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Local Self-concordance of Barrier Functions
Based on Kernel-functions
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Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier
function for the domain of the problem that has to be solved. Recently, a wide class of new barrier
functions has been introduced in which the functions are not self-concordant, but despite this fact
give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier
functions and we prove that the new barrier functions are locally self-concordant. In many cases,
the (local) complexity numbers of the new barrier functions along the central path are better than
the complexity number of the logarithmic barrier function by a factor between 0.5 and 1.
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1. Introduction

Since the seminal work of Karmarkar [11] in 1984, the field of Interior-Point Methods (IPMs) has
been one of the most active areas of research in optimization. IPMs are among the most effective methods
for solving linear optimization (LO) problems and wide classes of more general convex optimization
problems. They enjoy a polynomial-time theoretical complexity and behave very well in practice.

Another milestone in the development of IPMs is the development of the theory of self-concordant
(SC) functions and SC barrier functions (SCBFs), introduced by Nesterov and Nemirovski [17] in the
early 90 s of the past century. This theory was a breakthrough that provided a unified framework for the
design and analysis of IPMs for a large class of important convex optimizations problems, yielding the
best known polynomial complexity results.
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For a survey of the theory and practice of IPMs we refer the reader to recent books related to the
subject Boyd and Vandenberghe [4], Nesterov[16], Nesterov and Nemirovski [17], Renegar [24], Roos et
al. [25], Terlaky [28], Vanderbei [29], Wright [30], and Ye [31].

Many IPMs are so-called path-following algorithms. They are based on approximately following the so-
called central path of a problem as a guide to its optimal set. The ‘engine’ in such methods is usually
some variant of Newton’s method. Another key ingredient in the design and analysis of IPMs

is a barrier function for the domain of the problem. Until recently, most IPMs were based on the use of
the classical logarithmic barrier function. The best known iteration bound for linear optimization

for LO is attained by a full-Newton step IPM (FNS-IPM) based on the logarithmic barrier function,
namely

O(vnlog3). (1)

Here, n denotes the number of inequalities in the problem and ¢ is the desired accuracy. The bound in
(1) has been achieved by several authors; e.g., Gonzaga [10], Kojima et al. [13], Mizuno [15], Renegar
[23], Roos and Vial [27]. The seminal work of Nesterov and Nemirovski [17] has made clear that the
reason for the prominent role of the logarithmic barrier function in LO and convex optimization is that
this function is self-concordant.

The special role of the logarithmic barrier function in linear and convex optimization has been
questioned many times (see, e.g., Lasserre [14]). Recently, it has become clear that the theoretical
complexity of large-update methods, which are the most efficient methods in practice, can be significantly
improved by using other barrier functions than the logarithmic barrier function. These other barrier
functions are the so-called kernel-function based barrier functions Bai et al. [1], which include the self-
regular barrier functions of Peng et al. [20, 21, 22] as a subclass. Although the new barrier functions were
designed for large-update methods, they can also be used for small-update methods and, surprisingly
enough, it turned out that in many cases they give rise to methods with the iteration bound (1). Since the
new functions are (in general) not self-concordant, this was not at all expected.

Here, we aim to get a better understanding of this nice behavior of the new barrier functions. We do
this by defining a localized version of self-concordance. Let us recall that a barrier function f : D — Riis
a self-concordant barrier function (SCBF) if some expression in the second and third order directional
derivatives in any point x of the domain D is bounded above by a uniform constant (i.e., k), and similarly,
another expression, in the first and second order directional derivatives, in any point x of the domain D is
bounded above by a uniform constant (i.e., v). We localize this definition by saying that f is a locally
SCBF (LSCBF) if these expressions are bounded above in each point x € D by (local) parameters k(x)
and v(x), respectively. The main result of our work here is that the new barrier functions are LSC.
Moreover, along the central path the parameters x(x) and v(x) are indeed constant, and finally, the so-
called complexity number, which is an important measure for the efficiency of IPMs, is in many cases
smaller than for the logarithmic barrier function.

The remainder of our work is organized as follows. In Section 2, we start with a preparatory section in
which we recall known material from the theory of SCBFs. We deal with the problem of minimizing a
linear function over a closed convex set with nonempty (relative) interior. The formal definition of an
SCBF is given and we outline the related FNS-IPM. Then, we briefly describe how the iteration bound for
the algorithm is obtained, showing that this bound depends linearly on the complexity number of the
SCBF. We restrict ourselves here to LO problems, although the extension to the more general class of
symmetric optimization problems is nowadays more or less straightforward. Every such problem can be
embedded in a self-dual problem; a strictly complementary solution of this self-dual problem can be used
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to construct an optimal solution of the original problem. In Section 3, we describe the self-dual LO
problem and some of its properties, including the definition of its central path and the availability of a
point on the central path that can be used to start any IPM. In Section 4, we introduce new barrier
functions for the self-dual problem. These functions are based on a special class of kernel functions,
called b-kernel functions; these are defined by three simple conditions on the signs of the first three
derivatives of the barrier term. We show that these functions are strictly convex and give some examples
of such functions from the literature. Section 5 is the main part of the paper. We give a formal definition
of the local self-concordant parameters k(x) and v(x) and the parameters are computed for a generic
kernel function. This turns out to be a tedious task, specially for x(x), but with a remarkable outcome.
The resulting values are used in Section 6 to compute the local complexity number along the central path
for the kernel functions given in Section 4. In Section, 7 we conclude with some final remarks.

