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and Microscopic Mathematical Models 
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Here, we collect two parts of a research project on the pedestrian flow modeling. Rapid growth in 

the volume of public transport and the need for its reasonable, efficient planning have made the 

description and modeling of transport and pedestrian behaviors as important research topics in 

the past twenty years. First, we present a macroscopic model for the pedestrian flow based on 

continuum mechanical balances. Second, we present a new microscopic modelling method to 

describe the interaction among pedestrians in conflicting situations. A local navigation based on a 

continuous density estimator is adopted for the configuration of pedestrians’ temporary route 

choices on the tactical level. On the operational level, a balancing mechanism is installed to ensure 

correct execution of the planned position transitions of the pedestrians. A comparison of the test 

results of our simulation with a real-world video clip is provided. 

 

Keywords: Pedestrian flow, Macroscopic/microscopic models, Pedestrian density and flow 

measurement, Human crowd experiments. 

 
Manuscript was received on 05/08/2017, revised on 09/11/2017 and accepted for publication on 20/11/2017. 

 

1. Introduction 

 

In a close cooperation with engineers we investigate the mathematical description of pedestrian 

movement by 

 

1. data generation with real world experiments for model validation and parameter calibration, 

2. development of 

(a) microscopic mathematical models, 

(b) macroscopic mathematical models. 

 

We managed the experiments with about 300 students of the TU Berlin and recorded the different 

constellations of pedestrian streams by a multi-trace recorder as base for generation of individual 

tracks and a density estimation. 

 

As microscopic models we discuss grid-based approaches rooted in cellular automata and a second 

ansatz with a combination of force-based and graph-based approach. The microscopic models are 

discussed in detail, for example, in Chen et al. [3] and Lämmel and Plaue [14]. 
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Here, we are focused on macroscopic models based on a set of pedestrian-specific coupled partial 

differential equations. The first discussed model is based on the mass balance and the considered 

quantities are the pedestrian density and fluxes which give information about the velocities of 

pedestrian groups. 

 

2. A Compressible Macroscopic Model  
 

This macroscopic approach is based on a set of pedestrian-specific coupled partial differential 

equations. The equations are not derived from the Euler-/Navier-Stokes equations known from fluid 

and gas dynamics. The specific situation of multi-destination pedestrian crowds with crossing streams 

requires the development of appropriately adapted methods. This has been targeted by the use of 

simple heuristics. 

 

Typical applications of these approaches include real-world scenarios like airports, shopping 

malls, middle to large size buildings, etc., where the participants (i.e., the pedestrians) do not exhibit 

an overall unanimity and (may) have different and multiple destinations.  

 

Beyond the modeling of the above-mentioned problems, a particular aim of this project will be the 

development, implementation and test of appropriate computer-based simulation models. 

 

2.1. The Transport Equation 

 

Perceiving pedestrian flows as a transport problem, we start with the governing equation that 

describes the mass flow as 

 
𝜕𝜌𝑖
𝜕𝜗

+ ∇ ⋅ (𝜌𝑖𝑣𝑖) = 0, (1) 

 

where 𝜗 denotes the time, and 𝑖 ∈ {1,… , 𝑛} with 𝑛 being the number of pedestrian “types” or “species” 

distinguished by certain properties. The desired velocity would be a frequent example of such a 

property. Furthermore, 𝜌𝑖 is the current density and 𝑣𝑖 is the current velocity of a species in a given 

computational domain. 

 

Since pedestrian dynamics cannot be entirely described as a physical phenomenon, the parts of the 

equation can do well with some discussions. 

 

2.2. Measuring Pedestrian Density 

 

In physics, mass density 𝜌 has units [𝜌] =
mass

volume
. However, this does not seem to be the best fit for 

the problem considered here. The definition [𝜌] =
mass

area
, used, for example, in Moussaïd et al. [15], 

similarly includes “mass” which the authors needed to model inertial effects, but are not included in our 

model. 

