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Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier 
function for the domain of the problem that has to be solved. Recently, a wide class of new barrier 
functions has been introduced in which the functions are not self-concordant, but despite this fact 
give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier 
functions and we prove that the new barrier functions are locally self-concordant. In many cases, 
the (local) complexity numbers of the new barrier functions along the central path are better than 
the complexity number of the logarithmic barrier function by a factor between 0.5 and 1. 
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1.  Introduction 
 
     Since the seminal work of Karmarkar [11] in 1984, the field of Interior-Point Methods (IPMs) has 
been one of the most active areas of research in optimization. IPMs are among the most effective methods 
for solving linear optimization (LO) problems and wide classes of more general convex optimization 
problems. They enjoy a polynomial-time theoretical complexity and behave very well in practice. 
 
     Another milestone in the development of IPMs is the development of the theory of self-concordant 
(SC) functions and SC barrier functions (SCBFs), introduced by Nesterov and Nemirovski [17] in the 
early 90 s of the past century. This theory was a breakthrough that provided a unified framework for the 
design and analysis of IPMs for a large class of important convex optimizations problems, yielding the 
best known polynomial complexity results.  
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     For a survey of the theory and practice of IPMs we refer the reader to recent books related to the 
subject Boyd and Vandenberghe [4], Nesterov[16], Nesterov and Nemirovski [17], Renegar [24], Roos et 
al. [25], Terlaky [28], Vanderbei [29], Wright [30],  and Ye [31].  
Many IPMs are so-called path-following algorithms. They are based on approximately following the so-
called central path of a problem as a guide to its optimal set. The ‘engine’ in such methods is usually 
some variant of Newton’s method. Another key ingredient in the design and analysis of IPMs 
is a barrier function for the domain of the problem. Until recently, most IPMs were based on the use of 
the classical logarithmic barrier function. The best known iteration bound for linear optimization  
for LO is attained by a full-Newton step IPM (FNS-IPM) based on the logarithmic barrier function, 
namely 

 

O(√݈݊݃


Ԫ
ሻ. 

 

 
(1)

     Here, n denotes the number of inequalities in the problem and Ԫ is the desired accuracy. The bound in 
(1) has been achieved by several authors; e.g., Gonzaga [10], Kojima et al. [13], Mizuno [15], Renegar 
[23], Roos and Vial [27]. The seminal work of Nesterov and Nemirovski [17] has made clear that the 
reason for the prominent role of the logarithmic barrier function in LO and convex optimization is that 
this function is self-concordant. 
 
     The special role of the logarithmic barrier function in linear and convex optimization has been 
questioned many times (see, e.g., Lasserre [14]). Recently, it has become clear that the theoretical 
complexity of large-update methods, which are the most efficient methods in practice, can be significantly 
improved by using other barrier functions than the logarithmic barrier function. These other barrier 
functions are the so-called kernel-function based barrier functions Bai et al. [1], which include the self-
regular barrier functions of Peng et al. [20, 21, 22] as a subclass. Although the new barrier functions were 
designed for large-update methods, they can also be used for small-update methods and, surprisingly 
enough, it turned out that in many cases they give rise to methods with the iteration bound (1). Since the 
new functions are (in general) not self-concordant, this was not at all expected. 
 
     Here, we aim to get a better understanding of this nice behavior of the new barrier functions. We do 
this by defining a localized version of self-concordance. Let us recall that a barrier function ݂  ՜ ܦ  Թ is 
a self-concordant barrier function (SCBF) if some expression in the second and third order directional 
derivatives in any point x of the domain ܦ is bounded above by a uniform constant (i.e., ߢ), and similarly, 
another expression, in the first and second order directional derivatives, in any point ݔ of the domain ܦ is 
bounded above by a uniform constant (i.e., ߥ). We localize this definition by saying that ݂ is a locally 
SCBF (LSCBF) if these expressions are bounded above in each point ݔ א  ሻݔሺߢ by (local) parameters ܦ
and ߥሺݔሻ, respectively. The main result of our work here is that the new barrier functions are LSC. 
Moreover, along the central path the parameters ߢሺݔሻ and ߥሺݔሻ are indeed constant, and finally, the so-
called complexity number, which is an important measure for the efficiency of IPMs, is in many cases 
smaller than for the logarithmic barrier function. 
 
     The remainder of our work is organized as follows. In Section 2, we start with a preparatory section in 
which we recall known material from the theory of SCBFs. We deal with the problem of minimizing a 
linear function over a closed convex set with nonempty (relative) interior. The formal definition of an 
SCBF is given and we outline the related FNS-IPM. Then, we briefly describe how the iteration bound for 
the algorithm is obtained, showing that this bound depends linearly on the complexity number of the 
SCBF. We restrict ourselves here to LO problems, although the extension to the more general class of 
symmetric optimization problems is nowadays more or less straightforward. Every such problem can be 
embedded in a self-dual problem; a strictly complementary solution of this self-dual problem can be used 
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to construct an optimal solution of the original problem. In Section 3, we describe the self-dual LO 
problem and some of its properties, including the definition of its central path and the availability of a 
point on the central path that can be used to start any IPM. In Section 4, we introduce new barrier 
functions for the self-dual problem. These functions are based on a special class of kernel functions, 
called b-kernel functions; these are defined by three simple conditions on the signs of the first three 
derivatives of the barrier term. We show that these functions are strictly convex and give some examples 
of such functions from the literature. Section 5 is the main part of the paper. We give a formal definition 
of the local self-concordant parameters ߢሺݔሻ and ߥሺݔሻ and the parameters are computed for a generic 
kernel function. This turns out to be a tedious task, specially for ߢሺݔሻ, but with a remarkable outcome. 
The resulting values are used in Section 6 to compute the local complexity number along the central path 
for the kernel functions given in Section 4. In Section, 7 we conclude with some final remarks. 
 

Notations: 
     We briefly mention some notational conventions that are used throughout the paper. The 2-norm of a 
vector is denoted by צ . . צ whereas , צ א ݏ,ݔ  denotes the infinity norm. If ∞צ Թ, then ݏݔ denotes the 
coordinate-wise (or Hadamard) product of the vectors ݔ and ݏ. Furthermore, ݁  denotes the all-one vector 
and 0 a zero vector (or matrix) of appropriate size. The nonnegative orthant and positive orthant are 
denoted by Թା  

 and Թାା
 , respectively. If  א ݖ Թା  

  (Թାା
 ), we write  ݖ   ݖ) 0 0). As usual, we write 

݂ሺݔሻ ൌ  ܱ൫݃ሺݔሻ൯, if there exists a positive constant ܿ such that ݂ሺݔሻ   ܿ݃ሺݔሻ, for all א ݔ   .ሺ݂ሻ݉݀
 
 
 

2. Short Introduction to Self-concordant Barrier Functions 
 
We first recall the notion of a self-concordant barrier function (SCBF) φ : ܦ ՜ Թ, where D is an open 
convex subset of Թ. We start by considering the case where ݊ ൌ  1. Then, φ is a univariate function and 
its domain ܦ an open interval in Թ. One calls φ a ሺߢ,  and ߢ ሻ-SCBF, if there exist nonnegative numbersߥ
 such that ߥ

ห߮ԢԢԢሺݔሻห  ሻݔԢԢሺ߮ߢ2
3
2, ሺ߮Ԣሺݔሻሻ

2
 ,ሻݔԢԢሺ߮ߥ ݔ א  .ܦ

(2)

 
Note that this definition assumes that φ is three times differentiable. Moreover, it implies that ߮′′ሺݔሻ is 
nonnegative, and hence φ is convex. The most well-known example of an SCBF is −݈ݔ ݃, Which is a 
ሺ1,1ሻ-SCBF on the positive real axis.   
Now, suppose that φ is a multivariate function, i.e., n >1. Then, φ is called a ሺߢ,  ሻ-SCBF, if its restrictionߥ
to an arbitrary line that intersects D is a ሺߢ, ,ߢሻ-SCBF. In other words, φ is a ሺߥ  ሻ-SCBF, if (2) holdsߥ
when we replace all derivatives in (2) by directional derivatives, for every direction  ݄ א Թ. More 
precisely, denoting these directional derivatives by ߮ሺݔሻሾ݄ሿ, ,ሻሾ݄ݔଷ߮ሺ  ଶφ(x)[h,h] and    ݄, ݄ሿ, 
respectively, φ is a ሺߢ,   ሻ-SCBF if and only if1ߥ
 

