution. Among them, we consider the symmetrization scheme yielding the 
Nesterov-Todd (NT)-direction [13, 18]. In the NT-scheme, we replace the term ܺΔܵܵିଵ in the third 
equation of (4) by ܲΔ்ܵܲ and obtain  

ܣ • ܺ߂ ൌ 0,   ݅ ൌ 1,2, … , ݉,
∑  

ୀଵ ܣݕ߂  ܵ߂ ൌ 0,
ܺ߂  ்ܲܵ߂ܲ ൌ ଵିܵߤ െ ܺ,

 (5) 

 where  

ܲ: ൌ ܺ
భ
మሺܺ

భ
మܵܺ

భ
మሻ

షభ
మ ܺ

భ
మ ሾൌ ܵ

షభ
మ ሺܵ

భ
మܺܵ

భ
మሻ

భ
మܵ

షభ
మ ሿ.  (6) 

 Let ܦ ൌ ܲ
భ
మ. Then, ܦ can be used to scale ܺ and ܵ to the same matrix ܸ defined by [2]  

ܸ: ൌ
ଵ

√ఓ
ଵିܦଵܺିܦ ൌ

ଵ

√ఓ
ܦܵܦ ൌ

ଵ

√ఓ
ሺିܦଵܺܵܦሻ

భ
మ.  (7) 

 Note that the matrices ܦ and ܸ are symmetric and positive definite. If we define  

                    

:ҧܣ ൌ
ଵ

√ఓ
݅        ,ܦܣܦ ൌ 1,2, … , ݉,

:ܦ ൌ
ଵ

√ఓ
,ଵିܦଵΔܺିܦ

:ௌܦ ൌ
ଵ

√ఓ
,ܦΔܵܦ

 (8) 

 then the NT-search directions can be written as the solution of the following system: 

                 
ҧܣ                  • ܦ ൌ 0,       ݅ ൌ 1,2, … , ݉,
∑  

ୀଵ ҧܣݕ߂  ௌܦ ൌ 0,
ܦ                   ௌܦ ൌ ܸିଵ െ ܸ.

 (9) 

A crucial observation is that the right-hand side of the third equation in (9) equals the negative gradient 
of the logarithm barrier function ߖሺܸሻ, i.e.,  

ܦ  ௌܦ ൌ െߖߘሺܸሻ, 

where  

ሺܸሻߖ ൌ   



ୀଵ

߰൫ߣሺܸሻ൯,               ߰ሺݐሻ ൌ
ଶݐ െ 1

2
െ  .ሻݐሺ݈݃
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Here, we replace ߰ሺݐሻ by ߰ሺݐሻ ൌ
ଵ

ଶ
ሺݐ െ 1ሻଶ, which leads to  

ҧܣ                   • ܦ ൌ 0,           ݅ ൌ 1,2, … , ݉,
∑  

ୀଵ ҧܣݕ߂  ௌܦ ൌ 0,
ܦ                   ௌܦ ൌ ܧ െ ܸ.

 (10) 

The new search directions ܦ and ܦௌ are obtained by solving (10), and so Δܺ and Δܵ can be computed 
via (8). Then, the new iterates are given by  

ܺା ൌ ܺ  ,ܺ߂ ାݕ ൌ ݕ  ,ݕ߂ ܵା ൌ ܵ   .ܵ߂

Note that this can be seen as a search direction induced by a kernel function ߰ሺݐሻ as described in [1, 3, 
7, 19] for SDO; these methods are called feasible IPMs. However, this kernel function does not satisfy 
some of the properties kernel functions; in particular, lim௧՜శ߰ሺݐሻ ൌ ∞. These methods start with a 
strictly feasible interior point and maintain feasibility during the process. However, a problem is how to 
find an initial feasible interior point. For this problem, the so-called infeasible IPMs (IIPMs)methods. 
These methods start with an arbitrary positive point (not necessarily feasible) and feasibility is reached 
as progress is made to the optimal solution. The first IIPMs were proposed by Lustig [11]. Global 
convergence was shown by Kojima et al. [9], whereas Zhang [21] proved an ܱሺ݊ଶܮሻ iteration bound for 
IIPMs under certain conditions for LO and extended it to SDO [22]. In 2009, Mansouri and Roos [12] 
proposed the first full-Newton step IIPM for the SDO problem, which is an extension of the work for 
LO by Roos [16]. Liu and Sun [10] adopted the basic analysis used in [12] to the SDO problem based 

on the kernel function ߰ሺݐሻ ൌ
ଵ

ଶ
ሺݐ െ 1ሻଶ. 

Here, we develop a different analysis of the mentioned works for the full-Newton step IPMs and IIPMs. 
We provide search directions and show that the iteration bound coincides with the best known bound 
for IIPMs, while tendering a simple analysis. By a numerical example, we investigate the advantage of 
our algorithm than the existing algorithms. 

The semainder of out work is organized as follows. In Section 2, after recalling some necessary results, 
we give a new analysis for the full-NT step, which includes a feasible condition, the effect of a full-NT 
step on the proximity measure and the convergence of the full-NT step. In Section 3, we first propose 
the perturbed problems corresponding to (P) and (D), and then give a description of the full-NT step 
IIPMs based on the new search directions. Furthermore, we present our algorithm. In subsection 3.3, we 
analyze the feasibility step used in the algorithm. This includes a feasible condition and the effect of 
full-NT step on the proximity function after parameter updating. We derive the complexity bound of the 
algorithm in subsection 3.6. Finally, the conclusion and some remarks are given in Section 4. 

2. A New Analysis of Full-NT Step 

     A primal-dual pair ሺܺ, ܵሻ is called an ߝ-solution of (P) and (D), if Trሺܺܵሻ   Assume that a pair .ߝ

ሺܺ, ܵሻ with ܺ ظ 0 and ܵ ظ 0 is given ‘close to’ ൫ܺሺߤሻ, ܵሺߤሻ൯, for some ߤ ൌ  , in the sense of theߤ

proximity measure ߪሺܺ, ܵ;  :ሻ. This quantity is defined as followsߤ

,ሺܺߪ                   ܵ; :ሻߤ  ൌ :ሺܸሻߪ ൌצ ܧ െ ܸ  ி, (11)צ
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where ܸis defined by (7). Due to the first two equations of (10), ܦ and ܦௌ are orthogonal. Using the 
third equation of (10), we obtain  

צ ܦ  ௌܦ ிצ
ଶ ൌצ ܦ ிצ

ଶ צ ௌܦ ிצ
ଶ ൌצ ܧ ிצ

ଶ ൌ  .ሺܸሻଶߪ

This implies that ܦ and ܦௌ are both zero if and only if ܧ െ ܸ ൌ 0. In this case, ܺ and ܵ satisfy 
ܺܵ ൌ  .centers-ߤ indicating that ܺ and ܵ are the ,ܧߤ

2.1. Some Basic Results 

Here, we recall some useful results.Let 0  ߙ  1. Define  

ܺఈ ൌ ܺ  ,ܺ߂ߙ ܵఈ ൌ ܵ   .ܵ߂ߙ

We recall two useful lemmas in [2], which will be used later.  

