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Event-driven and Attribute-driven Robustness 
 

M. Namakshenas1, M.S. Pishvaee2,*, M. Mahdavi Mazdeh3 
 

Over five decades have passed since the first wave of robust optimization studies conducted by 

Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept 

aside; there is much more potential for investigating the exact nature of uncertainties to obtain 

intelligent robust models. For this purpose, in this study, we investigate a more refined 

description of the uncertain events including (1) event-driven and (2) attribute-driven. Classical 

methods transform convex programming classes of uncertainty sets. The structural properties of 

uncertain events are analyzed to obtain a more refined description of the uncertainty polytopes. 

Hence, tractable robust models with a decent degree of conservatism are introduced to avoid the 

over-protection induced by classical uncertainty sets. 
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1. Introduction 
 

Robust optimization is a tractable alternative to stochastic programming, particularly suited for 

the problems in which parameters are unknown and their respective distributions are uncertain. In 

many real-world situations, a precise stochastic description of the uncertain events may not be 

available. With less structured information, such as bounds of uncertain parameters, one might 

describe the existing uncertainties by dedicating a set in which all realizations should lie, i.e., 

“uncertainty set”. The goal is to guarantee the feasibility of the underlying constraints for any 

possible realization while optimizing an objective defending against the worst possible 

consequence. 

 

The original form of robust optimization, introduced by Soyster [10] and Falk [6], was generally 

concerned with linear programming problems with inexact technological coefficients. Their 

proposed robust optimization was too conservative and subjected to being drawn to the worst case 

for each uncertain parameter since the considered uncertainty was limited to a column-wise 

structure. Numerous works significantly generalized and extended the earlier platform into other 

classes of convex optimization problems beyond linear programming; e.g., conic and semi-definite 

programming (for example, see [2] and [5]). The other works paved the way for a more complex 

description of the uncertainty polytopes; e.g., intersections of ellipsoidal uncertainty sets, budgeted 

uncertainty sets, etc. (for example, see [2] and [4]). The key idea behind an uncertainty set is based 

on three components: nominal values of uncertain parameters, perturbation values, and uncertainty 

generating mechanism. 
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Our work is mainly focused on the uncertainty set proposed by Bertsimas and Sim [5], the so-

called “cardinality-restricted uncertainty set”: 
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where the e̅i are the nominal values, the êi are the perturbed values of uncertain parameters, δi are 

the cardinality controlling variables, and Γ is the budget of uncertainty. Our goal is to investigate 

more refined versions of uncertainty sets. Hence, it enables us to avoid the over-protection issued 

by the classic cardinality-restricted uncertainty set. The generating polytope of the classic version 

benefits from convexity, especially integrality of its convex hull, which makes it more tractable. 

However, it is independent of decision variables of the robust model and the type of the uncertainty 

event. In this study, we present less conservative uncertainty sets which improve the protection 

level of the classic version; i.e., set S. We discuss the types of events which generate the 

combinatorial structure of uncertainty sets; i.e., “combinatorial uncertainty set”. We also address the 

tractability issue of some problems caused by proposed uncertainty sets. A strategy is proposed to 

convert the event-driven uncertainty polytopes into attribute-driven ones, which facilitates the 

transformation of the original model into a tractable robust counterpart. 

 

The rest of our work is organized as follows. Section 2 investigates the structural properties 

generated by the two common types of uncertainty sets. Section 3 applies the discussed uncertainty 

sets to two classic problems: robust knapsack problem and robust portfolio selection problem. The 

last section concludes the study with a summary and future directions. 

 

2. Structural Properties of Uncertain Events  
 

In this section, we briefly discuss the structural properties generated by the two common types of 

uncertainty sets, naming them “attribute-driven uncertainty set” (data-driven uncertainty set) and 

“event-driven uncertainty set” (combinatorial uncertainty set). 

 

Attribute-driven uncertainty sets use the perturbed values of uncertain parameters as direct 

inputs to the mathematical model of the robust counterpart. They connect the decision maker’s risk 

preferences with the “budget of uncertainty” and the controlling mechanism of uncertainty. For 

example, consider the portfolio selection problem in which an investor chooses the proportion of 

capital to be invested in each of N assets such that a desired wealth is achieved. The objective is to 

determine the fraction of invested asset i so as to maximize the total portfolio return. An underlying 

assumption of Markowitz’s model is that precise estimates of return of asset i, μi, and risk of asset i, 