,ሾ݄(ݔ) ଷ φ ݄, ݄ሿ ≤ 2ߢ ሺଶ߮ሺݔሻሾ݄, ݄ሿሻ
య
మ, ݔ א ,ܦ ݄ א Թ, 

 

 
 (3)

ሺ߮ሺݔሻሾ݄ሿሻଶ≤ ߥଶ φ (ݔ)[ ݔ         ,[݄,݄ א ,ܦ ݄ א Թ.  (4) 

                                                            
1 There is no need to take the absolute value of the first expression in (3), because   ଷ߮ ሺݔሻሾ݄, ݄, ݄ሿ changes sign, 
if we replace h by −h. 
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The importance of this notion becomes clear when considering the problem of minimizing a linear 
function ்ܿݔ over the closure Ɗഥ  of D. So, we consider the following problem: 
 

ሺܲሻ      ݉݅݊ ሼ்ܿݔ  א ݔ  Ɗഥ ሽ. 
For ߤ  0, we define 

:ሻݔሺߤ ߮ ൌ  
ݔܶܿ

ߤ
  ߮ሺݔሻ, ݔ א  .ܦ

 
If ߤ is fixed, then   ߮ఓሺݔሻ and φ (x) differ only by a linear function; therefore, all their second and third 

order directional derivatives are the same. It follows that   ߮ఓሺݔሻ satisfies (3). As is known from the 

theory of self-concordant functions, this implies that Newton’s method will be very efficient when using 
it to obtain a minimizer of  ߮ఓሺݔሻ, provided that we have a starting point that is close enough to the 

minimizer, which is denoted by ݔሺߤ ሻ 2 .Before stating the related result, we need to discuss how this 
‘closeness’ is measured. For this, we use the norm of the Newton step with respect to the Hessian matrix 
of   ߮ఓሺݔሻ at ݔ. For each  א ݔ ଶ = ሻݔሺܪ ,ሻ. Soݔሺܪ the Hessian matrix of φ at x is denoted as ,ܦ

 ߮ఓሺݔሻ = 

 ሻ is positiveݔሺܪ ,does not contain a straight line ܦ ଶφ (x). Under a mild assumption, namely that
definite, and hence defines a norm; see Nesterov [16, Theorem 4.1.3]. Denoting the gradient of   ߮ఓሺݔሻ at 

                                                                                                                              ሻ, we haveݔby  ݃ఓሺ ݔ

ሻݔሺߤ ݃ ൌ ሻݔሺߤ ߮ߘ   ൌ   
ܿ

ߤ
 ሻݔሺ ߮ߘ   ൌ  

ܿ 

ߤ
  ݃ሺݔሻ, 

where ݃ሺݔሻ denotes the gradient of ߮ ሺݔሻ at ݔ. Then, the Newton step at ݔ is given by 
 

ൌ ݔ∆  െܪሺݔሻିଵ݃ஜሺݔሻ, 
 

and our measure for the distance of x to x(μ) is given by 
 

ሻݔஜሺߣ צൌ ݔ∆ ݔ∆ሻݔሺܪ்ݔ∆ுሺ௫ሻ = ඥצ ൌ  ට݃ஜሺݔሻ்ܪሺݔሻିଵ݃ஜሺݔሻ ൌ  ฮ݃ஜሺݔሻฮ
ுሺ௫ሻషభ. 

 
The following lemma very nicely quantifies the behavior of a full Newton step. For its proof, we 
refer to the existing literature Glineur [9], Nesterov [16], Nesterov and Nemirovskii [18]. 
 
Lemma 2.1. If φ satisfies (3) and ߣߢஜሺݔሻ  ൏ 1, then 

 ݔஜሺߣ ሻݔ∆    ሺߢ
ఒಔሺ௫ሻ

ଵିఒಔሺ௫ሻ
ሻଶ. 

 
A major question is what the effect is on ߣஜሺݔሻ when ߤ is reduced to ߤା ൌ  ሺ1 െ ߠ where ,ߤሻߠ א ሾ0, 1ሻ. 
If ߣ: ൌ  ሻ, then we may writeݔஜሺߣ
 

                                                            
2 When μ runs though all positive numbers, then x(μ) runs through the so-called central path of (P). When μ approaches 0 then x(μ) converges to 
an optimal solution of (P). Therefore, in IPMs the central path is used as a guideline to the set of optimal solutions of (P). 
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݃ఓశሺݔሻ  ൌ


ఓశ  ሻݔሺ ߮   ൌ  
ଵ

ଵିఏ
 ሺ



ఓ
 ሺ1 െ ሻሻݔሺ ߮ ሻߠ  ൌ

ଵ

ଵିఏ
ሺ݃ஜሺݔሻ  െ  . ሻሻݔሺ ߮ߠ

 
Hence, denoting ܪሺݔሻ shortly by ܪ, and using the triangle inequality, we get 
 
 

ሻݔఓశሺߣ  ൌ
1

1 െ ߠ
ฮ݃ஜሺݔሻ െ θ߮ሺݔሻฮ ுషభ 

                           
ଵ

ଵିఏ
ሺฮ݃ஜሺݔሻฮ

ுషభ   ሻԡுషభሻݔԡ݃ሺߠ 

                        ൌ  
1

1 െ ߠ
ሺߤߣሺݔሻ    ሻԡுషభሻݔԡ݃ሺߠ 

      ൌ  
ଵ

ଵିఏ
ሺߣஜሺݔሻ    .ሻሻݔሺߣߠ 

 
 

At this stage, we need that (4) implies that ߣሺݔሻ    The proof .(cf. Glineur [9, Thm. 2.2]) ݒ√
goes as follows. By using (4) with ݄ ൌ   we have ,ݔ∆ 
 

ݔ∆ሻݔሺܪ்ݔ∆ =ሻଶݔሺߣ ൌ  െ∆்݃ݔஜሺݔሻ  ൌ  െ߮ஜሺݔሻሾ∆ݔሿ    |ሿݔ∆ሻሾݔஜሺ߮ | 
 

   ≤ටߥଶ߮ஜሺݔሻሾ∆ݔ,  .ሻݔሺߣݒ√ =ሻଶݔሺߣݒඥ= ݔ∆ሻݔሺܪ்ݔ∆ߥሿ =ඥݔ∆

 
Dividing by ߣሺݔሻ, we obtain ߣሺݔሻ    .as desired. Hence the following result has been shown ,ݒ√
 
Lemma 2.2. If φ satisfies (4) and ߤା:= (1 –θ )μ, then 

  ≥   (x)ߤߣ
ఒಔሺ࢞ሻ ା √௩

ଵ ି ఏ
.  

The above two lemmas are all we need for the analysis of the simple algorithm described in Algorithm 
2.1. Recall that Lemma 2.1 only uses property (3), and Lemma 2.2 only (4). The algorithm starts at a 
point ݔ א -ሻ on the central path, and simply repeats doing a μߤሺݔ that is close enough to a point  ܦ
update and then a full Newton step, until it gets close enough to an optimal solution of (P). For the 
purpose of our work here, the following convergence result is of utmost importance. We include the 
proof, as given in Glineur [8], because it makes clear that the iterates move in a narrow neighborhood of 
the central path, which is relevant for the rest of the paper. 
 

Theorem 2.3. ݂ܫ ߬ ൌ  
ଵ

ଽκ
 and ߠ ൌ  

ହ

ଽାଷκ√௩
 , then the number of iterations of the algorithm is at most 

 

ቂ2  ሺ1   4κ√ݒሻ ln
ଶ௩μబ

Ԫ
ቃ. 

 

Proof. At the start of the first iteration we have  ݔ א ሻݔሺߤߣ   such thatߤ= and μ   ܦ  ߬ . When 

the barrier parameter is updated to  ߤା = (1 − θ)μ, Lemma 2.2 gives 
 

≥  (x)ߤߣ(5)  
ఒഋሺ௫ሻାఏ√௩

ଵିఏ
≤

ఛାఏ√௩

ଵିఏ
. 
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Algorithm 2.1:  Full Newton Step Interior-Point Method 
 

Input: 
accuracy parameter Ԫ א ሺ0, 1ሻ; 

proximity parameter 0 ൏ ߬ ൏
ଵ

 
; 

update parameter ߠ א ሺ0, 1ሻ; 
ሻݔஜబሺߣ >0 such thatߤ D and אݔ   ߬. 

begin 
ݔ ؔ  ; , μ:= μݔ

while  νߤ  Ԫ ݀ 
μ-update: ߤ: ൌ  ሺ1 െ  ;ߤሻߠ
Newton’s step: ݔ ൌ  ݔ  ;ݔ߂ 
endwhile 

end 

 
 

Then, after the Newton step, the new iterate is ݔା= x + Δx and, by Lemma 2.1, 
 

κ  ≥ (ݔ)ߤߣ ൬
ఒഋ ାሺ௫ሻ

ଵିκఒഋ ାሺ௫ሻ
൰

ଶ
  

 
The algorithm is well defined if we choose τ and θ such that ߤߣ(ݔ) ≤ τ. To get the lowest iteration 

bound, we need at the same time to maximize θ. From (6), we deduce that ߤߣ(ݔ) ≤ ߬ certainly holds, if 
 

                                                                        
ఒഋశሺ௫ሻ  

ଵ ିκఒഋశሺ௫ሻ  
 √ఛ

√κ
 ,                                                                        (6) 

 
which is equivalent to 

≥ (ାݔ)ߤߣ √ఛ

κ√ఛା√κ
 .  