Lemma 1. (Lemma 6.1 in [2]) Suppose that ܺ ظ 0 and ܵ ظ 0. If  

detሺܺఈܵఈሻ  0, 0  ߙ   ,തߙ

thenܺఈഥ ظ 0 and ܵఈഥ ظ 0. 

Lemma 2. (Lemma A.1 in [2]) Let ܳ א ܵାା
 , and let ܯ א ܴൈ be skew-symmetric. Then, ݀݁ݐሺܳ 

ሻܯ  0. Moreover, if the eigenvalues of ܳ    are real, then ܯ

0 ൏ ୫୧୬ሺܳሻߣ  ୫୧୬ሺܳߣ  ሻܯ  ୫ୟ୶ሺܳߣ  ሻܯ   .୫ୟ୶ሺܳሻߣ

 

The next lemma gives some upper bounds for the 2-norm and the Frobenius norm of ܦௌ, where  

:ௌܦ ൌ
1
2

ሺܦܦௌ   .ሻܦௌܦ

Note that ܦௌ is a symmetric matrix.  

Lemma 3. (lemmas 6.2 and 7.3 in [2]) Let ܦ א ܵ and ܦௌ א ܵ be such that Trሺܦܦௌሻ ൌ 0. Then,  

צ ௌܦ ଶצ
1
4

צ ܦ  ௌܦ ிצ
ଶ , צ ௌܦ ிצ

√2
4

צ ܦ  ௌܦ ிצ
ଶ . 

This implies that 

צ                                      ௌܦ ଶצ
ଵ

ସ
,ሺܸሻଶߪ צ ௌܦ ிצ √ଶ

ସ
 ሺܸሻଶ.                                                 (12)ߪ

 The next lemma gives a fundamental property about the proximity measure ߪሺܸሻ. 

Lemma 4.We have 

1 െ ሺܸሻߪ  ሺܸሻߣ  1  ݅          ,ሺܸሻߪ ൌ 1,2, … , ݊, 
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where  ߣሺܸሻ is the ݅th eigenvalue of ܸ.  

Proof. Since ܧ െ ܸ is a symmetric matrix, we have  

ሺܸሻଶߪ ൌ Trሺሺܧ െ ܸሻଶሻ ൌ   



ୀଵ

ܧሺሺߣ െ ܸሻଶሻ ൌ   



ୀଵ

ሺ1 െ  ,ሺܸሻሻଶߣ

                                                                                    □ 

 and this proves the lemma.  

2.2.  Properties of The Full-NT Step 

Using (8), we obtain  

ܺା ൌ ܺ  Δܺ ൌ ඥܦߤሺܸ   ,ܦሻܦ

ܵା ൌ ܵ  Δܵ ൌ ඥିܦߤଵሺܸ   .ଵିܦௌሻܦ

 Therefore,  

ܺାܵା ൌ ሺܸܦߤ  ሻሺܸܦ   .ଵିܦௌሻܦ

The last matrix is similar to ߤሺܸ  ሻሺܸܦ    ௌሻ. Thus, we haveܦ

ܺାܵା~ߤሺܸ  ሻሺܸܦ   .ௌሻܦ

To simplify the notation, in the sequel we let 

:ܯ ൌ ሺܦܸ െ ሻܦܸ 
1
2

ሺܦܦௌ െ  ,ሻܦௌܦ

 

where ܯ is skew-symmetric. From the third equation in (10), we obtain, by multiplying both sides from 
the left by  ܸ,   

ܦܸ                                 ௌܦܸ ൌ ܸ െ ܸଶ. (13) 

 Now, we may write, using (13),  

ሺܸ  ሻሺܸܦ  ௌሻܦ ൌ ܸଶ  ௌܦܸ  ܸܦ   ௌܦܦ

                                  ൌ ܸ െ ܦܸ  ܸܦ   .ௌܦܦ

 By subtracting and adding 
ଵ

ଶ
   to the last expression, we getܦௌܦ

ሺܸ  ሻሺܸܦ  ௌሻܦ ൌ ܸ 
1
2

ሺܦܦௌ  ሻܦௌܦ 
1
2

ሺܦܦௌ െ ሻܦௌܦ  ሺܦܸ െ  ሻܦܸ
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ൌ ܸ  ௌܦ                                                  .ܯ

 Therefore,  

                                ܺାܵା~ߤሺܸ  ௌܦ   ሻ.                          (14)ܯ

We want the new iterates be positive definite. We call the NT step is strictly feasible, if ܺା ظ 0 and 
ܵା ظ 0. The next lemma gives a sufficient condition for strict feasibility of the full NT step.  

Lemma 5. Let ܺ ظ 0 and ܵ ظ 0. Then, the iterates ሺܺା, ,ାݕ ܵାሻ are strictly feasible if ܸ  ௌܦ ظ 0. 

