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Ridesharing in Muscat: 

Can it be a Sustainable Solution for the Traffic Congestion? 
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We deal with developing a Decision Support System (DSS) to promote the ridesharing 

among both students and staff of a big organization. The DSS includes a set of functions 

that allow the management of the riders’ requests and drivers’ availability and embeds a 

novel two-phase optimization approach that helps in defining the optimal riders-drivers 

matching. The first phase consists of solving a constraint programming model that 

generates all the feasible routes. Then, the second phase a bin packing based model is 

solved to find the optimal route for every driver in order to serve the set of riders assigned 

to her vehicle. We conclude by an illustrative example that shows the validity of our DSS 

and, finally, by a discussion on the possible commercialization of such a platform. 
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1. Introduction 
 

Traffic jam is becoming a real issue in Muscat, the capital and biggest city in the Sultanate of 

Oman. Indeed, with a growth rate of more than 9% per year (World Population Review, 2017), the 

population of Oman is estimated to be 4,737,861 inhabitants with nearly 50% of the population 

living in Muscat Governorate. Consequently, the population growth is making a high pressure on 

the existing infrastructure of the city, leading to always growing traffic congestion. Moreover, urban 

public transportation is scarcely developed since the first public urban bus service has been 

inaugurated only in 2015, and there is no train or metro service network connecting the wide area of 

Muscat. In this context, private cars provide more convenience and flexibility for road users. 

Nonetheless, the total number of vehicles is not compatible with the available transport 

infrastructure, resulting in occasional heavy traffic jams, especially at peak hours.  
 

Road congestions can be explained by “the tragedy of the commons” theory (Hardin, 1968). 

When applied to our case study, this theory illustrates a situation in which public goods, the 

roads in our case, are shared by self-interest agents keen to maximize the utility. The agents, 

generally, do not adopt cooperative strategies since each person thinks that the others, including 

public authorities, should do the necessary action to solve the problem of traffic congestion. 
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This leads to an inefficient way of using scarce resources such as time and energy. If we leave  

aside the cost of energy paid uselessly by each agent, the daily time lost by road users in traffic 

congestions has an opportunity cost and the air pollution provoked by an excessive number of 

cars in circulation has a considerable cost for the whole community, presently and for future 

generations as well. Consequently, traffic congestion is a serious issue contrasting with 

economic efficiency.  
 

In the literature, several remedies have been suggested to reduce the aversive effects of 

traffic congestion such as pricing methods and ridesharing. An example of such a mechanism 

has been proposed in China where the approximate annual loss caused by traffic congestion and 

accidents is estimated to be 170 billion Yuan (Zhu et al., 2008). The authors suggested the 

intervention of “road managers” to apply a toll payment for reducing bottlenecks at the peak 

hours. However, they did not specify the payment mechanism and did not discuss how to 

determine the toll amount. This is a crucial factor since high amounts will favor high-income 

users to use the roads in peak hours, whereas low toll amounts will not have any effect on 

dissuading drivers to use their private cars. 
 

On the other hand, ridesharing is defined as a cooperative strategy between actors and it is 

privileged as a sustainable solution to reduce the use of private cars and hence reduce the 

associated externalities. In fact, exploiting the empty seats within a shared car might combine 

the convenience of using a private car but at the same time contributing to reduce road 

congestions. This solution has been proposed by a wide number of researchers belonging to 

multidisciplinary research fields such as socio-economy (Brownstone and Golob, 1992), 

transportation (Morency, 2007), operations research (Agatz et al., 2012) and artificial 

intelligence (Kleiner et al., 2011).  
 

In reality, car ridesharing has been widely diffused in USA and Europe since 2011. Taking 

advantage of the wide availability of smartphone technologies, real time car ridesharing 

applications were developed to allow connecting demand and supply for rides, hence reducing 

waiting time. Real-life applications show that ridesharing is a valid solution that can compete 

with conventional cable systems by reducing not only waiting time but also traveling cost.  
 

In the next section, we will review the state of the art in the existing literature and in 

business platforms operating in ridesharing market. The payment systems adopted by some of 

the available platforms will be highlighted. Our focus will be on developing an optimal 

matching and an efficient payment scheme that might represent the main economic incentive 

that encourages both passengers and car owners to change their behaviors. Finally, a case study 

related to Sultan Qaboos University is implemented and tested through a server platform based 

on the road network of the city of Muscat (a preliminary and simplified version of this work 

appeared in a conference proceedings by Al-Riyami et al., 2016).  
 