According to (5), this will hold, if    
   ఛା ఏ√௩

ଵିఏ
 √ఛ

κ√ఛା√κ
. This leads to the following condition on θ: 

ߠ  √߬
ଵିκఛି√κఛ

√ఛା√௩κ൫ଵା√κఛ൯
 . 

If ߬ ൌ
ଵ

ଽ
, then this upper bound for θ gets the value  

ହ

ଽାଷκ√௩
   

ଵ

ଶା଼κ√௩
 . This clarifies the choice of the 

values of ߬ and ߠ in the theorem. It follows that after each iteration the property  ߤߣሺݔሻ   ߬ now easily 
be obtained as follows. Since after the kth iteration we have ߤ ൌ ሺ1 െߤ   ሻ, the algorithm stops if k isߠ
such that νߤሺ1 െ ሻߠ  Ԫ. One easily verifies that this certainly holds, if 

݇ 
1
ߠ

݈݊
ߤߥ

Ԫ
. 
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So, the number of iterations is at most 

(7)ቂ
ଵ

ఏ
݈݊

ఔఓబ

Ԫ
ቃ. 

This completes the proof.                                                                                                                                                         
 
Note that the order of magnitude of the iteration bound in Theorem 2.3 depends linearly on the quantity 
κ√ߥ. Following Glineur [8], we call this the complexity number of φ, and denote it as ߛ. It may be worth 
pointing out that one easily deduces from the above proof that after the μ-update, we always have 
 

≥  (x)ߤߣ  
ଵ

ସ
 . (8) 

 
Since during the Newton step the proximity value ߤߣሺݔሻ  decreases, we may conclude that during the 

course of the algorithm   ߣఓሺݔሻ  never exceeds the value 
ଵ

ସ
. It means that the iterates move in a narrow 

neighborhood of the central path to the set of optimal solutions. The results of this section are valid for 
every convex problem whose domain has an SCBF. In the rest of the paper, we restrict ourselves to linear 
optimization problems. As we argue in the next section, it suffices to deal with a specific self-dual linear 
optimization problem. 
 

3.  Self-dual LO Problem 
 
In this section, we recall the fact that a solution of any LO problem can be obtained by embedding 
the given problem and its dual problem in a problem of the form 

(SP) minሼݔ்ݍ: ݔܯ  െݍ , ݔ  0ሽ 
, 

where ܯ  is a skew-symmetric matrix (i.e., ்ܯ ൌ െܯ) of size ݊ ൈ ݊  and the vector ݍ  is      

ݍ ൌ ሺ0ିଵ; ݊ሻ.                                                                                                                          (9) 

One easily verifies that the dual problem of (SP) has the same feasible region, whereas it maximizes 

െݍTݔ. This means that it is essentially the same problem (SP). We therefore say that  (SP) is self-dual. Of 
course, n and M depend on the LO problem that we want to solve. We assume n ≥2. For details, see Roos 
et al. [26, Part I], where it is also made clear that we may assume that the all-one-vector e is feasible for 
(SP) and, moreover,  ݁ܯ  ݍ ൌ ݁. In other words, defining 

 
ሻݔሺݏ ൌ ݔܯ   ,ݍ  א ݔ Թ, 

we have 
(10) 

 
ሺ݁ሻݏ ൌ ݁. 

Note that x is a feasible solution of (SP) if and only if  ݔ  0 and ݏሺݔሻ   0, and also that                                     

ሻݔሺݏx =ሺ்ݍ(11)  െ  ,s(x)்ݔ= Mx்ݔ-ሻ்xݔሺݏ= ሻሻ்xݔܯ
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where we used that ݔܯ்ݔ ൌ 0, which holds since ܯ is skew-symmetric.  In order to obtain an optimal 
solution for the given LO problem, we need a strictly complementary solution of (SP), i.e., a feasible 
solution ݔ such that

3

 
ሻݔሺݏݔ ൌ  ݔ   ,0  ሻݔሺݏ    0. 

Yet, we describe how such a solution can be obtained. For details we refer again to Roos et al. 
[26, Part I]. Due to (10), the system 

ൌ ݏ (12) ݔܯ  ,ݍ ݔ  0, ݏ  0, 
ݏݔ     (13) ൌ ݁ߤ  

 

admits the solution ݔ ൌ ݁, ݏ ൌ ݁,  This means that (SP) has a strictly feasible point, i.e., (SP) .1 =ߤ
satisfies the interior-point condition (IPC). As is well-known, this implies that the above system has a 
unique solution for every μ>0. The ݔ-part of the solution is precisely the point ݔሺμ) on the central path 
(SP) with respect to the logarithmic barrier function. Moreover, if μ approaches zero, then ݔሺμ) converges 
to a strictly complementary solution of (SP). 

     As we saw in the previous section, an IPM approximately follows the central path until the objective 
value is small enough. As a starting point, we can use ݔ ൌ ݁, which is the μ-center for μ= 1. Let us 
mention that it has been shown in Roos et al. [26, Section 3.3] that if the objective value of the final 
iterate is small enough and this iterate is close enough to the central path, then there exists a simple 
rounding procedure that yields a strictly complementary solution of (SP) in polynomial time. 
  
 

4.   Kernel-function Based Barrier Functions for (SP) 

In this section, we introduce a wide class of new barrier functions for the (interior of the) domain of (SP), 
which is given by 

࣪:={x : x >0, s(x) >0} . 
 

Let ݔ א ࣪. So, x is strictly feasible for (SP). For any ߤ  0 we define the vector ݒሺݔ,  :ሻ as followsߤ

 v (x, μ ) :=ට
௫௦ሺ௫ሻ

ఓ
. 

(14)

We call ݒሺݔ,  and μ often ݔ with respect to μ. In the sequel, the values for ݔ ሻ the variance vector ofߤ
follow from the context. In such cases, when this gives no rise to confusion, we feel free to omit the 
arguments ݔ and/or μ in ݏሺݔሻ and ݒሺݔ,  .ሻߤ
From (11), we derive that 
 

s(x) =்ݔ=x்ݍ ሻݔሺݏݔ

ୀଵ

=μ ݒ
ଶ

ୀଵ
= μ||v||ଶ.                                   

 

(15) 
 

Let ߰   ሺ0, ∞ሻ  ՜  ሾ0, ∞ሻ be a three times differentiable strictly convex univariate function such that 
ሺ1ሻߖ ሻ  is minimal at t = 1, andݐሺߖ ൌ 0, whereas ߖሺݐሻ goes to infinity if ݐ  approaches zero. 
For any μ > 0, we then define the function ߤሺݔሻ as follows: 

                                                            
1 Note that  ݏሺ0ሻ  ൌ  ݍ   0, meaning that the zero vector is feasible for (SP). Since the objective value of any feasible solution x 
is simply nݔ, which is nonnegative, it follows that the zero vector is an optimal solution of (SP). But this solution is not strictly 
complementary, since 0  ሺ0ሻݏ ൌ ݊  and q has ,ݍ െ 1 zero entries. 
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ሻݔஜሺߖ ؔ 2 ߤ  ߰ሺݒሻ


ୀଵ

, ݔ א ࣪ 

 