Notations:
We briefly mention some notational conventions that are used throughout the paper. The 2-norm of a
vector is denoted by | .|l, whereas ||.ll,, denotes the infinity norm. If x,s € R™, then xs denotes the

coordinate-wise (or Hadamard) product of the vectors x and s. Furthermore, e denotes the all-one vector
and 0 a zero vector (or matrix) of appropriate size. The nonnegative orthant and positive orthant are
denoted by R} and RY},, respectively. If z € R} (R%,), we write z = 0 (z > 0). As usual, we write
f(x) = 0(g(x)), if there exists a positive constant ¢ such that f(x) < cg(x), forall x € dom(f).

2. Short Introduction to Self-concordant Barrier Functions

We first recall the notion of a self-concordant barrier function (SCBF) ¢ : D — R, where D is an open
convex subset of R™. We start by considering the case where n = 1. Then, ¢ is a univariate function and
its domain D an open interval in R™. One calls ¢ a (x, v)-SCBF, if there exist nonnegative numbers x and
v such that

|<P(x)| < ZKQDH(X)%, ((p,(x))2 < vgou(x), Vx € D. &Y

Note that this definition assumes that ¢ is three times differentiable. Moreover, it implies that ¢ "(x) is
nonnegative, and hence ¢ is convex. The most well-known example of an SCBF is —log x, Which is a
(1,1)-SCBF on the positive real axis.

Now, suppose that ¢ is a multivariate function, i.e., n >1. Then, ¢ is called a (x, v)-SCBEF, if its restriction
to an arbitrary line that intersects D is a (k,v)-SCBF. In other words, ¢ is a (k,v)-SCBF, if (2) holds
when we replace all derivatives in (2) by directional derivatives, for every direction h € R™. More
precisely, denoting these directional derivatives by V@(x)[h], VZ@(x)[h,h] and V3@(x)[h, h, k],
respectively, ¢ is a (x,v)-SCBF if and only if'

V2 @ (x)[h, h, k] <2k (V2o (o) [h, h])2, Vx € D,Vh € R", 5

(Vo (x)[h]D?<vV? @ (x)[ h, K], Vx € D,Vh € R", 4)

! There is no need to take the absolute value of the first expression in (3), because V3(p (%) [h, h, h] changes sign,
if we replace / by —h.
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The importance of this notion becomes clear when considering the problem of minimizing a linear
function cTx over the closure D of D. So, we consider the following problem:

(P) min{c"x: x € D).
For u > 0, we define

CTX

<PH(X): = —+ (), x € D.
U

If pis fixed, then @ ,(x) and ¢ (x) differ only by a linear function; therefore, all their second and third
order directional derivatives are the same. It follows that ¢ ,(x) satisfies (3). As is known from the
theory of self-concordant functions, this implies that Newton’s method will be very efficient when using
it to obtain a minimizer of ¢ ,(x), provided that we have a starting point that is close enough to the

minimizer, which is denoted by x(u ) 2 .Before stating the related result, we need to discuss how this
‘closeness’ is measured. For this, we use the norm of the Newton step with respect to the Hessian matrix
of ¢ ,(x) at x. For each x € D, the Hessian matrix of ¢ at x is denoted as H(x). So, H(x) = Vz(p#(x) =

V2p (x). Under a mild assumption, namely that D does not contain a straight line, H(x) is positive
definite, and hence defines a norm; see Nesterov [16, Theorem 4.1.3]. Denoting the gradient of ¢ ,(x) at

x by g ,(x), we have

c c
9,0):="Ve () = -+ Vo) = —+ gx),
U U
where g (x) denotes the gradient of ¢ (x) at x. Then, the Newton step at x is given by
Ax = —H(x) g, (x),

and our measure for the distance of x to x(u) is given by

Au(x) = Ax llggey = JVAxTH(x)Ax = \/g“(x)TH(X)_lgu(x) = ”gu(x)”H(x)—l'

The following lemma very nicely quantifies the behavior of a full Newton step. For its proof, we
refer to the existing literature Glineur [9], Nesterov [16], Nesterov and Nemirovskii [18].

Lemma 2.1. If ¢ satisfies (3) and kA, (x) <1, then

L(x + Ax) < (22

2
1—klu(x)) ’

A major question is what the effect is on 4,,(x) when p is reduced to ut = (1 —0)u, where 6 € [0,1).
If A: = A, (x), then we may write

2 When x runs though all positive numbers, then x(u) runs through the so-called central path of (P). When u approaches 0 then x(x) converges to
an optimal solution of (P). Therefore, in IPMs the central path is used as a guideline to the set of optimal solutions of (P).
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9+ () =5+ Vo () = 155 G+ -0Ve (1) = 559,00 — 69 ().