 

Concerning pedestrian inertial mass, we require the following assumption: 
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Due to the smoothness of the controlling fields, we assume that it is not necessary to describe mass 

(inducing inertial behavior in the model). This way, we assume that the pedestrians may follow (adapt 

speed and heading) to the controlling fields without significant lag by means of internal impetus, 

decision and physical strength. 

 

Therefore, one natural way to measure the pedestrian density in this setting is to use [𝜌] =
pedestrians

area
, which implicitly relies on a certain amount of homogeneity of the pedestrian crowd in the 

considered sample. An even smarter approach is presented in Predtechenskii and Milinskii [17] by 

defining the area that a specific pedestrian occupies. This area depends on, for example, whether the 

pedestrian is a child, an adolescent or an adult, which cloths the pedestrian wears (summer or winter 

cloths), how much luggage the pedestrian carries and so on. This yields an appropriate dimensionless 

measure, [𝜌] =
pedestrians’ needed area

availabel area
. Since the area occupied by a pedestrian is not always readily 

available as input, we choose the former definition of density as pedestrians per area. 

 

In our model, we use normalized densities: 𝜌𝑖 , 𝜌 ∈ [0,1] with 𝜌 = ∑ 𝜌𝑖
𝑛
𝑖=1 . A value of 𝜌 = 1 would 

for instance mean 5.4
pedestrians

area
, according to Weidmann [22], and up to 10

pedestrians

area
, according to 

other sources (see, e.g., Schadschneider et al. [21] for a discussion). 

 

2.3. Transport Velocity 

 

The primary goal is to find a sensible functional relation 𝑣𝑖 = 𝑣𝑖(𝜌1, … , 𝜌𝑛) that yields a nonlinear 

system for realistic cases. 

 

In the literature, one frequently discriminates between a planned (e.g., “external” in Cristiani et al. 

[5] or “tactical” in Schadschneider et al. [21]) and an instantaneous (e.g., “intelligent” in Cristiani et al. 

[5] or “operational” in Schadschneider et al. [21]) velocity. In our opinion, this differentiation makes 

sense in the context of categorizing the cause of an action taken by a pedestrian. 

 

Our approach is slightly more pragmatic and accounts for three different types of decisions. 

Pedestrians 

 

(1) choose a direction they wish to go, 

(2) choose a speed for walking in the chosen direction based on local conditions, 

(3) alter speed and walking direction in order to locally avoid densely populated areas (prefer the 

direction of −∇𝜌). 

 

Therefore, we decompose the velocity as follows: 

 

𝑣𝑖 = 𝑎𝑖𝑉𝑑𝑖
i − 𝑏𝑖𝑊𝑑

l, (2) 

 

where 

 

𝑉 ∈ [0,1] is a normalized speed determined by a fundamental diagram (see Section 2.6), 

 

𝑑𝑖
i is a unit vector field pointing into the direction of the desired heading, 
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𝑑l is a directional vector field for local correction (not necessarily of unit length; see below) (since it 

depends on the total density 𝜌, it is common to all pedestrian species), 

 

𝑎𝑖 and 𝑏𝑖 are constants: 𝑎𝑖 stands for the absolute value of the wished velocity and 𝑏𝑖 is a measure for 

avoiding regions of high density, 

 

𝑊 = 1 − 𝑉 reflects the operational shift from wanting to reach the desired target to reacting to local 

encounters with other pedestrians at high densities. 

 

Summarizing this, the term 𝑎𝑖𝑉𝑑𝑖
i stands for the gradient driven part of the velocity and 𝑏𝑖𝑊𝑑

l 

decries the influence of high density regions on the velocity of pedestrians. 

 

A model for two pedestrian species with just the 𝑎𝑖𝑉𝑑𝑖
i term present has been investigated in Berres 

et al. [1] with a focus on discussing the mathematical foundation. This investigation highlights some 

shortcomings of the model with respect to the simulation of real-world scenarios. The authors suggest 

to introduce (cross) diffusion terms in order to solve these problems. Since the meaning of these terms 

in the context of real-life applications seems to be obscure, here we prefer to introduce the 𝑏𝑖𝑊𝑑
l term. 