 
(16) 
 

      with  ݒ as defined in (14). Note that if א ݔ ࣪, then ݏݔሺݔሻ   0, and hence ݒ  0, which makes clear 
that ߖஜሺݔሻis well-defined. Moreover, if ݔ approaches the boundary of  ࣪,  then at least one of the 
coordinates of ݔ or ݏሺݔሻ goes to zero and hence one of the entries of ݒ approaches zero, which means that 
 ஜ  aߖ ஜ is a barrier function for the domain of (SP). We callߖ ሻ goes to infinity. This makes clear thatݔஜሺߖ
kernel-based barrier function, and ߰ its kernel function. 
     Also, note that if ݔ is the μ-center, for some μ>0, i.e., if ݔ ൌ ሻݔሺݏݔ ሻ, thenߤሺݔ   ൌ ൌ ݒ whence ,݁ߤ   ݁. 
Hence, if ݔ is a μ-center, then ߰ሺݒሻ  ൌ  ߰ሺ1ሻ  ൌ  0, for each i, which implies ߖஜሺݔሻ ൌ 0. On the other 
hand, since ߰ሺݐሻ is minimal at ݐ ൌ 1 and ߰ሺ1ሻ  ൌ  0, we have ߰ሺݐሻ   0, for every ݐ  0. It thus follows 
from (16) that ߖஜሺݔሻ  0,  for every א ݔ ࣪. This makes clear that ݔሺߤሻ is a minimizer of ߖஜሺݔሻ. As we 
show below (Theorem 4.1), ߖஜሺݔሻ  0 is strictly convex. Hence, this minimizer is unique. As a 
consequence, we have ݔ ൌ ൌ ݒ ሻ if and only ifߤሺݔ   ݁. 
Indeed, an important question is whether   ߖஜሺݔሻ  is strictly convex in ݔ. To address this, we need to 
make some assumptions on the barrier term ߰ሺݐሻ of  ߰ሺݐሻ, which is defined by the following relation: 
 

                                              ψ(t) ≡(ݐଶ െ 1) + ߰ (t), t >0.                                                              (17)
 

 

Obviously,  ߰ୠሺݐሻ  dominates the behavior of  ߰ሺݐሻ when t approaches zero. We assume that the 
following conditions are satisfied: 

߰′
(t) <0,      t >0 (18)

߰′′
(t) >0,      t >0, 

 
(19)

߰′′′
(t) <0,      t >0. (20) 

 
                                                                                       
A kernel function ߰ሺݐሻ having these properties is called a b-kernel function. We have the following 
result. 
 
Theorem 4.1. If ߰ሺݐሻ satisfies (18) and (19), then ߖஜሺݔሻ  is strictly convex in ݔ, for each ߤ  0. 
 

Proof. Using (15), which gives ݒ
ଶ

ୀଵ
ݔ்ݍ= ൗߤ , we may write 

 

ሻݔஜሺߖ ൌ  2  ߰ሺݒሻ


ୀଵ

 ൌ ሺ ݒ
ଶ െ 1  2



ୀଵ

߰ሺݒሻ ൌ
ݔ்ݍ

ߤ
െ ݊  2  ߰ሺݒሻ



ୀଵ

. 
 

(21)

 
Since ݔ்ݍ  is linear in ݔ, it follows from (21) that ߖஜሺݔሻ is strictly convex in ݔ if and only if 

 
  Ψሺݔሻ ؔ 2  ߰ሺݒሻ


ୀଵ

  – n 
 

(22)
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is strictly convex in 4.ݔ We show this by proving that the Hessian matrix of Ψሺݔሻ, denoted by ܪሺݔሻ, is 
positive definite. We therefore start by computing ܪሺݔሻ. One has 

డ ஏ

డ௫ೕ
 = 2 ߰′

ሺݒሻ


ୀଵ

డ௩ೕ

డ௫ೕ
,           1  ݆  ݊.  

(23) 

 
Using this, we find that the (k, j )-entry of ܪሺݔሻ is given by 

డమஏ

డ௫ೖడ௫ೕ
 =2  ߰′′

ሺݒሻ డ௩

డ௫ೖ

డ௩ೕ

డ௫ೕ
 ߰′

ሺݒሻ
డమ௩ೕ

డ௫ೖడ௫ೕ
൨



ୀଵ
,     1  ݆ , ݇  ݊. (24)

 

We  proceed by computing the first and second order partial derivatives of ݒ. Since  ݏሺݔሻ ൌ
∑ ݔܯ  ,ݍ


ୀଵ  one has 

డ௦ ሺ௫ሻ

డ௫ೕ
 .ܯ= 

The definition (14) of the variance vector  ݒ at  ݔ implies that  

ݒሻ =μݔሺݔ ݏ
ଶ, 1  ݅  ݊.  (25)

Taking the derivative with respect to ݔ  at both sides, we obtain 

ݒ =2 μܯݔ+ ሻݔ ሺݏߜ
డ௩ೕ

డ௫ೕ
. 

Thus we get 

డ௩

డ௫ೕ
= 

ଵ

ଶ ఓ௩
ݏߜ)  ሺݔሻ +ݔܯ) = ݒ ቀ

ఋೕ

ଶ௫


ெೕ

ଶ௦
ቁ. 

 

(26) 
 

Using this, it follows that  

డమ௩

డ௫ೖడ௫ೕ
 = 

డ

డ௫ೖ
ቆݒ ቀ

ఋೕ

ଶ௫


ெೕ

ଶ௦ 
ቁቇ = ݒ ቀ

ఋೖ

ଶ௫


ெೖ

ଶ௦ 
ቁ ቀ

ఋೕ

ଶ௫


ெೕ

ଶ௦ 
ቁ  ݒ ቀ

ఋೕఋೖ

ଶ௫
మ െ

ெೕெೖ

ଶ௦ 
మ ቁ 

                                                 =െݒ ቀ
ఋೖ

ଶ௫
െ

ெೖ

ଶ௦ 
ቁ ቀ

ఋೕ

ଶ௫
െ

ெೕ

ଶ௦ 
ቁ.  

The last equality holds, since ሺαଵ +βଵ)( αଶ + β2) − 2β1β2  = − (α1 −β1)( α2 − β2), where αi, βi are 

arbitrary real scalars. Defining the vectors  ܽ, ܾ א Թ୬, for  ݅ ൌ 1, … , ݊,  as  

݆ܽ݅ =
݆݅ߜ

݅ݔ2


݆݅ܯ

 ݅ݏ2
, ܾ݆݅=

݆݅ߜ

݅ݔ2
െ

݆݅ܯ

݅ݏ2
,                           1≤ j≤ n, (27)  

 

we thus have shown that  

                                                            
4 Note that  Ψ (x) can be considered as a barrier function for (SP). 
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݅ݒ߲

݆ݔ߲
,݆݅ܽ݅ݒ= 

݅ݒ2߲

݆ݔ߲݇ݔ߲
 =െ݆ܾܾ݅݇݅݅ݒ. 

(28)

 

Now, one easily verifies that the gradient of  ψఓሺݔሻ at  x equals   


ఓ
  plus the gradient of  ψ (x). Using (26), 

this gives 

Substituting (28) into (24), we obtain 

    H(x) = 2 ൣ߰′′
ሺݒሻݒଶ

 ܽܽ
்  ߰′

ሺݒሻݒܾܾ
்൧



ୀଵ
. 

 

(30)

Of course, the matrices  ܽ ܽ
T and ܾ ܾ

T are positive semidefinite. Moreover, due to the assumptions (18) 
and (19), the coefficients ψ′′

ሺݒሻݒ
ଶ    and ψ′

ሺݒሻݒ   are positive. Therefore, we may already conclude 
that ܪሺݔሻ is positive semidefinite. 
To complete the proof, let  ݖ א Թ୬  and ݖTܪሺݔሻ0 = ݖ. Then, it follows from (30) that 

 ቂ߰′′
ሺݒሻݒ

ଶሺܽ
ሻଶݖ்   ሺെ߰′

ሺݒሻݒሻ൫ܾ
൯ݖ்

ଶ
ቃ



ୀଵ
= 0., 

Since all terms in the above sum are nonnegative, it follows that each term vanishes. Thus, it   follows 
that  ܽ

ݖ் ൌ 0   and  ܾ
ݖ் ൌ 0, for ݅ ൌ 1, … , ݊. This implies ሺܽ  ܾሻ்ݖ ൌ 0, for each ݅.  Due to the 

definitions of the vectors ܽ  and ܾ, the vector ܽ  ܾ equals ݁/ݔ, where ݁ is the  ݅th standard unit 
vector. So, we have also  ሺܽ  ܾሻ்ݖ ൌ ݔ   Sinceݔ/ݖ  0 , it follows that  ݖ ൌ 0, for each ݅, proving 
that ݖ ൌ 0 . This completes the proof.                                                                                        
 
We conclude this section by presenting some examples of b-kernel functions in Figure 1. 
 