2. Literature Review  
 

According to Furuhata et al. (2013) and Chan and Shaheen (2012), traffic congestion 

reduces the quality of life of road users and sharing the empty seats in private cars can be a 

solution to mitigate traffic circulation problems. In practice, ridesharing is a system that can 
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lead, in cooperation with road users, to overcome the discomfort of traffic congestion and may 

allow not only to enjoy the comfort of using private cars but also to reduce the travel cost. 

Furthermore, ridesharing has positive externalities such as decreasing traffic congestion, fuel 

consumption, and the consequent air pollution. 

 

Kleiner et al. (2011) identified three conditions necessary for a ridesharing system to be 

efficient:  flexibility, high availability and adequate incentive. Apparently, if users did not 

succeed to get a ride within a few attempts, they will be dissuaded to use it furthermore and if 

the drivers are not motivated by a high profit, only a few drivers will be willing to share their 

cars.  

 

Nowadays, many ridesharing platforms are operating around the world; those who had wide 

success include ZimCar, Uber and Lift. The pricing mechanism of these big businesses is 

competitive with traditional taxi systems and cable services but at peak hours, holidays or late 

hours at night higher rates or surcharge prices are applied. This behavior has in general a 

dissuasive impact since surcharge prices are often considered to be unfair by riders.  

 

In general, in most applications, credit cards and cash payments are used and the travel cost 

is computed based on the following factors:  

 
- Distance (total miles traveled) 

- Time (total minutes traveled) 

- Base Charge (the amount the ride starts at) 

- Service Fee (added to each ride charge) 

- Time Surcharge (a percentage added during the busiest times or peak hours) 

 

Indeed, the existing ridesharing systems are mostly based on fixed assignments to optimize 

the travelled distance (Kleiner, 2009). Moreover, some studies have developed pricing models 

to ensure fair payments to users. In particular, Kamar and Horvitz (2009) suggested the ABC 

dynamic ridesharing system to ensure fair payments using a VCG mechanism as incentives for 

riders and drivers (Nisan et al., 2007; Kleiner et al., 2011). On the other hand, new applications 

are focused on using the auction approach that gives the opportunity to riders to bid for a ride 

whereas drivers can select the highest bid (Kleiner et al., 2011). Furthermore, a recent study 

(Asghari et al., 2016) developed a model in which drivers bid in real time on requests and the 

server determines the highest bidder and assigns the rider to that driver. The latter model is 

automated since the matching between demand and supply of rides is based on the predefined 

profile of the riders who express not only their willingness to pay for a trip but also their 

willingness to accept some detours in order to receive an explicit discount rate. On the other 

hand, driver’s profile shows her expected cost, which is a function of distance and time. After 

matching demand and supply bids, the application assigns the ride to the driver whose bid is 

maximizing the platform profit. 

 

This mechanism is comparable with the model used by the existing platforms, Bidride and 

GabbyGo, in which drivers have to bid for a specific ride request and the rider then decides 

which bid to accept based on several factors such as price, travel time, driver rating or type of 

car. However, while Asghari et al. (2016) suggested that the server decide which rider to select, 

in the Bidride and GabbyGo platforms, the rider, comparing drivers’ bids, has the opportunity 

to decide which car to share. Furthermore, while Asghari et al.’s model seems giving more 

https://help.lyft.com/hc/en-us/articles/214218387-The-Service-Fee
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advantage to the provider maximizing his profit, Bidride and GabbyGo are probably favoring 

riders giving them the opportunity to select the driver who is offering the lowest price. 

 

Auction and fixed assignments mechanisms are interesting mechanisms and allow riders and 

drivers to negotiate the fair but the compensation of the platform provider has a considerable 

impact on the price paid by the riders and the revenue of the driver. For this reason, in our case 

study, we will omit this variable since our objective is to offer an additional service to the 

campus users and also to reduce traffic congestion around the university by persuading road 

users to share their cars. Eliminating such aspect, our model will focus on matching demands 

and supplies of rides among the students and the academic staff using a free application 

sponsored by the university. The objective will be, thus, to increase the overall welfare rather 

than maximize the platform’s profit. 
 