Proof. Consider  ߙ, 0  ߙ  1, and define  

ܺఈ ൌ ܺ  ,Δܺߙ ఈݕ ൌ ݕ  ,ݕΔߙ ܵఈ ൌ ܵ   .Δܵߙ

Considering Lemma 1, it suffices to show that the determinant of ܺఈܵఈis positive, for all 0  ߙ  1. 
We may write 

ܺఈܵఈ

ߤ
~ሺܸ  ሻሺܸܦߙ   ௌሻܦߙ

                               ൌ ܸଶ  ௌܦሺܸߙ  ܸሻܦ   ௌܦܦଶߙ

                                                                   ൌ ܸଶ  ܦሺܸߙ  ௌሻܦܸ  ܸܦሺߙ െ ሻܦܸ   .ௌܦܦଶߙ

 Using (13), we get  

ܺఈܵఈ

ߤ
~ܸଶ  ሺܸߙ െ ܸଶሻ  ܸܦሺߙ െ ሻܦܸ   ௌܦܦଶߙ

           ൌ ሺ1 െ ሻܸଶߙ  ܸߙ  ܸܦሺߙ െ ሻܦܸ   .ௌܦܦଶߙ

 By subtracting and adding 
ఈమ

ଶ
   to the right-hand side of the above expression, we obtainܦௌܦ

ܺఈܵఈ

ߤ
~ሺ1 െ ሻܸଶߙ  ሺ1ߙ െ ሻܸߙ  ଶሺܸߙ  ௌሻܦ  ܯߙሺߙ  ሺ1 െ ܸܦሻሺߙ െ  .ሻሻܦܸ

The matrix ܯߙ  ሺ1 െ ܸܦሻሺߙ െ ሻ is skew-symmetric, for 0ܦܸ  ߙ  1. Lemma 2 therefore implies 
that the determinant of ܺఈܵఈ is positive if the symmetric matrix ሺ1 െ ሻܸଶߙ  ሺ1ߙ െ ሻܸߙ  ଶሺܸߙ 
ௌሻ is positive definite. The latter is true for 0ܦ  ߙ  1, because ܸ  ௌܦ ظ 0 and ܸand ܸଶ are 
positive definite. Thus, detሺܺఈܵఈሻ  0. In addition, since by assumption, ܺ ൌ ܺ ظ 0 and ܵ ൌ ܵ ظ  0, 
Lemma 1 implies that ܺଵ ൌ ܺା ظ 0 and ܵଵ ൌ ܵା ظ 0. This completes the proof.                                    □                           

Corollary 6. The new iterates ሺܺା, ܵାሻ are strictly feasible, if  

צ ௌܦ ଶ൏צ  .୫୧୬ሺܸሻߣ

Proof. With ܸ א ܵ and ܦௌ א ܵ, we have  
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ሺܸߣ  ௌሻܦ  ୫୧୬ሺܸሻߣ െ  |ௌሻܦ୫ୟ୶ሺߣ|

 צ୫୧୬ሺܸሻെߣ ௌܦ ଶצ ,     ݅ ൌ 1,2, … , ݊. 

 By Lemma 5, ܺା and ܵା are strictly feasible, if ܸ  ௌܦ ظ 0, and this holds if צ ௌܦ ଶ൏צ  .୫୧୬ሺܸሻߣ
The proof is complete.                                                                                                                           □ 

Lemma 7.  Let ߪሺܸሻ be defined as (11) and ܺ, ܵ ظ 0. If ߪሺܸሻ ൏ 2√2 െ 2, then the full NT step is 
strictly feasible.  

Proof. From (12) and Lemma 4, we have  

צ ௌܦ ଶצ
1
4

ሺܸሻଶ ܽ݊݀  1ߪ െ ሺܸሻߪ   .୫୧୬ሺܸሻߣ

By Corollary 6, the full NT step is strictly feasible, if  

צ ௌܦ ଶ൏צ  .୫୧୬ሺܸሻߣ

This last inequality holds, if  

1
4

ሺܸሻଶߪ ൏ 1 െ  ,ሺܸሻߪ

which leads to ߪሺܸሻ ൏ 2√2 െ 2. This completes the proof.                                                                     □ 

The next lemma gives the effect of full NT step on the duality gap.  

Lemma 8. If ߪሺܸሻ ൏ 2√2 െ 2, then  

Trሺܺାܵାሻ ൏ ሺ2√2 െ 1ሻ݊ߤ. 

Proof. Using (14), the skew-symmetry of ܯ, Trሺܦܦௌሻ ൌ 0 and Lemma 4, we have 

Trሺܺାܵାሻ ൌ Trሺܸߤ  ௌܦ  ሻܯ ൌ Trሺܸߤ   ௌሻܦ

                                        ൌ ሺTrሺܸሻߤ  Trሺܦௌሻሻ ൌ Trሺܸሻߤ ൌ ߤ   



ୀଵ

 ሺܸሻߣ

                                                                      ୫ୟ୶ሺܸሻߣߤ݊  ሺ1ߤ݊  ሺܸሻሻߪ ൏ ሺ2√2ߤ݊ െ 1ሻ, 

 which proves the lemma.                                                                                                                        □ 

We denote the NT scaling of  
శௌశ

ఓ
  by ሺܸାሻଶ. So, from (14), we have   

                                                           ሺܸାሻଶ~
శௌశ

ఓ
~ܸ  ௌܦ   (15)                                                               ܯ

Lemma 9. The following holds: 
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୫୧୬ሺܸାሻߣ  ඨ1 െ ሺܸሻߪ െ
1
4

 .ሺܸሻଶߪ

Proof. Using (15), we get 

୫୧୬ሺሺܸାሻଶሻߣ ൌ ୫୧୬ሺܸߣ  ௌܦ   .ሻܯ

Since ܯ is skew-symmetric, Lemma 2 implies that  

୫୧୬ሺሺܸାሻଶሻߣ                 ୫୧୬ሺܸߣ   ௌሻܦ

                                                                                 צ୫୧୬ሺܸሻെߣ ௌܦ  ଶצ

                                                                                  1 െ ሺܸሻߪ െ
ଵ

ସ
 ,ሺܸሻଶߪ

Where the last inequality follows by (12) and Lemma 4.                                                                          □ 

The following lemma describes the effect of a full-NT step on the proximity measure.  

Lemma 10. Let X, S ظ 0 and µ  0. Moreover, let σሺVሻ ൏ 2√2 െ 2. Then, 

,ሺܺାߪ ܵା; ሻߤ 
ሺܸሻߪ  √ଶ

ସ
ሺܸሻଶߪ

1  ට1 െ ሺܸሻߪ െ
ଵ

ସ
ሺܸሻଶߪ

. 