     These include, apart from the logarithmic kernel function ߰ଵሺݐሻ  (in the first line of the table), some 
so-called self-regular kernel functions proposed by Peng et al. [19, 21, 22] and some kernel functions 
proposed by Bai et al. [1, 2, 3], ElGhami et al. [5]. These kernel functions were used to significantly 
improve the iteration bound of large-update IPMs. However, the conditions that were imposed on the 
kernel functions in these references are much more technical than the conditions (18)–(20), which are 
simple and natural conditions on the signs of the derivatives of the barrier term. 
Up till now the analysis of algorithms based on kernel-function based barrier functions is quite tedious. 
On the other hand, Bai et al. [1] presented a scheme which simplifies this analysis, but, despite this, the 
average length of papers that present a new kernel function is still 15 to 20 pages. 
 
     Therefore, it would be a nice achievement if we could find a way to further simplify and unify the 
analysis. In fact, if kernel-function based barrier functions were SCBFs, then this would be the solution. 
But as we will see, this the case only for the logarithmic kernel function (line 1 in Fig. 1). In the rest of 
this paper, we will show that the notion of local self-concordance might be a promising first step in this 
respect. 
 
 
 

= ሻݔΨμሺ                                                          


ఓ
 + 2 ߰′

ሺݒሻݒ ܽ



ୀଵ
.                                                    (29)
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 i               kernel function ߰ (t)                  reference 
 
1 
 
 
2 
 
3 
 
 
4 
 
 
5 
 
 
6 
 
 
7 
 
 
8 
 
 
 
9 
 
 
10 

 
௧మିଵ

ଶ
 –log t 

 
௧మିଵ

ଶ
 +

ଵ

௧
 -1 

 
1
2

൬ ݐ െ
1
ݐ

൰
ଶ

 

 
௧మିଵ

ଶ
 +

௧భషିଵ

ିଵ
, q >1 

 
௧మିଵ

ଶ
 +

௧భషିଵ

ሺିଵሻ
 - 

ିଵ

 
(t-1) ,q >1 

 
௧మିଵ

ଶ
 + ݁

భ


ିଵ െ 1 

 

௧మିଵ

ଶ
 + 

ቀ
భ
షభቁ


െ 1, q >0 

 
௧మିଵ

ଶ
-  ݁

ቀ
భ


ିଵቁ௧
ଵ  q >1 ,ߦ݀

 
௧మିଵ

ଶ
 + 



గ
cot 

ଷగ௧

ସ௧ାଶ  
 

 

௧మିଵ

ଶ
 +݁

రౙ౪
ഏ

శభ
ഏ ିଵ െ 1 

 

 
Bai et al. [1], Frisch [6, 7] 
 
 
Bai et al. [3] 
 
 
Bai et al. [1], Peng et al. [19] 
 
 
Bai et al. [1], Peng et al. [21, 22] 
 
 
Bai et al. [1], Peng et al. [21, 22] 
 
Bai et al. [1] 
 
 
 
 
 
Bai et al. [2] 
 
 
Bai et al. [1], ElGhami et al. [5] 
 
 
Kheirfam [12] 

Figure 1: Examples of b-kernel functions 
 

 
      

5.   Local Self-concordance 

     We say that a barrier function ߶  ܦ ՜ Թ is locally self-concordant (LSC) at  ݔ א  if there exist  ,ܦ
nonnegative (and finite!) numbers  ߢ  and ߥ  such that 

2) 2κ ≥ [݄ ,݄ ,݄ ](ݔ)߶3  ߶ ] (ݔ ݄, ݄]   ,3/2( ݄ Թnא

 
(31)

≥ 2( [݄ ](ݔ)߶ ) νݔ)߶2ሻ[݄, ݄],             ݄ Թnא

 
(32)

Note that if ߶ is locally (ߥ,ߢ)-self-concordant at ݔ, then it is also locally (ߥ,′ߢ′)-self-concordant at א ݔ D, 
for all  ߢ′  ߥ  and  ߢ ′   are  ߥ and ߢ D , the smallest possible values for א ݔ Given . ߥ

denoted as (ݔ)ߢ and (ݔ)ߥ, respectively. These values are given by   
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ሻݔሺߥ                                                       Թאൌ
୫ୟ୶ ሺ߶ሺݔሻሾ ݄ሿ ሻଶ

,݄ ሻሾݔଶ߶ሺ ݄ሿ
ݔ           , א  ሺ33ሻ                                                  ,ܦ

ሻݔሺߢ                                                  Թאൌ
௫ ,݄ ሻሾݔଷ߶ሺ ݄, ݄ሿ

2ሺଶ߶ሺݔሻሾ݄, ݄ሿሻ
ଷ
ଶ

ݔ           , א  ሺ34ሻ                                                .ܦ

Now, it is obvious that if ν and κ are such that ߢ ≥ (ݔ)ߢ and ߥ ≥ (ݔ)ߥ, for all א ݔ D, then  ߶  is an SCBF. 
In the next subsections, we will compute the values of (ݔ)ߥ and (ݔ)ߢ for barrier functions based on b-
kernel functions. This will make clear that these barrier functions are LSC, and that these functions are 
not self-concordant, with only the logarithmic barrier function as an exception. We will also compute the 
complexity number on the central path. As a preparation for these computations, the next subsection is 
devoted to the computation of the first three directional derivatives of ߰ሺݔሻ. 

 

5.1. Computation of the First Three Directional Derivatives 

From (28) we deduce that the first and second directional derivatives of  ݒ in the direction h are given by 

aiݒ =ሻሾ݄ሿݔሺݒ 
T

,ሺईሻሾ݄ݒଶ        ,݄  ݄ሿ ൌ െݒሺܾ
்݄ሻଶ,

 
(35)

where the vectors  ܽ and ܾ  are as defined in (27). We also need the directional derivatives of  ܽ 
் ݄ and 

ܾ
் ݄ in the direction ݄. Since  

                        ܽ 
் ݄ ൌ ∑ ቀ

ఋഉ

ଶ௫


ெഉ

ଶ௦
ቁ ݄


ୀଵ ,            ܾ

் ݄ ൌ   ∑ ቀ
ఋഉ

ଶ௫
െ

ெഉ

ଶ௦
ቁ ݄


ୀଵ ,                                   (36) 

 

one has 

 ܽ                    
் ݄[݄]= ∑

డ  
 

డ ࣲࣼ
 ݄݆  


ୀଵ  =∑ ∑ ሺെ

ఋഉఋೕ

ଶ௫
మ െ

ெഉெೕ

ଶ௦
మ ሻ

ୀଵ

ୀଵ  ݄ ݄   

=െ ∑ ∑ ሾܽ ܽ  ܾ ܾ ሿ
ୀଵ


ୀଵ ݄ ݄ ൌ െሺܽ

் ݄ሻଶ െ ሺܾ
் ݄ሻଶ 

 

(37)

and 

 ܾ                                
் ݄[݄]= ∑

డ 


డ ࣲࣼ


ୀଵ  ݄   =∑ ∑ ሺെ

ఋഉఋೕ

ଶ௫
మ 

ெഉெೕ

ଶ௦
మ ሻ

ୀଵ

ୀଵ  ݄ ݄   

=െ ∑ ∑ ሾܽ ܽ  ܾ ܾ ሿ
ୀଵ


ୀଵ ݄ ݄ ൌ െ2ሺܽ

் ݄ሻ൫ܾ
் ݄൯, 

 

(38)

 

where the last equality is due to the identity   ሺߙଵߚଵሻሺߙଶെߚଶሻ  ሺߙଵ െ ଶߙଵሻሺߚ  ଶሻߚ ൌ ଶߙଵߙ2 െ
,ߙ ଶ, withߚଵߚ2   being arbitrary real scalars. Yet, we are ready to compute the first three directionalߚ
derivatives of  ψሺݔሻ  as given by (22). Due to (35), we have 

ሻሾ݄ሿ=2ݔψሺ ߰
ᇱ

ୀ
ሺߥሻߥܽ 

் ݄. 
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Also, using (37), we obtain 

,ሻሾ݄ݔሺߖ ଶ  ݄]=2 ሾ߰
′′

ୀଵ
ሺߥሻߥ

ଶሺܽ 
் ݄ሻଶ+߰

′ ሺߥሻߥሺܽ 
் ݄ሻଶ െ ߰

′ ሺߥሻߥሺሺܽ 
் ݄ሻଶ  ሺܾ

் ݄ሻଶሻሿ 

=2 ሾ߰
′′

ୀଵ
ሺߥሻߥ

ଶሺܽ 
் ݄ሻଶ െ ߰

′ ሺߥሻߥሺ ܾ 
் ݄ሻଶ. 