Besides these commercial applications of ridesharing that do not often reveal the tools they 

are implementing, there is, to the best of our knowledge, only a single attempt in the scientific 

literature of applying optimization tools for the ridesharing in a University campus (Amey, 

2010). The application is concerned with the MIT campus in Massachusetts and considered a 

simplified variant of the ridesharing consisted of matching each driver with one single rider. 

The author has used a commercial software package CPLEX to solve the matching problem. 

Moreover, the author proposed a heuristic solution that selects the best rider-driver matching on 

the basis of a ranking procedure of the feasible matching using the VMT (Vehicle Miles 

Travelled) savings as a criterion.  
 

Unlike Amey’s paper, our work here consists in considering a more complex variant of the 

ridesharing problem since every vehicle can serve a driver-specified number of riders based on the 

available seats in her car. Moreover, since our preliminary results have recognized the limitations of 

CPLEX to solve real-life scenarios, here we propose a two-phase optimization approach that 

involves the solution of a constraint programming problem and a bin packing model. Our study 

appears to be a novel approach with promising applications. 
 

3. A Two-Phase Optimization Approach 
 

The performance of any ridesharing platform depends on the efficiency that one can achieve in 

solving the matching problem. We propose here an optimization approach based on a two-phase 

procedure. The first phase consists of generating all the feasible routes the drivers can perform in 

order to serve all the riders population. This step can be efficiently accomplished by solving a 

Constraint Programming (CP) model. Then, in the second phase we solve a bin-packing problem to 

select a subset of these feasible routes in order to define the optimal matching with the highest 

profit. The design of our approach is based on the following assumptions:  

 

 Ignoring the time needed for picking up any rider. 

 Ignoring the uncertainty due to traffic factors affecting the travel time between any two 

nodes. 

 The drivers’ average speed is considered to be constant. 

 

The problem is defined over a transportation network represented by a directed graph whose 

nodes the drivers, and riders, locations. Moreover, the graph includes an additional node that 
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represents Sultan Qaboos University (SQU) as the destination of all the participants. (Obviously, the 

definition of a similar approach for the outbound transportation from SQU to different locations is 

straightforward and does not present any further challenge). The notation to be used is as follows: 

 

P Set of riders’ pickup points 

𝑳 Set of drivers’ locations 

𝑺 Final destination of all the participants, i.e., SQU  

𝑫 Set of drivers (i.e., available vehicles) 

𝑨 Set of riders asking for transportation service 

𝑹 Set of feasible ridesharing routes of all drivers 

𝑪𝒌 Capacity of vehicle 𝑘 ∈  𝐷 

𝑻𝒊 A driver specified parameter to indicate driver’s (𝑖 ∈ 𝐷) desired departure time 

before any deviation (it represents the arrival time when 𝑖 ∈ 𝑆) 

𝒑𝒊𝒌 A parameter that takes value 1 if the starting location of driver 𝑘 is node 𝑖 
         𝒕𝒊𝒋 Direct travelling time between locations 𝑖 and 𝑗 (𝑖, 𝑗 ∈ 𝑃 ∪ 𝐿 ∪  𝑆) 

         𝒃𝒊 Price to be paid by rider i ∈ 𝐴 for the ridesharing service 

 

3.1. Constraint Programming Model 

 

The decision variables of the CP model can be defined as follows: 

 

     𝑋𝑖𝑗𝑘: a binary variable that is 1 if vehicle k travels directly from location i to location j, 

              and 0, otherwise. 

 

The CP model is defined to be: 

 

∑ 𝑋𝑖𝑗𝑘 = 𝑝𝑖𝑘 ,

𝑗 ∈ 𝑃∪𝑆

          ∀ 𝑖 ∈ 𝐿 , ∀ 𝑘 ∈ 𝐷  (1) 

∑ 𝑋𝑖𝑗𝑘 − ∑ 𝑋𝑗𝑙𝑘

𝑙 ∈ 𝑃∪𝑆

 = 0,     ∀ 𝑗 ∈ 𝑃,

𝑖 ∈ 𝑃∪𝐿

 ∀ 𝑘 ∈ 𝐷 (2) 

∑   ∑ 𝑋𝑖𝑗𝑘 = |𝐴|,         ∀ 𝑗 ∈ 𝑆

𝑖 ∈ 𝐴𝑘 ∈ 𝐷

 (3) 