Proof. Using (15), we have  

,ሺܺାߪ ܵା; ሻߤ ൌצ ܧ െ ܸା  ிצ

                                                          ൌצ ሺܧ െ ሺܸାሻଶሻሺܧ  ܸାሻିଵ  ிצ

                                                              
1

1  ୫୧୬ሺܸାሻߣ
צ ܧ െ ሺܸାሻଶ  .ிצ

 On the other hand, we have  

צ  ܧ െ ܸ െ ௌܦ െ ܯ ଶൌצ ∑  
ୀଵ ሺߣሺܸ  ௌܦ  ሻܯ െ 1ሻଶ 

                                            ൌ ∑  
ୀଵ ሺሺߣሺܸ  ௌܦ  ሻሻଶܯ െ ሺܸߣ2  ௌܦ  ሻܯ  1ሻ 

                                            ൌ ∑  
ୀଵ ሺߣሺܸ  ௌܦ  ሻሻଶܯ െ 2 ∑  

ୀଵ ሺܸߣ  ௌܦ  ሻܯ  ݊ 

                                            ൌ Trሺሺܸ  ௌܦ  ሻଶሻܯ െ 2Trሺܸ  ௌܦ  ሻܯ  ݊, 

where the last equality is true by ሺߣሺܸ  ௌܦ  ሻሻଶܯ ൌ ሺሺܸߣ  ௌܦ   ሻଶሻ, for each ݅. Using theܯ
skew-symmetry of ܯ, we obtain Trሺܸ  ௌܦ  ሻܯ ൌ Tݎሺܸ    ௌሻ andܦ

 Trሺሺܸ  ௌܦ  ሻଶሻܯ ൌ Trሺሺܸ  ௌሻଶܦ  ሺܸ  ܯௌሻܦ  ሺܸܯ  ௌሻܦ െ  .ሻ்ܯܯ
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 Since ሺܸ  ܯௌሻܦ  ሺܸܯ    ௌሻ is skew-symmetric, we obtainܦ

Trሺሺܸ  ௌܦ  ሻଶሻܯ ൌ ܶrሺሺܸ  ௌሻଶܦ െ ሻ்ܯܯ  Trሺሺܸ   ,ௌሻଶሻܦ
 
where the inequality follows since the matrix ்ܯܯ is positive semidefinite. Hence,  

צ ܧ െ ܸ െ ௌܦ െ ܯ ଶצ Trሺሺܸ  ௌሻଶሻܦ െ 2Trሺܸ  ௌሻܦ  ݊ 

ൌ Trሺሺܧ െ ሺܸ  ௌሻሻଶሻܦ ൌצ ܧ െ ܸ െ ௌܦ  .ଶצ

Therefore,  

,ሺܺାߪ ܵା; ሻߤ 
1

1  ୫୧୬ሺܸାሻߣ
צ ܧ െ ܸ െ ௌܦ  ிצ


ሺܸሻߪ  √ଶ

ସ
ሺܸሻଶߪ

1  ට1 െ ሺܸሻߪ െ
ଵ

ସ
ሺܸሻଶߪ

, 

where the last inequality follows from Lemma 9, the triangle inequality, (11) and (12). This completes 
the proof.                                                                                                                                               □ 

The following corollary guarantees the convergence of the full NT step.  

Corollary 11. If ߪሺܸሻ: ൌ ,ሺܺߪ ܵ; ሻߤ 
ଵ

ଶ
, then ߪሺܺା, ܵା; ሻߤ 

ସ

ହ
 .ሺܸሻߪ

 

3. A Full NT Step IIPM 

     In the case of an infeasible method, we call the triplet ሺܺ, ,ݕ ܵሻ an ߝ-solution of (P) and (D) if the 
norms of the residual vectors ሺݎሻ ൌ ܾ െ ܣ • ܺ, ݅ ൌ 1,2, … , ݉, and ݎௗ ൌ ܥ െ ∑  

ୀଵ ܣݕ െ ܵ do not 

exceed ߝ, and also ܺ • ܵ   In what follows, we present an infeasible-start algorithm that generates an .ߝ
  .solution of (P) and (D), if it exists, or establishes that no such solution exists-ߝ

3.1. The Perturbed Problems 

     We assume (P) and (D) have an optimal solution ሺܺכ, ,כݕ כܺ ሻ withכܵ • כܵ ൌ 0. As usual for IIPMs, 
we start the algorithm with ሺܺ, ,ݕ ܵሻ ൌ ,ܧሺߦ 0, ߤ ሻ andܧ ൌ  is a positive number such ߦ ଶ, whereߦ
that  

כܺ                                                               כܵ ع  (16)                                                                     .ܧߦ

The initial values of the primal and dual residual vectors are ሺݎ
ሻ ൌ ܾ െ ܣ • ܺ, ݅ ൌ 1,2, … , ݉, and 

ௗݎ
 ൌ ܥ െ ∑  

ୀଵ ݕ
ܣ െ ܵ. In general, ሺݎ

ሻ ് 0, ݅ ൌ 1,2, … , ݉, and ݎௗ
 ് 0. The iterates generated by 

the algorithm will be infeasible for the (P) and (D), but they will be feasible for perturbed versions of 
(P) and (D) as given below. For any 0 ,ߥ ൏ ߥ  1, consider the perturbed problem as  
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min ሺܥ െ ௗݎߥ

ሻ • ܺ
.ݏ ܾ  .ݐ െ ܣ • ܺ ൌ ݎሺߥ

ሻ,   ݅ ൌ 1,2, … , ݉,          ሺ ఔܲሻ
                          ܺ غ 0,

 

and its dual as  

 
max ∑  

ୀଵ ሺܾ െ ݎሺߥ
ሻሻݕ

.ݏ ܥ  .ݐ െ ∑  
ୀଵ ܣݕ െ ܵ ൌ                       ௗݎߥ

 ሺܦఔሻ
                                         ܵ غ 0.

 

Note that if ߥ ൌ 1, then ܺ ൌ ܺ and ሺݕ, ܵሻ ൌ ሺݕ, ܵሻ yield strictly feasible solutions of ሺ ఔܲሻ and ሺܦఔሻ, 
respectively. We conclude that if ߥ ൌ 1, then ሺ ఔܲሻ and ሺܦఔሻ are strictly feasible, which means that both 
perturbed problems ሺ ఔܲሻ and ሺܦఔሻ satisfy IPC. More generally, one has the following result (Lemma 4.1 
in [12]).  

Lemma 12. Let the original problems (P) and (D, be feasible. Then, for each ߥ satisfying 0 ൏ ߥ  1, 
the perturbed problems ሺ ఔܲሻ and ሺܦఔሻ are strictly feasible. 