 

2.4. Desired Heading 

 

The term 𝑑𝑖
i describes the pedestrian’s choice of a walking direction, and is based on spatial 

information from the vicinity and the global environment of the pedestrian: 

 

            Δ𝜙𝑗
(𝑖)(𝜗) = 𝑟𝑗

(𝑖)(𝜗),                                                                  (3) 

𝜙𝑖(𝜗) =∑𝜙𝑗
(𝑖)
(𝜗)

𝑗

,                                                     (4) 

𝑑𝑖
𝑗(𝜗) = {

∇𝜙𝑖(𝜗)

|∇𝜙𝑖(𝜗)|
,                       if |∇𝜙𝑖(𝜗)| ≠ 0,

random unit vector,   if |∇𝜙𝑖(𝜗)| = 0.

  

 

With the formula (4) we add the different potentials coming from global influences, like the shape 

of the considered domain or local influences, like the local density. 

 

The subscript 𝑗 of 𝜙𝑗
(𝑖)(𝜗) denotes the influence type (for example, global, local, etc.), and the 

superscript 𝑖 denotes the considered species. 

 

Therefore, according to the assumption of continuous influences, 𝑑𝑖
𝑗
 is based on source and boundary 

terms of 𝑗 (partially) solved Poisson equations for each pedestrian species 𝑖 (reflecting 𝑗 different 

influencing factors). The 𝛼𝑗
(𝑖)

 are constant weights, and the 𝑓𝑗
(𝑖)(𝜗) are source terms derived from 

spatially distributed information—for example, the density 𝜌𝑘(𝜗) of some pedestrian species. This kind 

of flow, the direction of which is derived from a potential, has been investigated in Hughes [9]. 

 

The parameters in the above equations have to be chosen very specifically, and finding appropriate 

settings is an open task for the application of this model. 
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With a special choice of the right hand side of (3), we can model global or local influences by 

potentials. A detailed discussion of this point is given in Huth et al. [10]. 

 

2.5. Introducing the Gradient Term 

 

There are a number of possible approaches to introduce a gradient term. Notable are the following 

two: 

 

𝑑l(𝜗) = {

∇𝜌(𝜗, 𝑥)

|∇𝜌(𝜗, 𝑥)|
,   if |∇𝜌(𝜗, 𝑥)| > 0,

0,                    if |∇𝜌(𝜗, 𝑥)| = 0,

 (5) 

𝑑l(𝜗) = {

∇𝜌(𝜗, 𝑥)

|∇𝜌(𝜗, 𝑥)|
,   if |∇𝜌(𝜗, 𝑥)| > 1,

∇𝜌(𝜗, 𝑥),       otherwise.           

 (6) 

 

Concerning (5), it has to be noted that 𝑑l(𝜗, 𝑥) is not necessarily continuous with respect to 𝑥 at 

points, where |∇𝜌(𝜗, 𝑥)| = 0. Another problem obviously present with this term is that it may show 

large scatter where the density is high. This can lead to the violation of the condition 𝜌𝑖, 𝜌 ∈ [0,1], 
because of numerical overshooting. Another risk is the numerical oscillation of the solution (which 

might be interpreted as remaining erratic pedestrian activity at high densities in certain situations). This 

term might be viewed as carrying some random disturbances as discussed in Helbing et al. [7] or 

Radzihovsky and Clark [18], which produces less effective motion (stronger clogging tendency due to 

the “freezing by heating effect”, discussed there). The measurement of the mobility there did not show 

an increase of flux with more “thermal” motion at all. This is due to the inhibition of lane formation 

because the effect of lane formation yields an enhancement of flux. The observed “freezing by heating 

effect” has been considered for modeling panic situations, where it might well make sense. However, 

such scenarios are beyond the scope of this paper. 

 

The gradient term defined by (6) is more likely to be the rule applied by pedestrians under normal 

conditions, because it is more efficient than the term given by (5). 