σi, have been obtained. However, asset returns are uncertain. Hence, we can interpret risk of return i 

as the perturbed value of return of asset i and incorporate it in the uncertainty set, 
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In this example, the risks act as “internal” functions of asset returns, and any value of the 

variable δi enforces asset i to gain the risk value i. 
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On the other hand, the event-driven uncertainty set triggers uncertainty in parameters when a 

specific event occurs in the system and generates discrete uncertainties, 
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The uncertainty set U is non-convex and the variable δ plays a key role in generating the 

combination of events. The given set J includes entities generating independently dichotomous 

events; e.g., happened and not happened, and parameter Γℤ is the maximum number of these 

events. The disruption systems are great examples of this type of uncertainty sets. An et al. [1] used 

a combinatorial uncertainty set to formulate a p-median facility location problem prone to 

disruptions. Moreover, the uncertainty set U can be modified in order to encompass the data of 

uncertain parameters. However, incorporating an event-driven uncertainty set into a mathematical 

model could make it computationally intractable. There exist two types of strategies, to the best of 

our knowledge, to solve the transformed model. One approach is mainly based on iterative 

algorithms. Zeng [12] proposed a column-and-constraint generation algorithm to solve the two-

stage robust optimization problems in which the first stages defined by a combinatorial uncertainty 

set. They also solved the model with existing benders-style cutting plane methods. 

 

The second type of methods, as originally presented here, transform event-driven uncertainty 

polytopes into attribute-driven ones. They are heuristically performed and differ from one problem 

to another. The proposed strategy paves the way for transformation of the original model into a 

tractable robust counterpart. We discuss this method in the next section. 

 

3. Event and Attribute-driven Robustness 
 

3.1. Robust Event-driven Knapsack Problem 

 

Consider a knapsack problem, with given parameters ci as the costs and wi as the weight of item 

i: 
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It is assumed that the weights wi are uncertain; identically, independently, and uniformly 

distributed in [w̅i, w̅i+ŵi]. The objective value coefficient vector c is not subject to data uncertainty. 

The goal is to maximize the total utility of |N| items. The item should be selected and loaded on a 

cargo with strict weight restrictions. Suppose item i with weight w̅i has auxiliary component i with 

weight ŵi. If uncertainty event occurs, δi=1, the weight of item i should be increased by ŵi. We 

define the uncertainty set as follows. 
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Then, the original robust problem with respect to the worst-case criterion becomes 
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In order to solve the robust part of the problem (inner maximization), we heuristically define a 

second problem that seeks the worst-case outcome when the combination of events occurs: 
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In order to reach a closed form of the heuristic problem (7), we need to take the dual form of it. At 

the  first glance, the dualization technique may not be applicable since the problem is not a convex 

linear programming one (variable δi is defined over integer domain). The following property 

addresses the integrality issue caused by the integer variables (we name this problem as “Ξ”). 

 

Property 3.1. The convex hull of Ξ is an integral polyhedron. 

 

Proof. See the Appendix.   

 

Now, we extract the dual form of relaxed Ξ and incorporate it into the original problem. Relaxed 

Ξ is feasible and bounded for all Γ[0,|N|]. Also, the dual of the relaxed Ξ is feasible and bounded 

(and by strong duality, the objective values coincide): 
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where τ and pi are the dual variables of the relaxed Ξ. 

 

3.2. Variable Budgeted Uncertainty Set 

 

In practical cases, a limited “budget pool” is dedicated to both the item selection process and the 

robustness cost. In the previous example, the user only defines the budget of robustness, whereas 
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the whole budget must be simultaneously addressed. Consider the previous example, the cargo 

(knapsack) problem. Suppose the cargo carries two set of items: humanitarian items, Π, and 

commercial products, Π́. One cannot consider the underlying uncertainty of commercial products 

when necessary products are not loaded. On the other hand, to avoid the over-protection caused by 

UΓ, which is independent of x, Poss [9] introduced a novel model of uncertainty polytope. Instead of 

considering a fixed budget of uncertainty Γ, a multifunction of x, γ(x), was considered. We made 

some modifications to incorporate the variable budget into our uncertainty set. The objective still 

seeks to maximize the total utility of items, given Φ as the total budget for the robustness, 
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where α is the robustness importance. The budget of uncertainty varies depending on the selected 

items, sign(𝑥𝑖
∗), from the set Π. Then, the variable budgeted uncertainty set with the event-driven 

approach is proposed as follows:  
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According to Property 3.1 and the worst-case criterion, the robust counterpart of this problem can 

be formulated as follows.  
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where τ and the pi are the dual variables. Note that the first constraint contains a nonlinear 

expression. We make the following modifications and insertions in order to have a tractable linear 

form of the proposed counterpart: 
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The linear robust counterpart is presented as follows: 
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Property 3.2. The constraints set (15) do not impose any additional restriction on the minimal value 

of τ so that we can choose M equal to maxiN(ŵi), and write 
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Property 3.3. Model (11) can be easily verified with setting α=1 and |Π|=|N|=Γ. It is immediate that 

opt(UΓ)= opt(UΦ).  