∑ ∑ 𝑋𝑖𝑗𝑘 ∗ 𝑡𝑖𝑗 ≤ 2(𝑇𝑙 − 𝑇𝑖),       𝑙 ∈ 𝑆, ∀ 𝑘

𝑗 ∈ 𝑃∪𝐿∪𝑆𝑖 ∈ 𝐿∪𝑃 

∈ 𝐷 (4) 

∑    ∑ 𝑋𝑖𝑗𝑘 ≤  𝐶𝑘,      ∀ 𝑘

𝑗 ∈ 𝑃 𝑖 ∈ 𝑃∪𝐿 

∈ 𝐷 (5) 

𝑋𝑖𝑗𝑘 ∊ {0, 1}   ∀ 𝑖, 𝑗 ∈ 𝑃 ∪ 𝐿 ∪  𝑆, ∀ 𝑘 ∈ 𝐷 (6) 

“Subtour Elimination Constraints” (7) 

 

The set of constraints (1) ensures that each vehicle must start its route at the driver’s location. 

Both the pickup and delivery of any rider must be made by the same vehicle. This is guaranteed by 

the set of constraints (2) that forces any vehicle that visits a pickup point 𝑗 to move to the next 
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pickup point or to the delivery point (SQU). Constraints (3) ensure that all riders should reach their 

final destination (SQU). Constraints (4) set a maximum time spent by each driver on her route to 

SQU (the allowed deviation time to serve all the assigned rides has been chosen here to be twice the 

drive-alone time). Constraints (5) and (6) define the vehicles’ capacity restrictions and the binary 

nature of all the variables, respectively, and finally constraints (7) against the presence of subtours 

in the feasible routes. 

 

It is worth noting that while determining the set of all feasible routes 𝑅, our approach also 

computes the routing cost corresponding to every route generated by the CP model. We denote such 

a cost as ℎ𝑘𝑟, for every route 𝑟 ∈ 𝑅 and every vehicle 𝑘. 

 

3.2. Bin Packing Based Model 
 

For the selection of the subset of routes to be accomplished by the drivers, we use a Bin Packing 

(BP) based model that uses a set of binary variables 𝑌𝑘𝑟 each taking the value 1 if driver 𝑘 is 

assigned to route 𝑟, and 0, otherwise. The BP problem can be described as follows: 

 

𝑀𝑎𝑥 ∑   ∑ (∑ 𝑏𝑖𝐸𝑖𝑟 − ℎ𝑘𝑟 

𝑖 ∈ 𝐴

)

𝑘 ∈ 𝐷

∙  𝑌𝑘𝑟

𝑟 ∈ 𝑅

 (8) 

∑ 𝑌𝑘𝑟 ≤ 1,       ∀ 𝑘 ∈  𝐷

𝑟 ∈ 𝑅

 (9) 

∑    ∑ 𝐸𝑖𝑟  𝑌𝑘𝑟 ≤ 1,       ∀  𝑖 ∈  𝐴

𝑟 ∈ 𝑅𝑘 ∈ 𝐷

 (10) 

𝑌𝑘𝑟  ∈ {0,1},          ∀  𝑟 ∈  𝑅, ∀ 𝑘 ∈  𝐷, (11) 

 

in which 𝐸𝑟𝑘 (𝑖 ∈  𝑃 and 𝑟 ∈  𝑅) represents the binary route-rider assignment (parameter) that 

takes the value 1 only if rider’s location 𝑖 is involved in route 𝑘, and 0, otherwise.  

 

The objective (8) is to maximize the matching profit defined as the amount to be paid by all the 

riders minus the total travelling cost over all the routes to be performed by all the drivers. 

Constraints (9) ensure that each vehicle is assigned at most to one route. Constraints (10) guarantee 

that each rider is served by at most one of the feasible routes. Finally, constraints (11) force the 

decision variables to be binary. Our model clearly does not involve the “obligation to serve” rule; 

any matching will oblige to only the profit maximization criterion.  

 

The BP model (8)-(11) turns to be a linear combinatorial optimization model which is known to 

be NP-Hard. Even though solving very large real-life problems can be a challenging task, for our 

specific application to SQU, general purpose software packages (such as Lingo, Matlab, GAMS and 

Cplex) can be used in order to solve moderate size problems. 
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4. Decision Support System  
 
In this section we will describe the details of our platform system including the payment scheme 

and the re-optimization approach when a new customer is included in any of the drivers’ tour. Even 

though the payment scheme is very important to motivate drivers to share their cars with riders, it is 

a challenging task to design a dynamic system that allows the incorporation of new riders in the 

drivers’ routes. For this purpose, a decision support system is required to allow new riders to appear 

automatically in the system, and get a convenient driver assigned. For this purpose, the 

demonstrative decision support system implemented for Sultan Qaboos University consists of a web 

application as well as a smartphone application built in the form of a database incorporating 

dynamic receive and retrieve functionality.  