 

Another argument in favor for (6) is given by the fact that the key idea of the macroscopic approach 

is to average the behavior of several pedestrians, and thus to smooth out random disturbances caused 

by single pedestrians at sufficiently large scales. 

 

2.6. Walking Speed and Fundamental Diagram 

 

A uni-directional flux can be defined by 𝐽 = 𝜌𝑖𝑉(𝜌1, … , 𝜌𝑛)𝑑𝑖. For the case of 𝐽 = 𝜌𝑉(𝜌)𝑑, the 

three quantities are related by a fundamental diagram. Fundamental diagrams have been determined by 

a number of authors, with a relatively wide range of different results that cannot be used to deduce a 

general law. According to Schadschneider et al. [21], the values found in the literature for the maximum 

pedestrian density, where movement is possible at all, vary from 3.8/𝑚2 to 10/𝑚2. Another 

controversially discussed issue is how 𝑉 depends on whether movement is uni-directional or multi-

directional. For more details, see Huth et al. [11] and [12]. 
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Despite the issues described above, we have evaluated the impact of different fundamental diagrams 

on quantitative and qualitative properties of the solutions. The differences are large enough to indicate 

the need for a better approximation in this respect. The fundamental diagrams we have tested are 

 

𝑉(𝜌) = 1 − 𝜌,   𝑉(𝜌) = (1 − 𝜌)2,   𝑉(𝜌) = 1 − 𝜌2,  

𝑉(𝜌) = 1 − exp(−1.913/5.4(1/𝜌 − 1)).                   (7) 

 

Note that, compared to Weidmann [22, p. 65], (7) employs the normalization conditions 𝑉 ∈ [0,1] 
and 𝜌 ∈ [0,1]. 

 

2.7. Simulation Example −𝟗𝟎° Encounter 

 

The above discussed boundary value problem completed by appropriate boundary conditions (see 

Huth et al. [10]) is solved using the Finite-Volume package OpenFOAM. Fig. 1 shows the results of 

two pedestrian streams crossing with an angle of 90∘. A formation of dynamically reconfiguring clusters 

can be observed. 

 

  

  

  
Figure 1. Time steps 5, 10, 20, 40, 60 and 80 of the simulation of a 90∘ encounter of two species. 

Shown are density and flux of one species coming from left. The length of the arrows indicates 

flux strength, the grade of darkness indicates the density of the species. The crossing species 

coming from bottom is located in the light gray or white regions of the area. 
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3. Microscopic Modelling 
 

Pedestrian dynamics as an interdisciplinary research field studies the human social behavior from 

a mathematical (or engineering) perspective. In the microscopic category, the social force model 

Helbing et al. [6], defined in a continuous space, has been a forerunner. In this model, the interaction 

among the pedestrians is considered to be the result of physical forces in the context of human social 

behavior. The social force model, when applied to describe the local interaction among the 

pedestrians, can be combined with further simulation components such as cognitive modelling, 

proposed by Moussaïd et al. [15]. In the same microscopic category, cellular automata (CA) models 

were presented by Burstedde et al. [2], Keßel et al. [13], Schadschneider [19] and their extensions 

were established on discrete geometric structures, to be more exact, on homogeneous grids. The state 

evolution of the grid cells can thus be used to describe the system dynamics respecting the pedestrians. 

 

A differentiation of the pedestrian behavior has been elaborated in Hoogendorn and Bovy [8]. At 

the highest level, which is called the strategic level, pedestrians’ activity patterns concerning concrete 

route planning and signals indicating departure and arrival are studied. On the tactical level, activity 

scheduling and temporary route choice become the concern. On the operational level, walking 

behavior of the pedestrians as the result of local interaction among them are studied. Incidents on the 

strategic level are considered as a priori knowledge in the current text. Our study will concentrate on 

the intermediate level and the lowest level. 

 

3.1. Operational Level 

 

Our approach is defined on a square grid similar to the geometric structures in the CA models. In 

discrete form, position transition can be thus written as (d𝑥, d𝑦) with d𝑥, d𝑦 ∈ ℤ, measured in the 

grid cell length. In case d𝑥, d𝑦 ∈ {−1, 0 , 1}, the position transition is referred to as an elementary 

step. The pedestrians to be simulated are sometimes called particles. 