Assuming that (P) and (D) are both feasible, it follows from Lemma 12 that the problems ሺ ఔܲሻ and ሺܦఔሻ 
satisfy IPC, for each 0 ൏ ߥ  1. Then, their central paths exist, meaning that the system  

              ܾ െ ܣ • ܺ ൌ ݎሺߥ
ሻ,        ݅ ൌ 1,2, … , ݉, (17) 

ܥ  െ ∑  
ୀଵ ܣݕ െ ܵ ൌ ௗݎߥ

, (18) 

                               ܺܵ ൌ  (19) ,ܧߤ

 has a unique solution, for any ߤ  0. For 0 ൏ ߥ  1 and ߤ ൌ  , we denote this unique solution inߤߥ
the sequel by ሺܺሺߤ, ,ሻߥ ,ߤሺݕ ,ሻߥ ܵሺߤ, center of ሺ-ߤ ሻ is theߤሻሻ, where ܺሺߥ ఔܲሻ and ሺݕሺߤሻ, ܵሺߤሻሻ is the ߤ-
center of ሺܦఔሻ. By taking ߥ ൌ 1, one has ሺܺሺ1ሻ, ,ሺ1ሻݕ ܵሺ1ሻሻ ൌ ሺܺ, ,ݕ  ܵሻ ൌ ሺܧߦ, 0,  ሻ andܧߦ
ܺܵ ൌ -center of the perturbed problem ሺߤ Hence, ܺ is the .ܧߤ ଵܲሻ and ሺݕ,  ܵሻ is the ߤ-center of 
the perturbed problem ሺܦଵሻ. 

3.2.   Description of the Full-NT Step IIPM 

     are the ߤ-centers of ሺ ఔܲሻ and ሺܦఔሻ, respectively. We measure proximity of the iterate ሺܺ, ,ݕ ܵሻ to 
the ߤ-centers of the perturbed problems ሺ ఔܲሻ and ሺܦఔሻ by the quantity ߪሺܺ, ܵ;  .ሻ as defined by (11)ߤ 

Initially, we have ߪሺܺ, ܵ; ሻߤ  ൌ 0. In the sequel, we assume that at the start of each iteration, just 
before the ߤ- and ߥ-update, ߪሺܺ, ܵ; ሻߤ   ߬, where ߬ is a positive threshold value. This certainly holds 
at the start of the first iteration, since we then have ߪሺܺ, ܵ; ሻߤ  ൌ 0. 

Now, we describe a main iteration of our algorithm. The algorithm begins with an infeasible interior-
point ሺܺ, ,ݕ ܵሻ such that ሺܺ, ,ݕ ܵሻ is feasible for the perturbed problems ሺ ఔܲሻ and ሺܦఔሻ, with ߤ ൌ  ߤߥ

and such that ܺ • ܵ  ሺ2√2 െ 1ሻ݊ߤ and ߪሺܺ, ܵ; ሻߤ   ߬. We reduce ߥ to ߥା ൌ ሺ1 െ  with ,ߥሻߠ
ߠ א ሺ0,1ሻ, and find new iterate ሺܺା, ,ାݕ  ܵାሻ that is feasible for the perturbed problems ሺܲఔశሻ and 
ሺܦఔశሻ such that ߪሺܺା, ܵା; ାሻߤ   ߬. Every iteration consists of a feasibility step, a ߤ-update and a few 
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centering steps. First, we find a new point ሺܺ, ,ݕ   ܵሻ which is feasible for the perturbed problems 
with ߥା: ൌ ሺ1 െ :ାߤ is decreased to ߤ ,Then .ߥሻߠ ൌ ሺ1 െ  Generally, there is no guarantee that .ߤሻߠ

,ሺܺߪ  ܵ; ାሻߤ   ߬. So, a few centering steps is applied to produce a new point ሺܺା, ,ାݕ ܵାሻ such 
that ߪሺܺା,  ܵା; ାሻߤ   ߬. This process is repeated until the algorithm terminates. We now summarize 
the steps of the algorithm as Algorithm 1 below.  

: ܕܐܜܑܚܗܔۯ .ۻ۾۷۷ ܘ܍ܜ܁ ܂ۼ ܔܔܝ۴ ۯ
:ܜܝܘܖ۷
accuracy parameter ε  0,
barraier update  parameter θ, 0 ൏ θ ൏ 1,

threshold  parameter 0 ൏ τ 
1
2

.

ܖܑ܍܊

X: ൌ ξE;  y: ൌ 0;  S: ൌ ξE;  μ: ൌ μ ൌ ξଶ;  ν ൌ 1;
max൫X ܍ܔܑܐܟ • S, צ r୮ ,Fצ צ rୢ F൯צ  ε ܗ܌
ܖܑ܍܊
feasibility step:
solve ሺ23ሻ and obtain

                            ሺX, y, Sሻ: ൌ ሺX, y, Sሻ  ሺΔX,Δy,ΔSሻ;
μ െ update:
μ: ൌ ሺ1 െ θሻμ;
centering step:
,σሺX ܍ܔܑܐܟ S; μሻ  τ ܗ܌
ܖܑ܍܊
solve ሺ10ሻ and obtain
                         ሺX, y, Sሻ: ൌ ሺX, y, Sሻ  ሺΔX,Δy,ΔSሻ
܌ܖ܍
܌ܖ܍
.܌ܖ܍

 

3.3. Analysis of the Feasibility Step 

     First, we describe the feasibility step in details. The analysis will follow in the sequel. Suppose that 
we have strictly feasible iterate ሺܺ, ,ݕ ܵሻ for ሺ ఔܲሻ and ሺܦఔሻ. This means that ሺܺ, ,ݕ ܵሻ satisfies (17) 

and (18) with ߤ ൌ ,ଶ. We need displacements Δܺߦߥ Δݕ and Δܵsuch that  

                                    ܺ: ൌ ܺ  Δܺ,   ݕ: ൌ ݕ  Δݕ,    ܵ: ൌ ܵ  Δܵ,                                               (20) 

are feasible for ሺܲఔశሻ and ሺܦఔశሻ. One may easily verify that ሺܺ, ,ݕ  ܵሻ satisfies (17) and (18), with 
  .ା, only if the first two equations in the following system are satisfiedߥ replaced by ߥ

  

ܣ                     • Δܺ ൌ ݎሺߥߠ
ሻ,      ݅ ൌ 1,2, … , ݉,

∑  
ୀଵ Δݕܣ  Δܵ ൌ ௗݎߥߠ



       Δܺ  ܲΔ்ܵܲ ൌ ଵିܵߤ െ ܺ.