 

3.3. Risk Compensatory Uncertainty Set 

 

Bertsimas and Sim [4] reformulated a maximum expected return of a portfolio model as a linear 

robust optimization problem considering the classic cardinality-restricted uncertainty set: 
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where C is the total capital, yi is the portion of the investment in asset i (xi=yi/C). The nominal value 

and the investment risk of return of asset i are r̅i and r̂i , respectively. The dual variables are τ and pi, 

and N the set of all assets. A less conservative approach (to avoid over-protection) is to compensate 

the robustness cost (the risk of obtaining lower profit) of “risky” assets, Ψ, by purchasing “safe” 

assets, Ψ. The safe assets can be either a bank savings account or a government bond [7]. Hence, the 
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return value of a subset of assets, Ψ, are prone to be perturbed within the predefined uncertainty 

interval (note that r̅i>r̅j and r̂i>r̂j , iΨ , jΨ). Given Φ as the budget of uncertainty, 
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where α is the robustness importance, the uncertainty set is defined as follows: 
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Again, note that risk of asset i is an internal property of return of asset i (attribute-driven 

uncertainty); hence, we defined δi over a continuous domain. The budget of uncertainty varies 

depending on the combination of safe assets’ pool. According to the worst-case approach, the 

problem is formally stated as follows: 
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The inner maximization function of problem (22) can be translated into a single max-LP 

problem (23) as follows: 
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Using dual of problem (23) and strong duality theorem, the robust counterpart is obtained as: 
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Proposition 3.1.  τ  maxi(r̂i) . 

Proof. Consider deciding to invest the total capital on risky asset k with the highest return, r̅k = 

maxi(r̅i), and also the highest risk, r̂k = maxi(r̂i). Hence, xk=1 and pk+τ  r̂k . According to the 

objective function, variables pk and τ should take the minimum possible values. Variable pk does not 

appear in any other constraint and takes value zero; therefore, the minimum possible value for τ is 

r̂k. In other words, variable τ cannot exceed maxi(r̂i).   

 

The objective of problem (24) is not linear due to the quadratic term τ(αΣiΨ xi).  We reformulate 

this model based on the McCormick convex envelope relaxation [8] and the following properties: 
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Note that the efficiency of the relaxation heavily depends on the tightness of the bounds of the 

quadratic variables. The linear model of the robust counterpart is presented as follows: 
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4. Experimental Analysis 
 

In the previous section, we developed different uncertainty sets for constructing robust 

counterpart optimization formulations; however, a natural question is: how efficient are the 

proposed uncertainty sets as compared to the cardinality-restricted uncertainty sets? The decision-

maker essentially wants to adopt the least conservative model (the best possible objective value) 

while the same probability of constraint violation is satisfied. 
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Consider a binary knapsack problem with uncertain parameters in w̃. It is assumed that the 

weights w̃ are uncertain; identically, independently, and uniformly distributed in [w̅i, w̅i+ŵi]. Then, 

the robust counterpart is modelled as follows: 
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where  for ordinary cardinality-restricted set (UΓ) is the product of dual variable  and budget of 

uncertainty , that is, 
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and for the variable budgeted set (UΦ) is: 
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The first experiment is conducted based on problem (29) using IBM Ilog CPLEX 12.6 with 

|N|=100. The capacity limit, b, is set to 1000. The nominal weights, w̅i, and the costs, ci, are 

randomly chosen from the sets {21, 22 ,..., 29} and {16, 17,..., 77}, respectively. The weight 

uncertainty ŵi is set to 10 percent of the nominal weight. Items of the set Π is randomly chosen 

from set N{0} and uniformly distributed in [0,]. Each simulation run is replicated 100 times for 

each solution and the mean of the objective values is reported. 

 

The aim of this experiment is to analyze the performance of the proposed uncertainty sets in 

different protection levels. We refer to a measure, the price of robustness, originally proposed by 

Bertsimas and Sim [4], as a tradeoff between the level of protection against the value of the 

objective function under uncertainty. Suppose that D and R are the objective values of the robust 

and deterministic models, respectively. On the other hand, an -protected solution of a problem is 

defined as the solution with the probability of violation less than (1-α)%. Hence, the price of 

robustness under -protected solution (PoRα) for a maximization problem can be determined as 

follows. 
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The less PoRα is, the better objective value is at hand. The probability of violation is defined as 

follows: 
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where x* is the solution to the robust counterpart. The PoRα of the robust models based on two 

uncertainty sets is compared under three different probabilities of violation as illustrated in Table 1. 