 

Most existing CA models assume a maximum discrete speed of 𝑣max = 1, that is, in a simulation 

cycle, only elementary position transitions (sometimes the diagonal moves d𝑥, d𝑦 ∈ {−1, 1} are 

excluded in addition). CA models construct, dynamically for each particle, a so-called transition 

matrix which indicates the particle’s preference of the elementary steps at the current moment: 

 

𝑃 = (

𝑝−,+ 𝑝0,+ 𝑝+,+
𝑝−,0 𝑝0,0 𝑝+,0
𝑝−,− 𝑝0,− 𝑝+,−

), 

 

with subscripts of 𝑝 addressing the possible elementary steps, where 1 and −1 are shortened to signs. 

The transition matrix items are to be normalized to sum up to 1. In case of a potential conflict with 

other particles, a solution will be sought by weighing the corresponding transition matrix items. An 

underlying disadvantage of this construction is that, when a particle has more possible elementary 

step choices, its transition matrix items will have lower weights, consequently in competition with 

others – these may or may not have many possible elementary step choices – targeting a specific 

destination grid cell position, it will have a smaller chance to be favoured in the conflict resolution. 

Despite the similar geometric structure, our grid-based approach is completely different. On the 

operational level, position transitions of the particles in a simulation cycle will be decomposed into 

elementary steps of the individual particles. This decomposition should be carried out accurately, 



32 Bärwolff, Chen and Schwandt 

 

whenever possible. While elementary step execution of the particles is reciprocal, the elementary step 

choices should be performed in a balanced manner for all the particles in a simulation cycle. 

 

3.2. Balancing Elementary Steps 

 

Our previous work Chen et al. [3] offered a general solution for 𝑣max > 1. Respecting an arbitrary 

position transition (d𝑥, d𝑦), the number of the elementary steps needed to realize it will be called its 

topological length. We request that, in the ideal case, topological length and geometric length of an 

arbitrary position transition should be equal. 

 

Without loss of generality, we consider the case d𝑥, d𝑦 > 0. On the operational level, the possible 

elementary steps can be confined to one step in grid cell in the 𝑥-direction, one step in the 𝑦-direction 

and one diagonal step in both directions. We assign probability numbers 𝑝𝑥 , 𝑝𝑦, 𝑝𝑥𝑦 ∈ [0, 1] to these 

elementary steps which sum up to 1:  

 

𝑝𝑥 + 𝑝𝑦 + 𝑝𝑥𝑦 = 1. (8) 

 

 
Figure 2. Neutralization of the topological length of a diagonal elementary step. Current 

elementary steps are associated with probabilities 𝑝𝑥, 𝑝𝑦 and 𝑝𝑥𝑦, respectively. 

 

Imposing the equality of topological length and geometric length, we have 

 

𝑝𝑥(1 + 𝑙𝑥) + 𝑝𝑦(1 + 𝑙𝑦) + 𝑝𝑥𝑦(1 + 𝑙𝑥𝑦) = 𝑙, (9) 

 

in which the geometric lengths of the current position transition and the rest position transitions after 

a corresponding elementary position transition will be written as 

 

𝑙 = √(d𝑥)2 + (d𝑦)2,                

𝑙𝑥 = √(d𝑥 − 1)
2 + (d𝑦)2,      

𝑙𝑦 = √(d𝑥)
2 + (d𝑦 − 1)2,       
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𝑙𝑥𝑦 = √(d𝑥 − 1)
2 + (d𝑦 − 1)2; 

 
see Fig. 2. In addition, we request that the likelihood to carry out an axis-parallel elementary step should 

correlate with the geometric lengths of the components d𝑥 and d𝑦, and in this sense, we have the next 

bounding condition: 

 

𝑝𝑦 ⋅ d𝑥 = 𝑝𝑥 ⋅  d𝑦. (10) 

 

Solving (8) - (10), we have 

 

𝑝𝑥 =
𝑙 − 𝑙𝑥𝑦 − 1

𝑙𝑥 +
Δ𝑦
Δ𝑥
𝑙𝑦 − (1 +

Δ𝑦
Δ𝑥
) 𝑙𝑥𝑦

, 

𝑝𝑦 =
Δ𝑦

Δ𝑥
𝑝𝑥 ,                                       

      𝑝𝑥𝑦 = 1 − 𝑝𝑥 − 𝑝𝑦.                                