Hence, denoting H (x) shortly by H, and using the triangle inequality, we get

1
A+ (x) = -9 l9.() — V()| -
sf?MAmhﬂ+ew@mwo
=70 + Ollg o)l y-1)
= = (A0 + 0A().

At this stage, we need that (4) implies that 1(x) < /v (cf. Glineur [9, Thm. 2.2]). The proof
goes as follows. By using (4) with h = Ax, we have

A(x)*=AxTH(x)Ax = —=AxT g, (x) = =V, (x)[Ax] < |V @, (x)[Ax]]

5\/vV2<pu(x) [Ax, Ax] =/vAxTH(x)Ax =/ vA(x)2= VvA(x).

Dividing by A(x), we obtain A(x) < /v, as desired. Hence the following result has been shown.

Lemma 2.2. If ¢ satisfies (4) and u*:= (1 —0 )u, then
Au(%) + 6V

/1M+ (x) < P

The above two lemmas are all we need for the analysis of the simple algorithm described in Algorithm
2.1. Recall that Lemma 2.1 only uses property (3), and Lemma 2.2 only (4). The algorithm starts at a
point x° € D that is close enough to a point x(uy) on the central path, and simply repeats doing a p-
update and then a full Newton step, until it gets close enough to an optimal solution of (P). For the
purpose of our work here, the following convergence result is of utmost importance. We include the
proof, as given in Glineur [8], because it makes clear that the iterates move in a narrow neighborhood of
the central path, which is relevant for the rest of the paper.

Theorem 23. If T = 9_11< and 6 = then the number of iterations of the algorithm is at most

_5
9+36K\v ’
[2+ @ + 4cv) m 2

Proof. At the start of the first iteration we have x € D and u =u, such that Au(x) <t . When
the barrier parameter is updated to u* = (I — O)u, Lemma 2.2 gives

A, () +0VY _ t+0v ®))
/1“+(x) = 1-6 = 1-6 °
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Algorithm 2.1: Full Newton Step Interior-Point Method

Input:
accuracy parameter € € (0, 1);

. 1
proximity parameter 0 < 7 < o

update parameter 8 € (0, 1);

x°€ D and p19>0 such that 4,0 (x°) <.
begin

x=x0 W=y, ;

while vy = €do

p-update: u: = (1 — 0)y;

Newton’s step: x := x + Ax;

endwhile
end

Then, after the Newton step, the new iterate is x* = x + Ax and, by Lemma 2.1,

Ay +(x) )2
1-kdy +(x)

Lo (x") < K(
The algorithm is well defined if we choose t and 0 such that 4+ (x*) < 1. To get the lowest iteration

bound, we need at the same time to maximize 0. From (6), we deduce that A+ (x*) < certainly holds, if

A+ () < G
1 —Klu+(x) - Jk’

(6)

which is equivalent to

+ VT
A+(xX7) SK WA
According to (5), this will hold, if OV VT This leads to the following condition on 6:

1-0 T TV

1-k7—vkT
O <V

. This clarifies the choice of the

1 . 5 1
Ift= o then this upper bound for 6 gets the value sr3ods 2 Zroeds

values of 7 and 6 in the theorem. It follows that after each iteration the property 4, (x) < tnow easily
be obtained as follows. Since after the kth iteration we have u = py(1 — 0)¥, the algorithm stops if & is
such that viig(1 — )% < €. One easily verifies that this certainly holds, if

1 vy
>—In—.
k_gln €
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So, the number of iterations is at most

] o

This completes the proof. O

Note that the order of magnitude of the iteration bound in Theorem 2.3 depends linearly on the quantity

x\/v. Following Glineur [8], we call this the complexity number of ¢, and denote it as y. It may be worth
pointing out that one easily deduces from the above proof that after the u-update, we always have

A () <. (8)

Since during the Newton step the proximity value Aﬂ(x) decreases, we may conclude that during the
course of the algorithm 4, (x) never exceeds the value ﬁ. It means that the iterates move in a narrow

neighborhood of the central path to the set of optimal solutions. The results of this section are valid for
every convex problem whose domain has an SCBF. In the rest of the paper, we restrict ourselves to linear
optimization problems. As we argue in the next section, it suffices to deal with a specific self-dual linear
optimization problem.

3. Self-dual LO Problem

In this section, we recall the fact that a solution of any LO problem can be obtained by embedding
the given problem and its dual problem in a problem of the form

min{qTx: Mx > —q,x > 0} (SP)
where M is a skew-symmetric matrix (i.e., MT = —M) of size n X n_and the vector q is
q = (0p_y;1). ©)

One casily verifies that the dual problem of (SP) has the same feasible region, whereas it maximizes
—qTx. This means that it is essentially the same problem (SP). We therefore say that (SP) is self-dual. Of
course, n and M depend on the LO problem that we want to solve. We assume n >2. For details, see Roos
et al. [26, Part I], where it is also made clear that we may assume that the all-one-vector e is feasible for
(SP) and, moreover, Me + q = e. In other words, defining

s(x) := Mx+ q, x €R",

we have
s(e) = e. (10)

Note that x is a feasible solution of (SP) if and only if x > 0 and s(x) = 0, and also that

qTx =(s(x) — Mx))Tx =s(x)Tx-xTMx =xTs(x), (11)
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where we used that x” Mx = 0, which holds since M is skew-symmetric. In order to obtain an optimal
solution for the given LO problem, we need a strictly complementary solution of (SP), i.e., a feasible
solution x such that

xs(x) =0, x + s(x) > 0.