 (21) 
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The third equation is inspired by the third equation in the system (5) that we used to define search 
directions for the feasible case. 

According to (21), after the feasibility step, the iterates satisfy the affine equations in (17) and (18), 

with ߥ replaced by ߥା. The hard part in the analysis will be to guarantee that ܺ, ܵ are positive definite 

and to guarantee that the new iterate satisfies ߪሺܺ, ܵ; ାሻߤ 
ଵ

ଶ
. 

Let ሺܺ, ,ݕ ܵሻ denote the iterate at the start of an iteration with ܺ • ܵ  ሺ2√2 െ 1ሻ݊ߤ and ߪሺܺ,
ܵ; ሻߤ   ߬. This is certainly true at the start of the first iteration, because ܺ • ܵ ൌ   andߤ݊
,ሺܺߪ  ܵ; ሻߤ  ൌ 0. Defining  

ܦ                    
: ൌ

ଵ

√ఓ
,ଵିܦଵΔܺିܦ ௌܦ       

: ൌ
ଵ

√ఓ
 (22) ,ܦΔܵܦ

with ܦ as defined in (6), one can easily check that the system (21), which defines the search directions 

Δܺ, Δݕ and Δܵ, by considering ߰ሺݐሻ ൌ
ଵ

ଶ
ሺݐ െ 1ሻଶ, can be expressed in terms of the scaled search 

directions ܦ
  and ܦௌ

 as follows:  

                     

                   A ୧ • ܦ
 ൌ

ଵ

√ఓ
ݎሺߥߠ

ሻ,   ݅ ൌ 1,2, … , ݉,

∑  
ୀଵ

Δ௬

√ఓ
መܣ  ௌܦ

 ൌ
ଵ

√ఓ
ௗݎܦߥߠ

ܦ,

ܦ                 
  ௌܦ

 ൌ ܧ െ ܸ,

(23) 

where ܣመ ൌ  To get the search directions Δܺ and Δܵ in the original ܺ and ܵ spaces, we use .ܦܣܦ
(22), which gives  

Δܺ ൌ ඥܦܦߤ
ܦ,Δܵ ൌ ඥିܦߤଵܦௌ

ିܦଵ. 

The new iterates are obtained by taking a full step, as given by (20). Hence, we have  

 
                ܺ ൌ ܺ  Δܺ ൌ ሺܸܦߤ√  ܦ

ሻܦ,

                 ܵ ൌ ܵ  Δܵ ൌ ଵሺܸିܦߤ√  ௌܦ
ሻିܦଵ.

 (24) 

Using (24) and the third equation of (23), we get  

 

      ܺܵ~ߤሺܸ  ܦ
ሻሺܸ  ௌܦ

ሻ

               ൌ ሺܸଶߤ  ௌܦܸ
  ܦ

ܸ  ܦ
ܦௌ

ሻ

               ൌ ሺܸߤ െ ܦܸ
  ܦ

ܸ  ܦ
ܦௌ

ሻ

               ൌ ሺܸߤ  ௌܦ
  ,ሻܯ

 (25) 

where ܯ: ൌ ሺܦ
ܸ െ ܦܸ

ሻ 
ଵ

ଶ
ሺܦ

ܦௌ
 െ ௌܦ

ܦ
ሻ and ܦௌ

 ൌ
ଵ

ଶ
ሺܦ

ܦௌ
  ௌܦ

ܦ
ሻ. Note that ܯ is 

skew-symmetric and ܦௌ
  is symmetric. 
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The proof of the next lemma is similar to the proof of Lemma 5, and is thus omitted.  

Lemma 13. Let ܺ, ܵ ظ 0. Then, the iterate ሺܺ, ,ݕ  ܵሻ is strictly feasible, if  ܸ  ௌܦ
 ظ 0. 

 In the sequel, we denote  

:ሺܸሻݓ  ൌ
ଵ

ଶ
ටצ ܦ

 ிצ
ଶ צ ௌܦ

 ிצ
ଶ , 

which implies צ ܦ
 ிצ צ ሺܸሻ andݓ2 ௌܦ

 ிצ   ,ሺܸሻ. Moreoverݓ2

צ  ௌܦ
 צிצ ܦ

 צிצ ௌܦ
 ிצ

ଵ

ଶ
ሺצ ܦ

 ிצ
ଶ צ ௌܦ

 ிצ
ଶ ሻ ൌ  ሺܸሻଶ,                                 (26)ݓ2

ௌܦሺߣ| 
 ሻ| צ ௌܦ

 ிצ ݅        ,ሺܸሻଶݓ2 ൌ 1,2, … , ݊.                                                           (27) 

We proceed by deriving an upper bound for ߪሺܺ,  ܵ,   ାሻ. Recall from (11) thatߤ 

,൫ܺߪ  ܵ; :ା൯ߤ ൌ ൫ܸ൯ߪ ൌצ ܧ െ ܸ ிצ ሺܸሻଶ       ݁ݎ݄݁ݓ   , ൌ
ଵ

ఓశ  (28)          .ܦଵܺܵିܦ

Lemma 14. Let ܸ  ௌܦ
 ظ 0 and ߤା ൌ ሺ1 െ  ,Then .ߤሻߠ

ሺܸሻߪ 
ሺܸሻߪ  ሺܸሻଶݓ2  ݊√ߠ

1 െ ߠ  ඥሺ1 െ ሻሺ1ߠ െ ሺܸሻߪ െ ሺܸሻଶሻݓ2
. 