Finally, also using (38), we get 

,ሻሾ݄ݔሺߖ ଷ  ݄, ݄ሿ  

= 2 ሾ߰
′′′

ୀଵ
ሺߥሻߥ

ଷሺܽ 
் ݄ሻଷ +2߰

′′ ሺߥሻߥ
ଶሺܽ 

் ݄ሻଷ-2߰′′
 ሺߥሻߥ

ଶሺܽ 
் ݄ሻሺሺܽ 

் ݄ሻଶ  ሺܾ
் ݄ሻଶሻ] +    

2 ሾെ߰
′′

ୀଵ
ሺߥሻߥ

ଶሺܽ 
் ݄ሻሺܾ

்݄ሻଶെ ߰
′ ሺߥሻߥሺܽ 

் ݄ሻሺܾ
்݄ሻଶ  4߰

′ ሺߥሻߥሺܽ 
் ݄ሻሺܾ

் ݄ሻଶሿ 

ൌ2 ሾ߰
′′′

ୀଵ
ሺߥሻߥ

ଷሺܽ 
் ݄ሻଷെ 3߰

′′ ሺߥሻߥ
ଶሺܽ 

் ݄ሻሺܾ
்݄ሻଶ3߰

′ ሺߥሻߥሺܽ 
் ݄ሻሺܾ

் ݄ሻଶሿ. 

It will be convenient to introduce the following notation: 

ሻݐሺߦ ܾ߰ =
′′ሺݐሻ െ

ܾ߰
′ ሺݐሻ

ݐ
, ݐ  0 

(39) 
 

Note that ሺݐሻ  0 , because of (18) and (19). We then may write 

,ሻሾ݄ݔሺߖ ଷ  ݄, ݄]= 2 ሾ߰
′′′

ୀଵ
ሺߥሻߥ

ଷሺܽ 
் ݄ሻଷ െ ߥሻߥሺߦ3 

ଶሺܽ 
் ݄ሻሺܾ

்݄ሻଶ].                                           (40) 

To simplify the notation we define vectors ߟ  ሻ according toߞ , . . . ,ଵߞሻ and ζ :=  ሺߟ , . . . ,ଵߟሺ =

ߟ ൌ ܽ 
் ݄ ൌ

 

ଶ௫
 + 

ሺெሻ

ଶ௦
ߞ             , ൌ ܾ

்݄ ൌ
 

ଶ௫
 - 

ሺெሻ

ଶ௦
,     1 ݅  ݊, 

where we used (36). It follows that 

ߟ  ߞ ൌ


௫
, ߟ           െ  = ߞ

݄ܯ

ݏ
. 

 

(41)

With ܺ ൌ diagሺݔሻ and S ൌ diagሺݏሻ, [41] can be written as 

݄ ൌ ܺሺߟ  ݄ܯ                         ,ሻߞ ൌ ܵሺߟ െ  .ሻߞ
 

(42)

Since ܯ  is skew-symmetric, we have ݄ ்݄ܯ ൌ 0.  Hence, it follows that  ሺߟ  ߟሻ் ܺܵሺߞ െ ሻߞ ൌ 0. This 
means that 

∑ ሺߟ  ሻ்ߞ
ୀଵ ߥ  

ଶሺߟ െ ሻߞ ൌ 0, 

or equivalently, 

∑ ߥ
ଶ

ୀଵ ߟ
ଶ ൌ  ∑ ߥ

ଶ
ୀଵ ߞ

ଶ. 
 

Using the vectors ߟ and ߞ, the results of this section can be summarized as follows: 

∑ሻሾ݄]=2ݔሺߖߘ ܾ߰
′ ሺ݅ߥሻ݅ߥ

݊
݅ൌ1 (43) ,݅ߟ
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2 ሻሾ݄, ݄]=2ݔሺߖ ∑ ሾ ߰

′′ ሺߥሻߥ
ଶ

ୀ ߟ
ଶ െ ߰

′ ሺߥሻߥ
ଶߞ

ଶሿ, 
 

(44)

,݄ ,ሻሾ݄ݔሺߖ 3 ݄]= 2 ∑ ሾ ߰
′′′ሺߥሻߥ

ଷ
ୀ ߟ

ଷ െ3ߦሺߥሻߥ
ଶߟߞ

ଶ]. (45)
 

5.2. Upper Bound for  νሺݔሻ 

We are now ready for the computation of νሺݔሻ . Substituting (43) and (44) into the definition (33) of 
νሺݔሻ we get 

,ሻݔሺߥ ൌ   ோ  א ݔܽ݉
ሺ2 ∑ ߰

′ ሺߥሻߥ

ୀଵ ሻଶߟ

2 ∑ ሺ߰
′′ ሺߥሻߥ

ଶ
ୀଵ ߟ

ଶ െ ߰
′ ሺߥሻߥߞ

ଶ ሻ
. 

 

(46)

When solving the above maximization problem exactly, we should use the fact that the vectors ߟ and ߞ 
satisfy (41). Then, it becomes hard to get a solution, however, because the solution will then depend in a  
cumbersome way on the matrix ܯ. We therefore consider a relaxation by allowing ߟ and ߞ to be  arbitrary 
vectors. This way, we obtain an upper bound for ߥ(ई). We therefore have 

ሻݔሺߥ  ோ א ݔܽ݉ 
ଶሺ∑ ట್

ᇲ ሺఔሻఔ

సభ ఎሻమ

ଶ ∑ ሺట್
ᇲᇲሺఔሻఔ

మ
సబ ఎ

మ ି ట್
ᇲ ሺఔሻఔ

మ ሻ
. 

 

(47)

Note that both terms in the sum in the denominator are nonnegative. For any value of ߟ, the  choice 0 =  ߞ 
will give the largest value of the right-hand side in (47). Thus, we are left with 

νሺݔሻ  ோ  א ݔܽ݉
ଶሺ∑  ట್

′ ሺఔሻν

సభ ఎሻమ

 ∑  ܾ߰
′′ሺ݅ߥሻఔ

మ
సభ ఎ

మሻ
. 

By the Cauchy-Schwarz inequality, we have 

൭  ߰
′ ሺߥሻߥ



ୀଵ

൱ߟ

ଶ

ൌ  

ۉ

ۇ
 ߰
′ ሺߥሻ

ට ߰
′′ ሺߥሻ



ୀଵ

 . ට ߰
′′ ሺߥሻ ߥߟ

ی

ۊ

ଶ

 
 ߰
′ ሺߥሻଶ

 ߰
′′ ሺߥሻ



ୀଵ

     ߰
′′ ሺߥሻߥ

ଶ



ୀଵ

                                                              ,  ଶߟ

and hence we obtain 

ሻݔሺߥ 2 ∑
ܾ߰
′ ሺ݅ߥሻ2

ܾ߰
′′ሺ݅ߥሻ

݊
݅ൌ1 . 

(48)

5.3. Upper Bound for ߢሺݔሻ 

Next, we turn to the computation of ߢሺݔሻ. As we will see, this is much more complicated.  Substituting 
(44) and (45) in the definition (34) of ߢሺݔሻ, we get  

ሻݔሺߢ ൌ Թ  א ݔܽ݉
ଶ ∑ ሾట್

′′′ሺνሻν
య

సభ ఎ
యିଷకሺνሻν

మఎ
మሿ

ଶሾଶ ∑ ሺట್
′′ ሺνሻν

మ
సభ ఎ

మି ట್
′ ሺνሻν

మሻሿ
య
మ
 . (49)
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Just as in the previous case we consider a relaxation of this problem by allowing ߟ and ߞ to be arbitrary 
vectors. This way, we obtain an upper bound for ߢሺݔሻ. Note that if ߟ changes sign then the objective 
function changes sign, as well. We therefore have 

ሻݔሺߢ  2√2  אఎ ,ݔܽ݉ Թ 
∑ ሾଷకሺఔሻఔ

మఎ
మିట್

′′′ሺఔሻఔ
య

సభ ఎ
యሿ

ሾଶ ∑ ሺట್
′′ ሺఔሻఔ

మ
సభ ఎ

మି ట್
′ ሺఔሻఔ

మሻሿ
య
మ

. 