 

4.1 Design of the Payment Scheme 

 
Our suggested payment scheme in the city of Muscat is using a fixed rate of (0.125 OMR) per 

pick up if the total deviation from the main route is less than 10 minutes. However, if the deviation 

is more than 10 minutes, then the increment will be (0.025 OMR) for every extra minute. The total 

pay curve will be as shown in Fig. 1. Our approach has also simulated the behavior of the price with 

respect to the market size by considering three possible scenarios (Fig. 2) of low, average and high 

cases. We have assumed that these three scenarios can occur with probabilities of 0.15, 0.7 and 

0.15, respectively.   

 

  
        Figure 1. Payment scheme                       Figure 2. Market size vs. price 

 

Figs. 1 and 2 show that the maximum Expected Monetary Value (EMV) can be achieved at rate of 

0.125 OMR per pickup. While comparing the other options for tariff, the market size reaches its 

maximum when the price is 0 OMR and drops as the price increases; any tariffs above 0.150 OMR 

does not attract riders anymore. 

 

4.2 Linking the Optimization Model with the Decision Support System 

 

The Data System Design (DSD) is the process of designing the tables of inputs and outputs 

for the display in the dashboard. These consist of either inputs data of riders and drivers, or the 

matching solutions of the model. The DSD is composed of three elements: tables design, form 
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design, and report design. The inputs register is based on three main tables: Request to Pick 

(RTP), Drivers, and Routes. The form design for RTP automatically sets the value for Rider 

Number, and the Riders (the users) can input the departure location (selected from a defined list 

of departure locations), desired arrival time, and contact number. After submission, the rider 

will receive a message of acknowledgement. The form design for Drivers automatically sets the 

value for Driver ID, and the Drivers (the users) can input the departure location, departure time, 

desired arrival time, vehicle capacity, preferred route, and contact number.  

 

The departure location, departure time, and desired arrival time are passed on exit of 

submission as parameters for the riders/drivers matching. The driver registration gives a 

summary of the registered information which turns to be useful for the driver to display 

potential riders. 
 

4.3 Information Flow and Insertion Heuristic 

 

The flow of information is very important for the model to function as intended. The data system 

will have two inputs, where riders register their RTP and drivers register their availability. Then, the 

drivers can have access to the list of riders assigned to them in the system. Fig. 3 illustrates the 

information flow in the data system. Given the dynamic nature of the problem, a new request may 

arrive at the system after solving the matching problem but before ending the implementation of the 

riding trips. In this case, the platform will use an insertion procedure in order to investigate if it is 

possible to define a feasible rider-driver assignment having the minimum Expected Delay (ED). 

Such a heuristic is based on the best-of-the-worst criterion that modifies the route of one single 

driver only without re-optimizing the whole matching. From this point of view, the whole approach 

can be seen as two-stage recourse procedure in which the first stage consists of the initial matching 

resulting from solving the mathematical model and the recourse second stage consists of inserting 

additional riders within the existing routes. 

 

 

    
 

Figure 3. Information flow in the data system 

 

5. Decision Support System Experiments 
 
The experiments related to our DSS have been conducted on a test problem including a set of 

data registered in the system having 12 Riders who requested a pickup, and 8 Drivers available to 

share their own cars. Such experiments have the objective of validating our approach. These test 

Riders 
RTP

Drivers 
Register

Display 
Matching 
of Driver 

with Riders
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instances have been generated to represent realistic scenarios, since on one side real data are not 

available yet and on the other side no standard test problems are available for these kinds of 

problems.  

 

The data registered in the system are as summarized in Table 1 for RTPs and Table 2 for Drivers. 

Since the model is to be used for a university campus, the destination for riders is always to and 

from the campus. 