Proof. Using (25) and (28), we get 

                                                    ሺܸሻଶ~
ାೄ

 ାெ

ଵିఏ
,                                                                          (29) 

 and have  

୫୧୬ሺሺܸሻଶሻߣ ൌ
1

1 െ ߠ
୫୧୬ሺܸߣ  ௌܦ

   .ሻܯ

Since ܯ is skew-symmetric, Lemma 2 implies that  

୫୧୬ሺሺܸሻଶሻߣ                                            
1

1 െ ߠ
୫୧୬ሺܸߣ  ௌܦ

 ሻ 


1

1 െ ߠ
ሺߣ୫୧୬ሺܸሻെצ ௌܦ

  ிሻצ

                                                     
ଵ

ଵିఏ
ሺ1 െ ሺܸሻߪ െ  ሺܸሻଶሻ,                                                           (30)ݓ2

where the last inequality follows from (27) and Lemma 4. Using (28), (29) and the triangle inequality, 
we get  

ሺܸሻߪ ൌצ ܧ െ ܸ צிൌצ ሺܧ  ܸሻିଵሺܧ െ ሺܸሻଶሻ  ிצ
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1

1  ୫୧୬ሺܸሻߣ
צ ܧ െ ሺܸሻଶ  ிצ

                 ൌ
1

1  ୫୧୬ሺܸሻߣ
צ ܧ െ

ܸ  ௌܦ
  ܯ

1 െ ߠ
 ிצ

               
ଵ

ሺଵିఏሻቀଵାఒౣ൫൯ቁ
൫ߪሺܸሻצ ܧߠ  ௌܦ

  ܯ  ி൯.                                                          (31)צ

 Since ܧߠ  ௌܦ
  is symmetric and ܯ is skew-symmetric, we have  

צ ܧߠ  ௌܦ
  ܯ ிצ

ଶ ൌ   



ୀଵ

ܧߠሺߣ  ௌܦ
   ሻଶܯ

                                        ൌ   



ୀଵ

ሺߠ  ௌܦሺߣ
   ሻሻଶܯ

                                              ሺඥ∑  
ୀଵ ଶߠ  ට∑  

ୀଵ ௌܦሺߣ
   ሻଶሻଶܯ

                             ൌ ሺߠ√݊  ටܶݎሺܦௌ
   ሻଶሻଶܯ

                                                                            ሺߠ√݊צ ௌܦ
 ிሻଶצ  ሺߠ√݊   ሺܸሻଶሻଶ.            (32)ݓ2

 Substituting (30) and (32) into (31), the result follows.                                                              □ 

 

Because we need to have ߪሺܸሻ 
ଵ

ଶ
, by Lemma 14, it suffices to have  

                                           
ఙሺሻାଶ௪ሺሻమାఏ√

ଵିఏାඥሺଵିఏሻሺଵିఙሺሻିଶ௪ሺሻమሻ


ଵ

ଶ
.                                                            (33) 

 At this stage, we let  

                                        ߬ ൌ
ଵ

଼
ߠ    , ൌ

ଷఈ

ଵ√
ߙ      ,  1.                                                           (34) 

The left-hand side of (33) is monotonically increasing with respect to 2ݓሺܸሻଶ, then for ݊  1 and 
ሺܸሻߪ  ߬, one can verify that   

ሺܸሻݓ                                                                 
ଵ

ଶ√ଶ
֜ ൫ܸ൯ߪ 

ଵ

ଶ
.                                                       (35) 
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3.4. Upper Bound for ࢝ሺࢂሻ 

      In this subsection, we intend to find an upper bound for ݓሺܸሻ, to be able to set a default value for ߠ. 

For this purpose, consider the system (23). By eliminating ܦௌ
 from the system (23), we have  

 

A୧ • ܦ
 ൌ

ଵ

√ఓ
ݎሺߥߠ

ሻ,      ݅ ൌ 1,2, … , ݉,

െ ∑  
ୀଵ

Δ௬

√ఓ
A୧  ܦ

 ൌ ሺܧ െ ܸሻ െ
ଵ

√ఓ
ௗݎܦߥߠ

ܦ.  (36) 

 After some manipulations (for more details, see [8]), we get  

צ ܦ
 ிצ

ଶ צ ௌܦ
 ிצ

ଶ  ሺܸሻଶߪ2 
ଶߠ3

୫୧୬ሺܸሻଶߣଶߦ ሺTrሺܺ  ܵሻଶሻ. 

Lemma 15 (Lemma 5.14 in [12]). Let ሺܺ, ,ݕ ܵሻ be feasible for the perturbed problems ሺ ఔܲሻ and ሺܦఔሻ 
and let ሺܺ, ,ݕ   ܵሻ ൌ ሺܧߦ, 0, ,כሻ and ሺܺܧߦ ,כݕ   ,ሻ be as defined by (16). Thenכܵ 

Trሺܺߦߥ                                                                 ܵሻ  ܵ • ܺ  .ଶߦ݊ߥ            (37) 

Corollary 16. Using the same notation as in Lemma 15, we have   

ሺܺݎܶ                                                                ܵሻ  ሺ1  ሺ1   (38)                                                    .ߦሺܸሻሻଶሻ݊ߪ

Proof. Using the inequality (37) and ߤ ൌ   ଶ, we getߦߥ

                                         Trሺܺ  ܵሻ  Trሺ
ௌ

ఓ
ሻߦ   (39)                                                    .ߦ݊

 Using ܺܵ~ܸߤଶ ൌ   and Lemma 4, we deduce that ܦଵܺܵିܦ

                              Trሺ
ௌ

ఓ
ሻ ൌ Trሺܸଶሻ ൌ ∑  

ୀଵ ሺܸሻଶߣ  ∑  
ୀଵ ሺ1  ሺܸሻሻଶߪ ൌ ݊ሺ1   ,ሺܸሻሻଶߪ

which by substituting into (39), the result easily follows.                                                                     □ 

Finally, using (38) and Lemma 4, we obtain  

צ ܦ
 ிצ

ଶ צ ௌܦ
 ிצ

ଶ  ሺܸሻଶߪ2 
ଷఏమమ

ሺଵିఙሺሻሻమ ሺ1  ሺ1   ሺܸሻሻଶሻଶ.                                        (40)ߪ

3.5. Value for ࣂ 

      At this stage, we choose ߬ ൌ
ଵ

଼
. Since ߪሺܸሻ  ߬ ൌ

ଵ

଼
 and the right-hand side of (40) is monotonically 

increasing in ߪሺܸሻ, we have  

צ  ܦ
 ிצ

ଶ צ ௌܦ
 ிצ

ଶ 
ଵ

ଷଶ
 3ሺ

ଵସହ

ହ
ሻଶߠଶ݊ଶ. 

Using ߠ ൌ
ଷఈ

ଵ√
, the above inequality becomes  
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צ                 ܦ
 ிצ

ଶ צ ௌܦ
 ிצ

ଶ 
ଵ

ଷଶ
 3ሺ

ଵସହ

ହ
ሻଶ ൈ

ଽఈమ

ଵ
.                                                         (41) 

From (35) we know that ݓሺܸሻ 
ଵ

ଶ√ଶ
 is needed in order to have ߪሺܸሻ 

ଵ

ଶ
. Due to (41), this will hold, 

if  

 
ଵ

ଷଶ
 3ሺ

ଵସହ

ହ
ሻଶ ൈ

ଽఈమ

ଵ


ଵ

ଶ
. 