 

An elementary step can be performed accordingly. It is to be noted that an elementary step choice 

may or may not be performed successfully, depending on the grid cell occupancy by the other 

particles in the system geometry. 

 

3.3. Balancing Collection Position Transitions 

 

To perform the elementary step choices for all the particles on a balanced basis, the simulation 

cycle will be divided into 𝑚 equal intervals (𝑚 ≥ 𝑣max). An individual particle at a current discrete 

speed 𝑣 (0 ≤ 𝑣 ≤ 𝑣max, 𝑣max and 𝑣 not necessarily integers) is expected to perform 𝑣 successful 

elementary steps by which the planned position transition in the simulation cycle with a geometric 

length of 𝑣 can be realized. Chen et al. [4] proposed the following procedure. 

 

procedure OPERATE: 

parameter: a collection of particles; 

  

 mark all particles as “unprocessed”; 

 initialize local variable for each particle 𝑎 ⇐ 0; 

 

 𝑖 ⇐ 𝑚; 

 while 𝑖 ≥ 1 

 do 
     process all particles marked “unprocessed” by calling 

        procedure OPERATE_SINGLE with parameter 𝑖; 
     𝑖 ← 𝑖 − 1; 

 enddo 

 

return 
 

The next procedure processes the individual particles separately. 
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procedure OPERATE_SINGLE: 

parameter: particle (each with a local variable 𝑎), 𝑖; 
 

 if position transition realized 

    mark particle as “processed”; 

 else 

    attempt an elementary step with probability min(
𝑣−𝑎

𝑖
, 1); 

    if elementary step execution is successful 

        increment 𝑎; 

    fi 

 fi 

 

return 

 

Here, the parameter 𝑖 serves as a time stamp. We see that an unsuccessful elementary step in the 

current simulation cycle would lead to a higher probability for a reattempt in the next time interval in 

the simulation cycle. Consequently, this yields a solution for the conflicts among the particles on the 

operational level. The position transitions of the particles will be realized as much as possible. 

Conflict resolution on the intermediate level will be detailed in the following text. 

 

3.4. Tactical Level 

 

On the tactical level, temporary route choices targeting new grid cell positions will be prepared 

for the particles in every simulation cycle. 

 

3.4.1. Continuous Density  

 

We will propose a navigation method for the particles to choose their temporary destinations for 

the next simulation cycle. The method is based on continuous density estimation. First, we go over 

the notion of density estimation. 

 

In an observation area Ω ∈ ℝ2 populated with a collection of particles, the global density can be 

estimated by counting the number of the particles. In analogy, the local density respecting a given 

neighborhood can be calculated. However, discrete local density calculated in such a way has poor 

smoothness. 

 

Let 𝑑𝑖 denote the distance from particle with label 𝑖 to its nearest neighboring object (this can be 

a physical obstacle or another particle) in the whole observation area. The position of this particle 

will be written as x𝑖. Let 𝐼 denote the set of the particle labels. Our previous work Plaue et al. [16] 

suggested a continuous density estimator induced by a collection of particles, 

 

𝜌𝐼(x) =
1

𝜋
∑

1

(𝜆𝑑𝑖)
2
⋅ 𝑒

−
|x𝑖−x|2

2

(𝜆𝑑𝑖)
2

𝑖∈𝐼

, (11) 