 

Table 1. Data registered for RTP 

RiderNo Dept_loc DAT_R Contact PickedUp Tariff 

RD001 Al Khoudh 6 8 98765432 FALSE 0 

RD002 Al Maabila 10 98765432 FALSE 0 

RD003 Al Khoudh 6 12 11223344 FALSE 0 

RD004 Al Mawaleh South 14 11223344 FALSE 0 

RD005 Al Mawaleh South 14 11223344 FALSE 0 

RD008 Al Mawaleh North 12 98465651 FALSE 0 

RD009 Al Maabila 8 86416846 FALSE 0 

RD010 Al Mawaleh South 10 68418942 FALSE 0 

RD011 Al Amirat 8 68146349 FALSE 0 

RD012 Al Mawaleh North 16 71897894 FALSE 0 

 

Table 2. Data registered for drivers 

DRV_ID Dept_Loc Dept_Time DAT Veh_Cap Pref_Route Contact 

DRV001 Al Khoudh 7.25 8 3 1 12345678 

DRV002 Al Maabila 7.5 8 2 4 12345678 

DRV003 Al Khoudh 6 7 8 2 3 12346579 

DRV004 Al Mawaleh North 11 12 2 4 65685165 

DRV005 Al Amirat 7 8 1 2 68146384 

DRV006 Al Maabila 7 8 3 2 86419849 

DRV007 Al Mawaleh South 13 14 2 1 19643943 

DRV008 Al Mawaleh North 9 10 3 4 13684368 

 

The model is executed to match the drivers with potential riders by means of sub-optimizing each 

driver parcours rather than the whole system due to its dynamic nature. The dynamic nature of the 

system implies that any insertion of new data to the system can be directly optimized even if the 

driver has already approved of the riders for pickup. Figs. 4, 5, and 6 illustrate examples of several 

drivers/riders matchings. It is clear that “driver 003”, for example, will make departure for “Al 

Khoud” as destination and will pick up riders “RD1” and “RD03” and will have 30 minutes delay 

before reaching the University Campus. 
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Figure 4. Matching for 

DRV003 

 
Figure 5. Matching for 

DRV005 

 
Figure 6. Matching for 

DRV007 

 

The CPU time needed to solve this illustrative example is in the order to a few seconds only. 

Even though solving real-life applications may be more challenging, we are confident that our DSS 

is able to handle large-scale instances characterized by a big number of RTPs and available drivers. 

However, we are conscious that solving the constraint programming model to generate all the 

feasible routes may be a bottleneck in the platform once a given threshold number of agents is 

reached. In that case, it is possible to develop a truncated constraint programming procedure that 

generates not necessarily all the feasible routes but is satisfied with the promising ones only. The 

truncating decision may be based on several criteria such as maximum detour time or distance, 

minimum profit, etc. The development of this idea is left for a future investigation. 

 

6. Conclusions  
 

Introducing ridesharing in the Sultan Qaboos University (SQU) campus to a large extent is 

needed to reduce traffic congestion and pollution problems.  While in industrialized countries (such 

as Australia, UK and USA) ridesharing is widely diffused, in developing countries this phenomenon 

is limited to a reduced social network of friends, parents and colleagues. The model developed for 

SQU campus can be extended to other campuses and cities in Oman to reduce traffic congestion, air 

pollution and fuel consumption. For this purpose, it will be necessary to develop a ridesharing 

platform that can be used at a commercial scale. Thus, a SWOT analysis of the potentials is 

discussed below. 
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Launching a commercial activity as a ridesharing provider can be very profitable, but for this 

case, there is not yet a clear scheme on how much each rider or/and driver would pay to the 

service provider. The only transaction is so far limited to the direct rider-to-driver payment. The 

provider’s share can become either an encouraging or an inhibitive factor for the success of 

ridesharing in Oman. The threshold of acceptability depends on the country and the absence of 

any previous experience in this context in Oman makes it a crucial factor that may require not 

only quantitative expertise but also socio-economical studies. 
 

Besides these technical issues, the spread of ridesharing in Oman should overcome several 

social obstacles. First, gender can be a serious constraint since the local culture is based on 

gender segregation. According to local traditions, in Oman a woman not accompanied by a 

family member cannot join a car driven by an unknown man. Another issue can be the local 

habits of relying on cars in any movement and the large diffusion of private cars (together with 

the relatively low cost of fuel). 
 