Yet, we describe how such a solution can be obtained. For details we refer again to Roos et al.
[26, Part I]. Due to (10), the system

s = Mx+ q,x >0,s >0, (12)
xXs = ue (13)

admits the solution x = e, s =e, y= 1. This means that (SP) has a strictly feasible point, i.e., (SP)
satisfies the interior-point condition (IPC). As is well-known, this implies that the above system has a
unique solution for every u>0. The x-part of the solution is precisely the point x(u) on the central path
(SP) with respect to the logarithmic barrier function. Moreover, if p approaches zero, then x () converges
to a strictly complementary solution of (SP).

As we saw in the previous section, an IPM approximately follows the central path until the objective
value is small enough. As a starting point, we can use x = e, which is the p-center for u= 1. Let us
mention that it has been shown in Roos et al. [26, Section 3.3] that if the objective value of the final
iterate is small enough and this iterate is close enough to the central path, then there exists a simple
rounding procedure that yields a strictly complementary solution of (SP) in polynomial time.

4. Kernel-function Based Barrier Functions for (SP)

In this section, we introduce a wide class of new barrier functions for the (interior of the) domain of (SP),
which is given by
PO:={x : x>0, 5(x) >0} .

Let x € P°. So, x is strictly feasible for (SP). For any u > 0 we define the vector v(x, ) as follows:
14
v )= _xs!ix). (14
We call v(x, ) the variance vector of x with respect to p. In the sequel, the values for x and x often
follow from the context. In such cases, when this gives no rise to confusion, we feel free to omit the
arguments x and/or p in s(x) and v(x, u).

From (11), we derive that

n n
aTx=xTs() = B xisi ) =u X vi= vl (15)

Let ¢ : (0,00) — [0,00) be a three times differentiable strictly convex univariate function such that
Y(t) is minimal at =1, and ¥ (1) = 0, whereas ¥(t) goes to infinity if t approaches zero.
For any 1 > 0, we then define the function u(x) as follows:

! Note that s(0) = g = 0, meaning that the zero vector is feasible for (SP). Since the objective value of any feasible solution x
is simply nx,, which is nonnegative, it follows that the zero vector is an optimal solution of (SP). But this solution is not strictly
complementary, since 0 + s(0) = g, and ¢ has n — 1 zero entries.
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W, (x) =2 “Z b)), x €PO (16)
i=1

with v as defined in (14). Note that if x € P, then xs(x) > 0, and hence v > 0, which makes clear
that ¥, (x)is well-defined. Moreover, if x approaches the boundary of P, then at least one of the

coordinates of x or s(x) goes to zero and hence one of the entries of v approaches zero, which means that
¥, (x) goes to infinity. This makes clear that ¥}, is a barrier function for the domain of (SP). We call ¥, a
kernel-based barrier function, and v its kernel function.

Also, note that if x is the p-center, for some >0, i.e., if x = x(u), then xs(x) = pe, whence v = e.
Hence, if x is a u-center, then ¥ (v;) = (1) = 0, for each i, which implies ¥,(x) = 0. On the other
hand, since ¥(t) is minimal at t = 1andy¥ (1) = 0, we have Y (t) = 0, for every t > 0. It thus follows
from (16) that ¥, (x) = 0, for every x € P°. This makes clear that x(u) is a minimizer of ¥, (x). As we
show below (Theorem 4.1), ¥, (x) = 0 is strictly convex. Hence, this minimizer is unique. As a
consequence, we have x = x(u) ifand only if v = e.

Indeed, an important question is whether ¥, (x) is strictly convex in x. To address this, we need to
make some assumptions on the barrier term 1, (t) of Y (t), which is defined by the following relation:

(1) =(t* = 1) + Py (1), t >0. (17)

Obviously, ¥p(t) dominates the behavior of Y (t) when t approaches zero. We assume that the
following conditions are satisfied:

Y, 1) <0, >0 (18)
Y1) >0, >0, (19)
Y (1) <0, 1>0. (20)

A kernel function Y (t) having these properties is called a b-kernel function. We have the following
result.

Theorem 4.1. If ¢ (¢) satisfies (18) and (19), then ¥, (x) is strictly convex in x, for each u > 0.