Under zero protection level, =0 (|Π|=0), obviously, PoRα is zero, since R exactly equals D . Table 

1 shows that, except for the zero and full protection level, PoRα of UΓ is strictly greater than that of 

UΦ. It is evident that different PoRα of UΓ observes the trade-off between the worst-case outcome 

and the probability of violation. The blank places in Table 1 indicate that solutions could not be 

found with the probability of violation less than (1-α) for the robust counterpart protected with UΓ. 

However, the variable budgeted set adjusts the solutions to obtain better PoRα with the probability 

of violation less than (1-α). In other words, it automatically decreases the intensity of the worst-case 

outcome to meet the imposed probability of violation. Empirically, the following result can be 

inferred from Table 1: 
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Table 1. Comparing the price of robustness under α-protected solutions 

  1-=0.1  1-=0.05  1-=0.025 

(|Π|)  UΓ UΦ  UΓ UΦ  UΓ UΦ 

0  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 

10  0.0192 0.0049  0.0232 0.0079  0.0205 0.0100 

20  0.0353 0.0199  0.0439 0.0150  0.0386 0.0197 

30  0.0497 0.0241  0.0628 0.0300  0.0544 0.0316 

40  0.0616 0.0353  0.0767 0.0407  - 0.0359 

50  0.0668 0.0395  0.0767 0.0414  - 0.0324 

60  0.0668 0.0448  0.0767 0.0493  - 0.0371 

70  0.0668 0.0514  0.0767 0.0550  - 0.0729 

80  0.0668 0.0532  0.0767 0.0639  - 0.2107 

90  0.0668 0.0626  0.0767 0.0728  - - 

100  0.0668 0.0668  0.0767 0.0767  - - 

 

The second experiment examines PoRα in different problem sizes. The details are presented in 

Table 2. It is assumed that the weight and utility parameters are uniformly distributed in [wmin,wmax] 

and [cmin,cmax], respectively. Figure 1 illustrates the resulting PoRα values for the robust counterparts 

protected with UΓ and UΦ in a moderate violation percentage (α=0.05). The value of (|Π|) is chosen 

according to the fact that further increase in PoRα is not possible. For example, according to Table 1 

and 1-=0.1, this value lies between 40 and 50. Each problem is replicated with the 100 different 

random parameter configurations and the mean of PoRα is considered. Again, the less PoRα means 

the better performance of uncertainty set and Figure 1 sheds light on the merit of UΦ.  
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Table 2. Parameters configurations for different instances 

Problem No.   1 2 3 4 5 

(b,|N|)  (100,10) (200,20) (300,30) (400,40) (500,50) 

C [cmin,cmax]  [16,30] [18,35] [20,40] [22,45] [22,50] 

W [wmin,wmax]  [15,20] [16,21] [18,23] [20,27] [23,33] 

Problem No.   6 7 8 9 10 

(b,|N|)  (600,60) (700,70) (800,70) (800,80) (1000,100) 

C [cmin,cmax]  [24,55] [24,60] [26,65] [28,70] [28,75] 

W [wmin,wmax]  [28,38] [29,40] [31,46] [31,48] [31,50] 

 

 
Figure 1. Comparing the price of robustness for different problem sizes 

 

5. Conclusion 
 

We investigated structural properties of uncertain events to obtain intelligent robust models with 

refined uncertainty polytopes. We also illustrated the approach by applying them to the two classic 

robust optimization problems. There are cases when polyhedral theorems and affine policies do not 

operate for the conversion of event-driven approaches to attribute-driven ones; hence, we 

recommend the adjustable robust models and we suggest it as a future direction of research. 
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Appendix: Proof of Property 3.1 

 
This is equivalent to proving that the technological coefficient of Ξ in the LP-relaxed form is 

totally unimodular (TU). Now, we make use of the following proposition proved in [11]. Let Q be a 

matrix in {0, 1, -1} with no more than two nonzero elements in each column. Then, Q is TU if and 

only if the rows of Q can be partitioned into two subsets Q1 and Q2 such that if a column contains 

two nonzero elements and both nonzero elements have the same sign, then one is in a row contained 

in Q1 and the other is in a row contained in Q2. 

 

In the LP-relaxed form, the constraint set δi 1 should also be added to Ξ. The technological 

coefficients of Ξ are characterized as a matrix AΞ as follows: 

 

1 | |

(| | 1) | |

N

N N





  

e
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 (29) 

 

where e is an all-ones vector and I is the identity matrix. Q=AΞ has components of 0 and +1 with no 

more than two nonzero entries in each column. AΞ can be partitioned into two subsets Q1 and Q2. 

Consider Q1=e and Q2= I (one of +1 is in a row contained in Q1 and the other is in a row contained 

in Q2). Under this conditions, according to the proposition proved in [11], AΞ is TU. Thus, the 

relaxed Ξ is integral for Γℤ. 
 

 