Finally, having the governmental authorization for a new platform to operate in Muscat is 

also a hurdle since taxi drivers have the monopoly of ground transportation and ridesharing 

transportation modality will probably stimulate new challenges and make their business 

difficult to survive. Involving taxi drivers in the ridesharing business has been adopted by 

Zimcar platform in the USA, and this option can be adopted in further studies to encourage a 

large diffusion of ridesharing in Muscat. Probably, in absence of an adequate public 

transportation network, offering lower prices, flexible and available rides can persuade car 

owners to give up the luxury to use their own cars and hence reduce traffic congestion. 
 

References 

[1] Agatz E., Savelsbergh M. and Xing W. (2012), Optimization for dynamic ridesharing: A 

review. European Journal of Operational Research 223(2), 295-303 

[2] Al-Riyami M., Ismail N., Al-Azri A. and Triki C. (2016), A Matching Optimization 

Model for the Dynamic Ridesharing in a University Campus. Proceedings of the 

International Conference on Applied Mechanics and Industrial Systems, 6-8 December, 

Muscat. 

[3] Amey A. (2010), A Proposed Methodology for Estimating Rideshare Viability within an 

Organization, applied to the MIT Community. Working paper, Massachusetts Institute of 

Technology. http://ridesharechoices.scripts.mit.edu/home/wp-

content/papers/AAmey_11.2585_TRB2011_RideshareModel_Ver1.pdf 

[4] Asghari M., Deng D., Shahabi C., Demiryurek U. and Li Y. (2016), Price-aware real-time 

ridesharing at scale: an auction-based approach. Proceedings of the 24th ACM 

http://ridesharechoices.scripts.mit.edu/home/wp-content/papers/AAmey_11.2585_TRB2011_RideshareModel_Ver1.pdf
http://ridesharechoices.scripts.mit.edu/home/wp-content/papers/AAmey_11.2585_TRB2011_RideshareModel_Ver1.pdf
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57185201500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56023375600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7004263107&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=24830028700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55568023700&zone=


Ridesharing in Muscat 109 
  

 

 
International Conference on Advances in Geographic Information Systems. 

[5] Brownstone D. and Golob T.F. (1992), The effectiveness of ridesharing incentives: 

Discrete-choice models of commuting in Southern California, Regional Science and 

Urban Economics, 22, 5-24 

[6] Cook, J.L. and Ramirez-Marquez, J.E. (2007), Two-terminal reliability analyses for a 

mobile ad hoc wireless network, Reliability Engineering and System Safety, 92(6), 821-

829. 

[7] Locks, M.O. (1985), Recent developments in computing of system-reliability, IEEE 

Transactions on Reliability, R-34(5), 425-436. 

[8] Xue, J. (1985), On multistate system analysis, IEEE Transactions on Reliability, R-34, 

329-337. 

[9] Yeh, W.C. (2002a), Search for all d-Mincuts of a limited-flow network, Computers and 

Operations Research, 29(13), 1843-1858. 

[10] Yeh, W.C. (2002b), A new approach to the d-MC problem, Reliability Engineering and 

System Safety, 77(2), 201-206. 

[11] Kleiner A., Nebel B., and Ziparo V. A. (2011), A mechanism for dynamic ridesharing 

based on parallel auctions. IJCAI'11 Proceedings of the Twenty-Second international joint 

conference on Artificial Intelligence, pp. 266-272 

[12] Morency C., (2007), The ambivalence of ridesharing, Transportation, 34(2), 239-253 

[13] Nisan N., Roughgarden T., Tardos E. and Vazirani V. V. (2007), Algorithmic Game 

Theory, New York, NY, USA: Cambridge University Press. 

[14] Oxford Business Group - Oman (2012), Report: 

www.oxfordbusinessgroup.com/country/Oman 

[15] World population Review (2017), Report: 

http://worldpopulationreview.com/countries/oman-population/ 

[16] Zhao D., Zhang D., Gerding E. H., Sakurai Y. and Yokoo M. (2014), Incentives in 

Ridesharing with deficit control, Proceedings of the 2014 International Conference on 

Autonomous agents and multi-agent systems (AAMAS), pp. 1021–1028. 

[17] Zhu G.-Q., Tong G.-J. and Dai L.-L. (2008), Analysis of urban road congestion pricing 

based on game theory, Proceedings of the 15th International Conference on Management 

Science and Engineering, pp. 1693—1697 

 

http://www.oxfordbusinessgroup.com/country/Oman
http://worldpopulationreview.com/countries/oman-population/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Guang-qin%20Zhu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Guang-ji%20Tong.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lei-lei%20Dai.QT.&newsearch=true