 

with an additional smoothing parameter 𝜆 (𝜆 > 0). An advantage of (11) is that, with 𝑑𝑖 → 0 (that is, 

the particle crowd becomes infinitesimally dense), it can be approximated by the discrete local density 

at position x (consult the original text for the proof). 
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On our square grid, we write cell position x = (𝑥, 𝑦) in discrete form. In particular, particle 

position has the discrete form x𝑖 = (𝑥𝑖 , 𝑦𝑖).Accordingly, distances will be converted into discrete 

forms as well. In addition, we set 𝜆 = √2. Now, we apply the definition of continuous density 𝜌 on 

cell positions in discrete form: 

 

𝜌𝐼(𝑥, 𝑦) =
1

𝜋
∑

1

2𝑑𝑖
2 ⋅ 𝑒

−
(𝑥𝑖−𝑥)

2+(𝑦𝑖−𝑦)
2

2𝑑𝑖
2

𝑖∈𝐼

. (12) 

 

On a fully populated grid, 𝑑𝑖 becomes 1 for all 𝑖 ∈ 𝐼. 
 

On the other hand, let us consider the sum 

 

𝑆 = ∑ 𝑒−
𝑥2

2

∞

𝑥=−∞

. 

 

Numerical computation shows that the value of 𝑆 is very close to √2𝜋.4 If the fully-populated grid 

grows to be infinite, we will have 

 

𝜌𝐼(𝑥, 𝑦) =
𝑆2

2𝜋
, 

 

whereas the right side has a value very close to 1. This is exactly what one might expect from the 

discrete local density estimator mentioned above. Hence, the continuous density calculated in discrete 

form (12) will be adopted. An example is provided in Fig. 3. 

 

 
Figure 3. An example of continuous density (expressed in numerical values) in discrete form on a 

square grid. Particles (shown in circles) belong to the same group. The boundary of the grid is 

considered as obstacles in the evaluation of 𝑑𝑖. 
 

The particle label set 𝐼 can be partitioned into subsets to address different groups of particles. Let 

𝐴 be the label set of a group of particles. The set of the labels of the remaining particles – or, to be 

more exact, the labels of the particles from all foreign groups – can be written as �̅�. For a partition of 

                                                      
4 With eight identical significant figures. Mathematically, it is also possible to derive proper upper and lower 

bounds for 𝑆. 
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𝐼 by exactly two groups 𝐴 and 𝐵, there is simply �̅� = 𝐵. The continuous density in discrete form 

induced by an arbitrary group 𝐴 of particles can be written as 𝜌𝐴(𝑥, 𝑦). 
 

3.4.2. Local Navigation 

 

It is verified by empirical observations that pedestrians tend to follow their own group members 

and avoid members of foreign groups. Hence, we define the so-called density overlay as follows: 

 

𝑜𝐴(𝑥, 𝑦) = 𝜌�̅�(𝑥, 𝑦) − 𝜌𝐴(𝑥, 𝑦). (13) 

     

It is obvious that a grid cell position (𝑥, 𝑦) associated with a small density overlay 𝑜𝐴 will be 

“attractive” for particles of group 𝐴. Therefore, on the tactical level, the grid cell position with the 

lowest density overlay can be chosen as a temporary destination in the current simulation cycle. 

 

We notice in (13) that the attraction incurred by one’s own group can be counterbalanced by the 

foreign groups. This becomes a disadvantage when high densities are involved. We introduce two 

empirical threshold values for group-induced densities 𝜃𝐴 and 𝜃�̅� and revise (13) as 

 

𝑜𝐴
′ (𝑥, 𝑦) =

{
 

 
   1,                                     if 𝜌0�̅�(𝑥, 𝑦) ≥ 𝜃�̅�,       

𝜌�̅�(𝑥, 𝑦) + 𝜌𝐴(𝑥, 𝑦),    if 𝜌�̅�(𝑥, 𝑦) ≤ 𝜃�̅� and

                                    𝜌�̅�(𝑥, 𝑦) > 𝜃𝐴,

𝑜𝐴(𝑥, 𝑦),                        otherwise.                