 

(50)

The last expression is homogeneous in (ߟ ,  and the denominator is positive. Hence, we have (ߞ

ሻݔሺߢ2√2  

∑ఎ , ൛ݔܽ݉           ߥሻߥሺߦ3ൣ
ଶߟߞ

ଶ െ ߰
′′′ሺߥሻ ߥ

ଷ  ߟ
ଷ൧

ୀଵ : ∑  ሺ߰
′′ ሺߥሻߥ

ଶ
ୀଵ ߟ

ଶ െ ߰
′ ሺߥሻߥߞ

ଶሻ  ൌ 1ൟ .  (51)   
                                  

                                                                                         

We may assume without loss of generality that 0 ≤ ߟ (because if ߟ< 0, then replacing ߟ by െߟ   leaves 
the solution feasible and increases the objective value) and 0 ≤ ߞ (since only squares  of ߞ  occur in the 
problem formulation). After dividing the objective function by 3, the optimality conditions are, for some 
multiplier λ, 

ߥሻߥሺߦ
ଶߞ

ଶ െ ߰
′′′ሺߥሻ ߥ

ଷ ߟ
ଶ ൌ 2 λ ߰

′′ ሺߥሻߥ
ଶߟ ,             1 ݅  ݊, 

 
(52)

ߥሻߥሺߦ 2                     
ଶߟߞ ൌ െ2 λ ߰

′ ሺߥሻߥߞ,                 1 ݅  ݊. 
 

(53)

 
By adding these equations, after multiplying (52) by ߟ and (53) by ߞ we get a surprise, namely that the 
contribution of each index ݅  to the objective function is equal to 2λ times its contribution to the constraint 
function: 

   2λ൫߰
′′ ሺߥሻߥ

ଶߟ
ଶ െ  ߰

′ ሺߥሻߥߞ
ଶ൯ ൌ ߥሻߥሺߦ 

ଶߞ
ଶߟ െ  ߰

′′′ሺߥሻߥ
ଷߟ

ଷ  ߥሻߥሺߦ2
ଶߟߞ

ଶ 

ߥሻߥሺߦ3=                                                           
ଶߞ

ଶߟ െ  ߰
′′′ሺߥሻߥ

ଷߟ
ଷ. 

It follows from this that for each feasible solution the objective value is given by 2λ. Due to  assumption 
(20), we have െ߰

′′′ሺνሻ  0. Since also ߦሺνሻ  0, (52) implies that if λ = 0 then ߟ ൌ ߞ ൌ 0, for each ݅, 
which is infeasible for (51). From this, we conclude that λ must be positive. The conditions (52) and (53) 
are satisfied by all optimal solutions of (51), but as is well-known, not every solution may be optimal. In 
fact, the solutions of (52) and (53) are the so-called  stationary points of (51). So, we need to find all the 
stationary points and find out which one of these  points has the maximal objective value. As we already 
made clear, hereby we may restrict  ourselves to stationary points with 0 ≤ ߟ and 0 ≤ ߞ. 
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Table 1: Contribution to objective value and contribution to function in four cases 

Case ߟ ߞ contribution to objective value contribution to constraint  

function 

I: ݅ א  ଵܫ

 

II: ݅ א  ଶܫ

  

   

III: ݅ א  ଶܫ

 

 IV: ݅ א          ଶܫ

ൌ 0 

 

 0 

 

 

 0 

 

ൌ 0 

ൌ 0 

 

ൌ 0 

 

 

 0 

 

 0 

 

                       0 

 

ଷߣ8  ߰
′′ ሺݒሻଷ

߰
′′′ሺݒሻଶ

 

 

ଷߣ2   ట್
′′ ሺ௩ሻయ

ట್
′′′ሺ௩ሻమ ത߮ሺݒሻଶ൫3 െ ത߮ሺݒሻ൯. 

. 

n.a. 

 

                   0 

          

ଶߣ4  ߰
′′ ሺݒሻଷ

߰
′′′ሺݒሻଶ

 

 

ଶߣ  ߰
′′ ሺݒሻଷ

߰
′′′ሺݒሻଶ

ത߮ሺݒሻଶ൫3

െ ത߮ሺݒሻ൯ 

                

                   n.a. 

 

It will be convenient to distinguish four cases for each index ݅ , according to the signs of  ߟ and ߞ , as 
shown in the second and third columns of Table 1. Recall that the values in the fourth column must be 
just 2λ times the values in the last column. So, we need to the values in one of these columns.   

The set of indices ݅ of type I is denoted by ܫଵ , and in a similar way, we define the sets ܫଶ,  ସ forܫ  ݀݊ܽ ଷܫ
indices of types II, III, and IV, respectively. The function ߮ሺݐሻ  in Table 1 is defined as follows: 

߮ሺݐሻ ൌ ݉݅݊൫2, ത߮ሺݐሻ൯,                ത߮ሺݐሻ ൌ
ట್
′ ሺ௧ሻట್

′′′ሺ௧ሻ

ట್
′′ ሺ௧ሻకሺ௧ሻ

, ݐ  0. 

 

 
(54)

Note that due to our assumptions (18)–(20), and (39), ߮ሺݐሻ> 0, for each  0 < ݐ.  We proceed by justifying 
the entries in the last two columns of Table 1. The line for case I needs no further explanation. Also case 
IV is easy, since (53) makes clear that this case cannot occur. In other words, ܫସ ൌ  Fixing ݅, we now . 
consider first case II and then case III. In case II we have ߞ ൌ 0; hence, optimality condition (53) is 
certainly satisfied. From (52), we derive that 

ߟ ൌ
߰ ߣ2

′′ ሺݒሻݒ
ଶ

െ ߰
′′′ሺݒሻݒ

ଷ
ൌ

߰ ߣ2
′′ ሺݒሻ

െ߰
′′′ሺݒሻݒ

. 

Hence, the contribution to the constraint function is 

 ߰
′′ ሺݒሻݒ

ଶߟ
ଶ െ  ߰

′ ሺݒሻݒߞ
ଶ ൌ  ߰

′′ ሺݒሻݒ
ଶ ቆ

߰ ߣ2
′′ ሺݒሻ

െ ߰
′′′ሺݒሻݒ

ቇ
ଶ

ൌ ଶߣ4  ߰
′′ ሺݒሻଷ

 ߰
′′′ሺݒሻଶ

. 
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This fixes case II. Next, we consider case III. In this case, (53) implies that 

݅ߟ ൌ
െ2ܾ߰ߣ

′ ሺ݅ݒሻ݅ݒ

݅ݒሻ݅ݒሺߦ2
2 ൌ

െܾ߰ߣ
′ ሺ݅ݒሻ

݅ݒሻ݅ݒሺߦ
. 

(55)

Using this and (52), we get 

ݒሻݒሺߦ
ଶߞ

ଶ ൌ ݒߟ
ଶ൫2߰ߣ

′′ ሺݒሻ  ߰
′′′ሺݒሻݒߟ൯ 

                                                                        ൌ ݒߟ
ଶ ൬2߰ߣ

′′ ሺݒሻ െ ߰
′′′ሺݒሻݒ

ఒట್
′ ሺ௩ሻ

కሺ௩ሻ௩
൰ 

                                     ൌ ݒߟߣ
ଶ ቆ2߰ߣ

′′ ሺݒሻ െ ߰
′′′ሺݒሻݒ

߰
′ ሺݒሻ

ሻݒሺߦ
ቇ 

           ൌ ݒߟߣ
ଶ߰

′′ ሺݒሻ൫2 െ ത߮ሺݐሻ൯. 

Since the left-hand side is positive, the last expression must be positive as well. Since λ > 0 and ߟ  0, 
we conclude that if  ݅ א  ଷ,  thenܫ

                                                                         ത߮ሺݒሻ ൏ 2. 