Proof. Using (15), which gives Z?:l v;2=qTx /li’ we may write

n T

V() = 2) W) = ) (0P =1+ 20pm) =T —n 2 ) (v, @
i=1 i i=1

=1

Since qTx is linear in x, it follows from (21) that W, (x) is strictly convex in x if and only if

Y(x) =2 Z?zllpb(vi) -n (22)
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is strictly convex in x.* We show this by proving that the Hessian matrix of W(x), denoted by H(x), is
positive definite. We therefore start by computing H (x). One has

noo, v, , (23)
=2y W,m5k 1s<j=n
Using this, we find that the (k, j )-entry of H(x) is given by
Gk d = " ov; dv; 92p; i 24
axkaxj =2 Zi [1'[} (w l)ax axl+lp (v)ax Bjx 1 S],k <n. ( )

We proceed by computing the first and second order partial derivatives of v;. Since s;(x) =
Yi=1Mijx; + q;, one has

9si (%) _
axj A

The definition (14) of the variance vector v at x implies that
s; x;(x) =uv?, 1<i<n (25)

Taking the derivative with respect to x; at both sides, we obtain
v
8ijsi (.X') +xl-Ml-j =2 HV; a—xj

Thus we get

617,'

Sij o My (26)
oy —— (By5: (1) +x;Myp) = vy (2L +21),

2x; 2s;i

Using this, it follows that
o (g (G ) o (B M) (B ) (P M)
Oxgdx;  Oxg 2x;  2s; 2x; 28§ 2x;  2si 2x;2 2s;2

o (B ) (B
2x;  2s; ) \2x;  2s;/°

The last equality holds, since (a; +B1)( o, + B,) —2B,B, =~ (a; —B)(ay — B,), where ai, Bi are
arbitrary real scalars. Defining the vectors a;, b; € R", for i = 1,...,n, as

6ij M;; M;;
a;j =Y _”’ bl]_ 8y 2y
2x; 2s; 2x; 251

1<j<n, 27)

we thus have shown that

* Note that ¥ (x) can be considered as a barrier function for (SP).
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av; 8%, 28
— =V;ayj, : =—v;by.by;. %)
ox; 0x), 0}

Now, one easily verifies that the gradient of ,(x) at x equals % plus the gradient of  (x). Using (26),

this gives

n
VW, (x) =% + 22. 1¢ LY, a;. (29)
i=
Substituting (28) into (24), we obtain

H(X) = 221;1[11)”17(171')1721' aiaiT + l/),b (vi)vibibiT]. (30)

Of course, the matrices a; a; and b; b are positive semidefinite. Moreover, due to the assumptions (18)
and (19), the coefficients " b(vi)vl-z and L|J'b (v))v; are positive. Therefore, we may already conclude
that H(x) is positive semidefinite.

To complete the proof, let z € R™ and zTH(x)z = 0. Then, it follows from (30) that

n " . 2
2. [T + ', wovd (672 0.
Since all terms in the above sum are nonnegative, it follows that each term vanishes. Thus, it follows
that a’z=0 and b]z=0, for i =1,...,n. This implies (a; + b;)Tz = 0, for each i. Due to the
definitions of the vectors a; and b;, the vector a; + b; equals e;/x;, where e; is the ith standard unit
vector. So, we have also (a; + b;)Tz = z;/x; Since x; > 0, it follows that z; = 0, for each i, proving
that z = 0 . This completes the proof. O

We conclude this section by presenting some examples of b-kernel functions in Figure 1.

These include, apart from the logarithmic kernel function ¥4 (t) (in the first line of the table), some
so-called self-regular kernel functions proposed by Peng et al. [19, 21, 22] and some kernel functions
proposed by Bai et al. [1, 2, 3], ElIGhami et al. [5]. These kernel functions were used to significantly
improve the iteration bound of large-update IPMs. However, the conditions that were imposed on the
kernel functions in these references are much more technical than the conditions (18)—(20), which are
simple and natural conditions on the signs of the derivatives of the barrier term.

Up till now the analysis of algorithms based on kernel-function based barrier functions is quite tedious.
On the other hand, Bai et al. [1] presented a scheme which simplifies this analysis, but, despite this, the
average length of papers that present a new kernel function is still 15 to 20 pages.

Therefore, it would be a nice achievement if we could find a way to further simplify and unify the
analysis. In fact, if kernel-function based barrier functions were SCBFs, then this would be the solution.
But as we will see, this the case only for the logarithmic kernel function (line 1 in Fig. 1). In the rest of
this paper, we will show that the notion of local self-concordance might be a promising first step in this
respect.



12 Bai, Lesaja, Mansouri, Roos and Zangiabadi
i kernel function y; (¢) reference
1 tZT—l Jog t Bai et al. [1], Frisch [6, 7]
2_
2 L . E +% -1 Bai et al. [3]
3 1 132
E(t_?> Bai et al. [1], Peng et al. [19]
4 t2-1 +t1_q—1 ~1 )
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Figure 1: Examples of b-kernel functions

5. Local Self-concordance

We say that a barrier function ¢ : D — R is locally self-concordant (LSC) at x € D, if there exist
nonnegative (and finite!) numbers k and v such that

V3¢(x)[ h h, h] <2k (V> ¢ x)[ h, h])**, Vh€ER" (31)
(V ¢(x)[ h] )* <vW’¢p(x)[h, h], vV h ER" (32)

Note that if ¢ is locally (x,v)-self-concordant at x, then it is also locally (x',v')-self-concordant at x € D,
forall k'>x and v >v.Given x € D, the smallest possible values for k and v are

denoted as k(x) and v(x), respectively. These values are given by



Local Self-concordance of Barrier Functions 13

max (VO(O[h])?