If we take  

ߙ                                                  ൌ
ଵ

ଶ√
 ,                                                                               (42) 

then the above inequality is satisfied. 

3.6. Complexity Analysis 

     We have seen that if at the start of an iteration the iterate satisfies ߪሺݔ, ;ݏ ሻߤ  ߬, with ߬ ൌ
ଵ

଼
, then 

after the feasibility step, with ߠ as defined in (34) and ߙ as in (42), the iterate is strictly feasible and 

satisfies ߪሺܺ, ܵ; ାሻߤ 
ଵ

ଶ
. 

After the feasibility step, we perform a few centering steps in order to get the iterate ሺܺା, ,ାݕ   ܵାሻ 
satisfying ߪሺܺା,  ܵା; ାሻߤ   ߬. By Corollary 11, after ݇ centering steps, we will have the iterate 
ሺܺା, ,ାݕ  ܵାሻ still feasible for ሺܲఔశሻ and ሺܦఔశሻ satistifing 

,ሺܺାߪ   ܵା; ାሻߤ  
ଵ

ଶ
ሺ

ସ

ହ
ሻ. 

From this, one easily deduces that ߪሺܺା,  ܵା; ାሻߤ   ߬ will hold after at most  

                                                   
୪୭మଶఛ

୪୭మ.଼
                                                                                   (43) 

centering steps. According to (43), and since ߬ ൌ
ଵ

଼
, at most seven centering steps suffice to get the 

iterate ሺܺା, ,ାݕ   ܵାሻ that satisfies ߪሺܺା,  ܵା; ାሻߤ   ߬. So, each main iteration consists of at most eight 
so-called inner iterations. 

In each main iteration, both the duality gap and the norms of the residual vectors are reduced by the 
factor 1 െ   Hence, the total number of main iterations is bounded above by .ߠ

1
ߠ

log
maxሼ݊ߦଶ, צ ݎ

 ,צ צ ௗݎ
 ሽצ

ߝ
. 

 

Due to (34), (42) and the fact that we need at most eight inner iterations per main iteration, we may 
state the main result of the paper.  
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Theorem 17. If (P) and (D) are feasible and ߦ  0 is such that ܺכ  כܵ ع  for some optimal  ,ܧߦ
solution ܺכ of (P) and ሺכݕ,   ሻ of (D), then after at mostכܵ

160
3

݊log
maxሼ݊ߦଶ, צ ݎ

 ,ிצ צ ௗݎ
 ிሽצ

ߝ
 

inner iterations, the algorithm finds an ߝ-optimal solution of (P) and (D).  

Example 1. To illustrate an application of the algorithm, let us consider the problems (P) and (D) with 
the following data: 

ଵܣ     ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 1 0 0 0
1 2 0 0 െ1
0 0 0 0 1
0 0 0 െ2 െ1
0 െ1 1 െ1 െ2

ے
ۑ
ۑ
ۑ
ۑ
ې

, ଶܣ   ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 െ2 2 0
0 2 1 0 2
െ2 1 െ2 0 1
2 0 0 0 0
0 2 1 0 2

ے
ۑ
ۑ
ۑ
ۑ
ې

, ଷܣ   ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
2 2 െ1 െ1 1
2 0 2 1 1
െ1 2 0 1 0
െ1 1 1 െ2 0
1 1 0 0 െ2

ے
ۑ
ۑ
ۑ
ۑ
ې

ܥ     ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
3 3 െ3 1 1
3 5 3 1 2
െ3 3 െ1 1 2
1 1 1 െ3 െ1
1 2 2 െ1 െ1

ے
ۑ
ۑ
ۑ
ۑ
ې

,      ܾ ൌ ൦

െ2
2
െ2

൪ .

The starting point, as usual for IIPMs, is ሺܺ, ,ݕ ܵሻ ൌ ሺܧߦ, 0, ߦ ሻ withܧߦ ൌ 1 and we obtain a 
primal-dual optimal solution as follows: 

 

כܺ                       ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0.0714 െ0.0718 0.0167 0.0650 െ0.1580
െ0.0718 0.0725 െ0.0182 െ0.0603 0.1674
0.0167 െ0.0182 0.0103 െ0.0085 െ0.0770
0.0650 െ0.0603 െ0.0085 0.1486 0.0060
െ0.1580 0.1674 െ0.0770 0.0060 0.6017

ے
ۑ
ۑ
ۑ
ۑ
ې

כݕ               , ൌ ൦

0.8584
1.0937
0.7832

൪ ,

כܵ                                                       ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1.4334 0.5749 െ0.0290 െ0.4044 0.2167
0.5749 1.0954 0.3395 0.2167 െ0.1125
െ0.0290 0.3395 1.1877 0.2167 0.0477
െ0.4044 0.2167 0.2167 0.2835 െ0.1415
0.2167 െ0.1125 0.0477 െ0.1415 0.0959

ے
ۑ
ۑ
ۑ
ۑ
ې

.

With a tolerance ߝ ൌ 10ିଷ, the algorithm reaches this solution in 182 iterations, taking 1809.358530 
seconds. Now, a comparison of the results obtained by our proposed algorithm and the ones obtained by 
three other algorithms can be seen in Table 1. It can b seen that the required iteration number and the 
needed time by our proposed algorithm are perfered to the ones required by the other algorithms.  
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Table 1. Comparative results 

Method  No. of  iterations  Time (in seconds) 

Our proposed
algorithm 

 182   1809.35 

Algorithm in [12]  229 2581.33 

Algorithm in [10] 369  5765.32 

Algorithm in [6] 369 3830.86 

 

4. Conclusion 

      We presented a full NT step infeasible interior-point algorithm for semi-definite optimization. The 
centering steps in [10, 12] and also the feasibility step in [12] were induced by the classic logarithm 
barrier function. We used a kernel function to induce both the centering and the feasibility steps and 
analyzed the algorithm based on these search directions, giving an analysis different from the one in 
[10, 12]. The resulting complexity coincides with the best known iteration bound for IIPMs, while the 
practical performance of the algorithm is better than the existing algorithms. 
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