Using (52) once more, and also (55), the contribution to the objective function can be deduced as follows: 
 
3ξ(ݒ) ݒ

ଶߟ ߞଶ
 – ߰′′′

ሺݒሻݒ
ଷߟ

ଷ=3ൣ2߰ߣ′′
ሺݒሻݒ

ଶߟ  ߰′′′
ሺݒሻݒ

ଷ൧ߟ-߰′′′
ሺݒሻݒ

ଷߟ
ଷ 

′′߰ߣ6=
ሺݒሻݒ

ଶߟ
ଶ+2߰′′′

ሺݒሻݒ
ଷߟ

ଷ ൌ  6ߣଷ߰′′
ሺݒሻ

ట′
್ሺ௩ሻమ

కሺ௩ሻమ ′′′ଷ߰ߣ2- 
ሺݒሻ

ట′
್ሺ௩ሻయ

కሺ௩ሻయ .                    (56) 

After dividing the expression in (56) by 2ߣ, we get the contribution of index  ݅ to the constraint function, 
which is given by 

߰′′
ሺݒሻݒ

ଶߟ
ଶ-߰′

ሺݒሻݒߞ
ଶ=3ߣଶ ట′

್ሺ௩ሻమ

కሺ௩ሻమ ߰′′
ሺݒሻ - ߣଶ ట′

್ሺ௩ሻయ

కሺ௩ሻయ ߰′′′
ሺݒሻ 

ଶߣ=  
ట′′

್ሺ௩ሻయ

ట′′′
್ሺ௩ሻమ

ట′
್ሺ௩ሻమ ట′′′

್ሺ௩ሻమ

కሺ௩ሻమట′′
್ሺ௩ሻమ ൬3 െ

ట′
್ሺ௩ሻట′′′

್ሺ௩ሻ

ట′′
್ሺ௩ሻకሺ௩ሻ

൰ =ߣଶ ట′′
್ሺ௩ሻయ

ట′′′
್ሺ௩ሻమ ഥ߮ሺݒሻଶ(3- ത߮ (ݒ)), 

where the last equality is due to (54). Thus, we have justified all the entries in Table 1. By adding all 
entries in the fourth column we get the objective value in a stationary point. As 
we established before, this value equals 2ߣ. Thus, we obtain 

ߣ2 ൌ ∑ଷ   ൬ߣ2 4
ట′′

್ሺ௩ሻయ

ట′′′
್ሺ௩ሻమ א ூమ

    ∑ ത߮ሺݒሻଶ൫3 െ ത߮ሺݒሻ൯
ట′′

್ሺ௩ሻయ

ట′′′
್ሺ௩ሻమ א ூయ

൰. 

Since ߣ  0, this implies 

2λ =
ଶ

ඨ∑ ସ
ഗ′′್൫ೡ൯

య

ഗ′′′್൫ೡ൯
మ אమ ା ∑ ഥ߮ሺ௩ሻమ൫ଷି ഥ߮ ሺ௩ሻ൯

ഗ′′್൫ೡ൯
య

ഗ′′′್൫ೡ൯
మא య

 . (57) 
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Note that ݒ is fixed in the present context, and hence also the expressions ߰ᇱᇱ
ሺݒሻଷ/߰ᇱᇱᇱ

ሺݒሻଶ and 

ത߮ሺݒሻ൫3 െ  ത߮ ሺݒሻ൯. Recall that the above expression represents the objective value at one specific 
stationary point. In fact, we have found many such points, each of which being characterized by a 
partition ሼܫଵ,   ܫଶ,   ܫଷሽ of the index set. Our final task is to find the partition that maximizes 2ߣ. Note that 
we cannot put all indices in ܫଵ, because this would mean that  η ൌ ߞ ൌ 0 for all ݅; as we observed before, 
this is infeasible. We conclude that the largest objective value is obtained if all indices but one are in ܫଵ, 
and this index is either in ܫଶ or ܫଷ. In other words, we should find the smallest term in the sum under the 
square root. 
One easily verifies that ݖଶሺ3 െ ሻݖ  4 for all ݖ  0, with equality being satisfied only if ݖ ൌ 2. Recall 
that an index ݅ can be in  ܫଷ only if ത߮  ሺ࢜ሻ א ሺ0, 2ሻ. Since  
 

0 ≤ ത߮ሺݒሻଶ൫3 െ  ത߮  ሺݒሻ൯ ൏4,         1  ݅  ݊,            

it follows that if ത߮  ሺ࢜ሻ א ሺ0, 2ሻ holds then we get the highest value for 2ߣ,  if ݅߳ܫଷ, and otherwise the 
highest value for 2ߣ occurs, if ݅ א Iଶ. Since 2 (2 − 1) = 4, and z (3 − z) is increasing for ݖ א ሺ0, 2ሻ, 
in both cases (57) reduces to 

2λ =
ଶ

ඨ ఝሺ࢜ሻ൫ି ఝ ሺ࢜ሻ൯
′′࣒ 

൯࢜൫ ࢈


′′′࣒
൯࢜൫ ࢈



 = 
ଶ

ఝ ሺ࢜ሻට൫ି ఝ ሺ࢜ሻ൯
 
ି ట′′′

್  ሺ࢜ሻ

ట′′
ሻ࢜ሺ࢈




, 

where we used ߮ሺݔሻ as defined in (54). By maximizing over i, we get the largest possible value for 2λ, 
which is an upper bound for 2√2 κ(x), according to (50). Thus, we obtain the following upper bound for 
κ(x): 

ሻݔሺߢ  ݅ݔܽ݉
1

 √2߮ሺݒሻ ඥ3 െ ߮ሺݒሻ

െ߰
′′′ሺݒሻ

߰
′′ ሺݒሻ

3
2

. 

 

(58)

  

6.   Complexity Number along the Central Path 
 
Yet, we are ready to compute the complexity number on the central path. Because the variance vector of a 
point on the central path is the all-one vector, it follows that if   ݔ ൌ ,ሻߤሺݔ  then ݒ  ൌ  1, for all ݅.  
Hence, we obtain from (48) and (58) that 
 

ሻ൯ߤሺݔ൫ݒ  2 ∑  ట್
ᇲ ሺ1ሻమ

 ట್
ᇲᇲሺ1ሻ


ୀଵ ൌ 2݊

 ట್
′ ሺ1ሻమ

 ట್
′′ ሺ1ሻ

, 

ሻ൯ߤሺݔ൫ߢ 
ଵ

 √ଶఝሺ1ሻ ඥ3െఝሺ1ሻ 
 
െట್

′′′ሺ1ሻ

ట್
′′ ሺ1ሻ

3
2
. 

Hence, the complexity number on the central path satisfies 
 

ሻ൯ߤሺݔ൫ߛ 
ଵ

 √ଶఝሺଵሻ ඥଷିఝሺଵሻ 
 
ିట್

′′′ሺଵሻ

ట್
′′ ሺଵሻ

య
మ

ට2݊
టᇲ

್ ሺଵሻమ

ట್
′′ ሺଵሻ

ൌ
ଵ

 √ଶఝሺଵሻ ඥଷିఝሺଵሻ 

టᇲ
್ ሺଵሻటᇲᇲᇲ

್  ሺଵሻ

టᇲ
್  ሺଵሻమ √2݊. 

Using the definition (54) of ߮,ഥ  this can be written as 
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γ൫ݔሺߤሻ൯ ≤൞



√2ට൫െഥ߮ ሺሻ൯

ሺሻߦ

ܾ߰
′′ሺ1ሻ √2݊, if ഥ߮ሺ1ሻ ൏ 2,

ሺሻ ഥ߮ ሺሻߦ

2√2ܾ߰
′′ ሺሻ

√2݊, if ഥ߮ሺ1ሻ  2.
 

(59)

                     

Table 2 shows the resulting values for the (classes of) kernel functions in Fig. 1. 

 

7.   Conclusions 
 
     We conclude with a few remarks on the results presented in Table 2. First, we point out the remarkable 
fact that ሺݔሻ , as well as ߢሺݔሻ  and ߥሺݔሻ, is constant along the central path. Of course, this is due to the 
fact that these numbers depend only on the variance vector ݒ of ݔ, which is already clear from (48) and 
(58). Second, the complexity number of the logarithmic barrier function turns out to be √2݊, which is in 
agreement with the theory of SCBFs. Also, using (48) and (58), one easily verifies that in that case we 
have for every א ݔ ࣪   that ߢሺݔሻ ൌ 1   and ߥሺݔሻ ൌ 2݊, proving that this function is an SCBF, whereas 
for the other kernel-based barrier functions ߢሺݔሻ  and ߥሺݔሻ  are unbounded on ࣪ . Third, in order to ease 
comparison with the logarithmic barrier function, we wrote the other complexity numbers as a multiple of 
√2݊. It turns out that in many cases these complexity numbers are lower than √2݊. The only exceptions 
are ߰5, for q ≥ 1, and ߰7, for q ≤ 1.2999. The lowest complexity numbers arise for ߰ସ, ߰7 and ߰8, when ݍ  

increases; asymptotically, these complexity numbers become  
ଵ

 ଶ
√2݊. Fourth and finally, except for ߰5 

(with ݍ  3), we have in all cases that ഥ߮ሺ1ሻ ൏ 2. An interesting question is whether the notion of local 
self-concordance can be used to design efficient algorithms. Computational experiments in Matlab 
provided clear evidence that Algorithm 2.1 works fine for each of the new barrier functions that we dealt 
with here. But, the theoretical analysis will require further research. 
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