V(X) :=heR“ W, X ED, (33)
3
oy somer, CO@IRRAL .

2(V2¢(x)[h, k]2

Now, it is obvious that if v and x are such that x(x) < k and v(x) < v, for all x € D, then ¢ is an SCBF.
In the next subsections, we will compute the values of v(x) and x(x) for barrier functions based on b-
kernel functions. This will make clear that these barrier functions are LSC, and that these functions are
not self-concordant, with only the logarithmic barrier function as an exception. We will also compute the
complexity number on the central path. As a preparation for these computations, the next subsection is
devoted to the computation of the first three directional derivatives of Y (x).

5.1. Computation of the First Three Directional Derivatives
From (28) we deduce that the first and second directional derivatives of v; in the direction h are given by

Vv;(x)[h]=via; h, V2v;(x)[h, h] = —v;(b] h)?, (35)

where the vectors a; and b; are as defined in (27). We also need the directional derivatives of a! h and
bl h in the direction h. Since

Six MI.K Six M
Al h=Shy (= + 25 e, Bl h= They (-5 b, (36)
one has
a 611(61 MlKMl
Val hiAl= TGt by =T T (- 53— ) by
=—Xj=1Zk=1laij @ + byj by ] hye by = _(aiT h)? — (b] h)* (7)
and
BblTh Bixcbij Mli
Vb;rh[h]: ;‘l:la_xj h] = ?:122:1(_ in] ]) h h
=—yn__yn ;i Qi + bij by | he by = =2(al R)(b] h) (38)
j=1 k=1[al] Aik ij lk] Kk 'Yy (al ) i )

where the last equality is due to the identity (a;+pB1)(a2—pB2) + (a1 — B)(az + B2) = 2a,a5 —
2[1P,, with «;, B; being arbitrary real scalars. Yet, we are ready to compute the first three directional
derivatives of y(x) as given by (22). Due to (35), we have

Vw()[h]=2. " wh )vial h.
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Also, using (37), we obtain
V2w [hh1=2 Y [, v (@l B2+, (v)vi(al h)? — ¥, (vdvi((al B2 + (b] h)?)]
=230 [y vi(al B2 — 1y, (v)vy(b] ).
Finally, also using (38), we get
V3 ¥(x)[h, h,h]

=23 [y Wvid(af h)* +2y, v (af R)*-29", (v)vi*(af h)((af h)? + (b M)H)] +
2300 =y vi(al )BT h)? =y (vvi(a] RY(B] h)? + 4, (v)vi(a] h)(b] h)?]

=230 [y v (af b= 39, (v)vi(a] h)(b] h)*+3, (v)vi(al R)(B] )2,

It will be convenient to introduce the following notation:

0 =0 -2 >0 9
Note that (t) > 0, because of (18) and (19). We then may write
VEWCO[h hh1=2Y " [y v (al b)® — 3E()vi?(al h) (b h)?]. (40)
To simplify the notation we define vectors 1 := (1, ...,n,) and { == ({4, .. ., {) according to
m==a?h=:—,;+@24—fi)i, ci:=bfh=2h—;-(’;’—:i)", I<i<n,
where we used (36). It follows that
pg=t, gt @
With X = diag(x) and S = diag(s), [41] can be written as
h=X(mn+9), Mh =S —9). (42)

Since M is skew-symmetric, we have h TMh = 0. Hence, it follows that (n + ¢)T XS(n — ¢) = 0. This
means that

T + T vt —4) =0,
or equivalently,

2
Yie1 vitn? = Yi=1 vi2 g~

Using the vectors 11 and ¢, the results of this section can be summarized as follows:

v O[h]=22, ¥, (v)vim, (43)
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VAW () [h R1=2 X o[ 5 VVi2 12 — P (v)Vi2 3], (44)

V3 W()[h b, h]= 2 Tl o[ ¥, (v)vi® 0 —3E(w)vi®mi Pl (45)

5.2. Upper Bound for v(x)

We are now ready for the computation of v(x) . Substituting (43) and (44) into the definition (33) of
v(x) we get

Xy v (vin)? (46)
Z 1(1/)19(1/1)1/1 Th lpl;(vi)vi{iz )

v(x),= max,cgn

When solving the above maximization problem exactly, we should use the fact that the vectors n and ¢
satisfy (41). Then, it becomes hard to get a solution, however, because the solution will then depend in a
cumbersome way on the matrix M. We therefore consider a relaxation by allowing 7 and { to be arbitrary
vectors. This way, we obtain an upper bound for v(x). We therefore have

23, Y w)vimi)? 47)
oWy Wvi2n® — P (vdvili® )’

<
v(x) S maxpern 5w
Note that both terms in the sum in the denominator are nonnegative. For any value of n, the choice { =0

will give the largest value of the right-hand side in (47). Thus, we are left with

2(T1, ¥pvvimy)?
YL v, )vitn?) "

v(x) < maxy cgn

By the Cauchy-Schwarz inequality, we have

n 2
<Z PV m) - L [ws00 v
i=1 ,’ l/)b(vl

C l/JL(Vi)Z c MeNG 2o 2
Sizl lplf;(vl) ;lpb(vl)vl ni=,

and hence we obtain

w},(vl) (43)