 (14) 

 

We take a closer look of (14). In the first case, the induced density by foreign particles is above 

the corresponding threshold value 𝜃�̅�(𝑥, 𝑦), the new overlay value will be 1, which is, as we recall, 

the maximum possible density in approximation on the square grid, and thus the current grid cell 

position (𝑥, 𝑦) becomes absolutely unfavorable for all potential incoming particles. If otherwise, as 

in the second case, the induced density of one’s own group 𝜌𝐴(𝑥, 𝑦) is above the corresponding 

threshold value 𝜃𝐴, the induced density of one’s own group will be considered as a negative element 

and we will negate this (which is, the original negative term in (13) in evaluating the overlay). 

 

Similar to the first case, the current grid cell position will be unfavorable as well. In the third case, 

when induced density by one’s own group and foreign groups are both under the corresponding 

threshold value, the original definition (13) will be applied. In fact, by setting 𝜃𝐴 = 𝜃�̅� =  1 

(approximated maximum possible density), (13) becomes a special case of (14). 

 

We notice that 𝑜𝐴
′ (𝑥, 𝑦) is not a continuous function. On the other hand, in modelling pedestrian 

dynamics, the so-called personal space of the pedestrians must be respected. In other words, although 

to some extent, pedestrians may be treated as particles, they should not be compressed exceeding a 

certain limit. In discrete modelling of pedestrian dynamics, in particular in grid-based methods, 

pedestrians are assigned exclusive spaces. The easiest solution is to define the grid cells with a size 

resembling that of the exclusive personal space of the pedestrians. A common configuration for the 

grid cell size in the existing CA models is 0.4 𝑚 by 0.4 𝑚. Pedestrians’ influence on others diminishes 

significantly outside the range of this personal space. Recalling that density can be considered as the 

inverse of the space, it is not surprising that our density overlay function (14) is not continuous, 

although the empirical threshold values 𝜃𝐴 and 𝜃�̅� remain to be calibrated. 
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3.5. Simulation Results 

 

The system dynamics are defined by the collected state evolution of the particles in the simulation 

system. On the tactical level, the simulation cycle is set to have a time length of one second. The 

choice of such a time length enables the particles to make or adapt their decisions on the tactical level 

in a way similar to real pedestrians. Within a simulation cycle, interaction among the particles 

(pedestrians) is considered to be on the operational level. 

 

Each particle will be given a global walking direction (pointing to an exit, etc.). In each simulation 

cycle, similar to the cognitive modelling in Section 3, every particle searches for a grid cell position 

within a perception area defined by a visibility angle 𝜙 from its current position at its default speed; 

see Fig. 4 for an illustration. A grid position for the next position transition will be selected after 

comparing the corresponding overlay values. The visibility angle 𝜙 has been defined to be 75∘. The 

size of 𝜙 has been chosen with consideration of real pedestrians’ possible changes of their walking 

directions within a relatively short time span of one second (that is, the length of a simulation cycle) 

to adapt themselves to the new environment. No further navigation method will be applied. 

 

 
Figure 4. Within its visibility angle 𝜙 = 75∘, particle 𝑝 on the tactical level faces the choice of a 

proper grid cell position by density overlay 

 

On the operational level, each particle will carry out a series of elementary steps through which 

its local position transition should be realized. The execution of the elementary steps has already been 

detailed in Section 3.1 and 3.2. The balancing mechanism ensures all particles equal chances in 

carrying out their elementary steps in the simulation cycle when local conflicts among them are 

inevitable. 

 

During the Lange Nacht der Wissenschaften5 (German: Long Night of the Sciences) 2010 a couple 

of experiments were conducted in the Mathematics Department building of Technische Universität 

Berlin. The experiments were video-recorded to show the interaction among pedestrians in groups. 

In the experiments, participants were given instructions to walk in a certain direction (toward an exit, 

etc.).Local position conflicts were resolved by participating pedestrians themselves without guidance 

or interference from the experiment organizer. 

                                                      
5 Homepage https://www.langenachtderwissenschaften.de. 
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Figure 5. Experiment and the Test Case 
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