V() <2 Wiy

5.3. Upper Bound for x(x)

Next, we turn to the computation of k(x). As we will see, this is much more complicated. Substituting
(44) and (45) in the definition (34) of k(x), we get

230 [y, v)vidn =38 (vvi?nidi®] (49)
" , El
223, W vvi2ni2— ¥, (v)vidi ]2

K(x) = maxpcgn
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Just as in the previous case we consider a relaxation of this problem by allowing 1 and { to be arbitrary
vectors. This way, we obtain an upper bound for x(x). Note that if  changes sign then the objective
function changes sign, as well. We therefore have
LA BEGOVEN ¥, v’ (50)
" . 3
(251 @Wp(vvini?= ¥, (v)vidi®)]2

2V2 Kk(x) < max, cegn

The last expression is homogeneous in (7, {) and the denominator is positive. Hence, we have
22k (x) <
maxy ¢ {Zi1 [3EWvi2m G — ¥, v) vi 0] 2y @y vt ni? — ¥, (vvil®) =1}, (51)

We may assume without loss of generality that n > 0 (because if n;< 0, then replacing n; by —n; leaves
the solution feasible and increases the objective value) and ¢ > 0 (since only squares of ; occur in the
problem formulation). After dividing the objective function by 3, the optimality conditions are, for some
multiplier A,

VAL — 9, V) vi® i =229, (v)vin;, Isi<n, (52)

28V = =2 2P, (Vv I<i<n (53)

By adding these equations, after multiplying (52) by n; and (53) by {; we get a surprise, namely that the
contribution of each index i to the objective function is equal to 2 times its contribution to the constraint
function:

22(p Vvt = Y (vDviGi?) = E@DVAGEn — Y )visn® + 28(v)vi*nid®

=3E()Vi2¢Pn — Y, )iy,

It follows from this that for each feasible solution the objective value is given by 2A. Due to assumption
(20), we have —1p, (v;) > 0. Since also £(v;) > 0, (52) implies that if , = 0 then n; = {; = 0, for each i,
which is infeasible for (51). From this, we conclude that A must be positive. The conditions (52) and (53)
are satisfied by all optimal solutions of (51), but as is well-known, not every solution may be optimal. In
fact, the solutions of (52) and (53) are the so-called stationary points of (51). So, we need to find all the
stationary points and find out which one of these points has the maximal objective value. As we already
made clear, hereby we may restrict ourselves to stationary points with 7 >0 and > 0.
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Table 1: Contribution to objective value and contribution to function in four cases

Case n; € contribution to objective value contribution to constraint
function
Liel =0| =0 0 0
¥y (v)*
. " 2
i el, >0 =0 s Y, ()3 42 7
81 g Yy, (Vi)
¥, (Vi)
] (V)
, Ypw)® ~ 2 ———=pw)*(3
i € I >0 | >0 | 222 5()%(3 - p(v). A (
- ()
IV:i €, =0 | >0
n.a
n.a

It will be convenient to distinguish four cases for each index i , according to the signs of 7; and (; , as
shown in the second and third columns of Table 1. Recall that the values in the fourth column must be
just 2A times the values in the last column. So, we need to the values in one of these columns.

The set of indices i of type I is denoted by I; , and in a similar way, we define the sets I,, I3 and 1, for
indices of types II, 111, and IV, respectively. The function ¢(t) in Table 1 is defined as follows:

o ey b OP,(©)

e(t) = mm(2,<p(t)), @(t) := HOHOR t>0. (54)
Note that due to our assumptions (18)—(20), and (39), @ (t)> 0, for each t > 0. We proceed by justifying
the entries in the last two columns of Table 1. The line for case I needs no further explanation. Also case
IV is easy, since (53) makes clear that this case cannot occur. In other words, I, = @ . Fixing i, we now
consider first case II and then case III. In case Il we have {; = 0; hence, optimality condition (53) is
certainly satisfied. From (52), we derive that

20, (v)v2 | 229,(1)

n; " " .
L=y v~ ()

Hence, the contribution to the constraint function is

22, (w0) )2 _ o B

2.2 — W (v 02 = b (1) .2 =
lpb(vl)vl Ni Ipb(vl)vlcl lpb(vl)vl <_ l/)l;”(vl-)vi l/)l,,”(vi)z.
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This fixes case II. Next, we consider case III. In this case, (53) implies that

_ 2, wdvi A, () (55)
28w Ewv

Using this and (52), we get
EW2% = nwi2 (20, (v) + ¥, () vim;)

" Ay i)
= nwi? (225 ) — Py (w)w 200)

1/’1; (W))

= ;v <2/1¢£ (i) — ¥y, (W) £(v)
= v %Y, (Vi)(z - ().

Since the left-hand side is positive, the last expression must be positive as well. Since A > 0 and n; > 0,
we conclude that if i € I3, then

o) < 2.
Using (52) once more, and also (55), the contribution to the objective function can be deduced as follows:
3¢y vitn; O, )vdn B =32a9", w)vn + 7, vy, (v)vin?

Yy (vl)z (Vz) 3

After dividing the expression in (56) by 24, we get the contribution of index i to the constraint function,
which is given by

" 4 1IJ (vl) " 1/) (vl) "
Y, v, ()it =322 flzv ik , (W) - A2 ;Ev)s Y, ()

) 1/1”;3(171)3 w'b(vi)zwmb(vi)z( _ lp'b(vi)wmb(vi)> 2 ll) b( )° _ 2
A Y2 Ew)2Y",(vy)? ANCHICD) (v)? 9w G- ¢ (v)

where the last equality is due to (54). Thus, we have justified all the entries in Table 1. By adding all
entries in the fourth column we get the objective value in a stationary point. As
we established before, this value equals 2. Thus, we obtain

W, w3 LA
24 =273 (Zz €L 41/1”'2(171')2 + Ziern @)’ (3-aw) b(” )2)

Since A > 0, this implies

20 = 2 (57)

Jziezz V) L5 B2 (o ))1” b0
b( L) b( L)
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Note that v is fixed in the present context, and hence also the expressions "', (v;)* 4", (v;)* and

?@)?(3— @ (v;)). Recall that the above expression represents the objective value at one specific
stationary point. In fact, we have found many such points, each of which being characterized by a
partition {I;, I, I3} of the index set. Our final task is to find the partition that maximizes 21. Note that
we cannot put all indices in I, because this would mean that n; = {; = 0 for all i; as we observed before,
this is infeasible. We conclude that the largest objective value is obtained if all indices but one are in I,
and this index is either in I or I3. In other words, we should find the smallest term in the sum under the
square root.

One easily verifies that z%(3 — z) < 4 for all z > 0, with equality being satisfied only if z = 2. Recall
that an index i can be in I5 only if @ (v;) € (0,2). Since

0< o(w)?*(3— ¢ (W) <4, 1<i<n,
it follows that if @ (v;) € (0, 2) holds then we get the highest value for 24, if iel3, and otherwise the

highest value for 21 occurs, if i € I,. Since 2% (2~ 1) =4, and z? (3 — z) is increasing for z € (0, 2),
in both cases (57) reduces to

27 = 2 _ 2 -9"), ()
3
\](p(vi)z(:,;_ ) (vi)) II}"b (ui):: @ (Vi) (3_ (4 (vi)) l/}”b(vi)f
v (i)

where we used ¢(x) as defined in (54). By maximizing over i, we get the largest possible value for 24,
which is an upper bound for 2v/2 x(x), according to (50). Thus, we obtain the following upper bound for
K(x):

1 —¥, (V) (58)

VZpw) 3= o) )7

k(x) < max;

6. Complexity Number along the Central Path

Yet, we are ready to compute the complexity number on the central path. Because the variance vector of a
point on the central path is the all-one vector, it follows that if x = x(u), thenv; = 1, for all i.
Hence, we obtain from (48) and (58) that

! 2 ! 2
<oyn B _ L 9D
v(x(o) = 2XLa ey = 2y

1 —1, (1)
K(x(,u)) < = 5.
VZo(1) 3—p(D) w2

Hence, the complexity number on the central path satisfies

1 -1, (1) / Y’ (1)2 1 Y, Wy, (D
< 2 2 = \V2n.
r(xw) = V2 V3= 1y T m T e em ¥, 12 "

Using the definition (54) of {, this can be written as
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! W o . .
0 2n, if (1) < 2,
Y(x(w) < V2 (37 ()
N HOFIO) N
m\/ﬁ f o > 2

Table 2 shows the resulting values for the (classes of) kernel functions in Fig. 1.

7. Conclusions

We conclude with a few remarks on the results presented in Table 2. First, we point out the remarkable
fact that (x) , as well as k(x) and v(x), is constant along the central path. Of course, this is due to the
fact that these numbers depend only on the variance vector v of x, which is already clear from (48) and
(58). Second, the complexity number of the logarithmic barrier function turns out to be v/2n, which is in
agreement with the theory of SCBFs. Also, using (48) and (58), one easily verifies that in that case we
have for every x € P° that k(x) =1 and v(x) = 2n, proving that this function is an SCBF, whereas
for the other kernel-based barrier functions x(x) and v(x) are unbounded on P° . Third, in order to ease
comparison with the logarithmic barrier function, we wrote the other complexity numbers as a multiple of
v2n. Tt turns out that in many cases these complexity numbers are lower than v/2n. The only exceptions
are 1/)5, forg>1, and 1/)7, for ¢ < 1.2999. The lowest complexity numbers arise for 4, 1, and ¥, when q

increases; asymptotically, these complexity numbers become 12\/2n. Fourth and finally, except for .

(with ¢ > 3), we have in all cases that (1) < 2. An interesting question is whether the notion of local
self-concordance can be used to design efficient algorithms. Computational experiments in Matlab
provided clear evidence that Algorithm 2.1 works fine for each of the new barrier functions that we dealt
with here. But, the theoretical analysis will require further research.
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Table 2: Complexity numbers on the central path
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