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A New Model for Transportation Problem with Qualitative Data 
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In today’s highly competitive market, the pressure on organizations to find a 
better way to create and deliver value to customers is mounting.  The decision 
involves many quantitative and qualitative factors that may be conflicting in 
nature. Here, we present a new model for transportation problem with 
consideration of quantitative and qualitative data. In the model, we quantify the 
qualitative data by using the weight assessment technique in the fuzzy analytic 
hierarchy process. Then, a preemptive fuzzy goal programming model is 
formulated to solve the proposed model. The software package LINGO is used 
for solving the fuzzy goal programming model. Finally, a numerical example is 
given to illustrate that the proposed model may lead to a more appropriate 
solution. 
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1. Introduction 
 
      In general, distribution of product from depot to customer is called "transportation problem" (TP). 
The transportation problem has wide practical applications, not only in transportation systems, but also 
in various other systems. There are many problems which are not exactly a transportation problem but 
may well be modeled as such. For example, transportation models play important role in logistics and 
supply chain management for reducing costs and improving services. In 1941, transportation problems 
were first developed by Hitchcock [9]. The aim is usually to minimize the total transportation cost. The 
classical transportation problem model, the Hitchcock transportation problem, may have limitations in 
dealing with real world problems, because it has only a single objective where for certain practical 
problems, multi-objective models turn to be relevant.  

 
 
 
*Corresponding Author.  
1 Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115,  Shahrekord, Iran. 
  E-mail: Zangiabadi-m@sci.sku.ac.ir 
2 Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran.  

 



34                                                                                                                           Zangiabadi and Rabie 
                                                                                                                                                                                                
 
 
      For example, the objectives may be minimization of the total cost, the total time, consumption of 
energy, or total deterioration of goods during the transportation.   

     In most investigations, the entire existing objectives in both single and multiple transportation 
problem (MOTP) are considered by quantitative information. For real-world problems, however, there 
exists a variety of important qualitative information such as public health, safety, climate change, 
comfort and security. Consideration of qualitative information in an MOTP is scarce in the literature. 
In the work of Korpela et al. [8], the total customer’s preference value in a warehouse network and 
supply chain design objective is maximized by using the Analytic Hierarchy Process (AHP).    

     The proposed approaches enable the inclusion of both qualitative and quantitative customer service 
elements in designing the logistics network. A multi-objective transportation model with the 
consideration of both the depot to customer and customer to customer relationships is proposed by 
Nunkaew and Phruksaphanrat [11].  

     There are several methods to solve the MOTP problem. In 1975, Diaz [5] proposed procedures       
to generate all the non-dominated solutions to linear MOTP problem. Abd El-Wahed and Lee [1] 
proposed an interactive fuzzy goal programming approach to determine the preferred compromise 
solution for the MOTP problem. Gao and Liu [6] developed a two phase fuzzy goal programming 
technique for MOTP problem. Zangiabadi and Maleki [16] presented a fuzzy goal programming 
approach to determine an optimal compromise solution for the MOTP problem that focuses on 
minimizing the negative deviation variables from 1. 

Here, we present a multi-objective transportation model with the consideration of quantitative and 
qualitative information. For solving the proposed model, we use the preemptive priority structure of 
the fuzzy goal programming approach of Zangiabadi and Maleki [16]. 

     The reminder of our work is organized as follows. In Section 2, we describe the conventional 
transportation problem and its corresponding mathematical model. We also study the fuzzy analytic 
hierarchy process. A detailed discussion of incorporating qualitative data in MOTP is presented in 
Section 3, followed by the model formulation.  There, we use a fuzzy goal programming approach for 
solving the proposed model. In Section 4, a practical example is worked out. Finally, the conclusions 
are provided in Section 5. 

2. Preliminaries 

     In this section, we briefly review the multi-objective transportation problem (MOTP). Then, we 
describe the fuzzy AHP method, focusing on what is needed for our work here. 

2.1. Transportation Problem 

     The classical single objective transportation problem is a special case of linear programming. The 
problem is concerned with the distribution of goods (products) from several sources (supply points) to 
several destinations (demand points) at a minimal total transportation cost. In the real word, however, 
all transportation problems are not single objective ones. The multi-objective transportation problem 
(MOTP), on the other hand, deals with the distribution of goods with the consideration of several 
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objectives, such as transportation cost, delivery time and quantity of goods delivered, simultaneously. 
Consider m sources ܵଵ,  ܵଶ, … , ܵ௠, ݊ destinations ܦଵ, ,ଶܦ  … , ,objectives ܼଵ ݎ ௡ andܦ  ܼଶ, … , ܼ௥. Without 
lose of generality, we assume that all  ݎ objectives are to be minimized. Suppose that the source ௜ܵ has 
a given available supply ܽ௜ ሺ݅ ൌ 1, 2, … , ݉ሻ and the destination ܦ௝ has a given required level of 

demand ௝ܾ  ሺ݆ ൌ 1, 2, … , ݊ሻ. For each objective ܼ௥, a penalty ܿ௜௝
௥  is associated with transportation of a 

unit of a goods from source ௜ܵ  to destination ܦ௝. Let ݔ௜௝ represent the unknown quantity of goods to be 

transported from source ௜ܵ to destination ܦ௝, ݅ ൌ 1, 2, … , ݉, ݆ ൌ 1, 2, … , ݊. It is usual to assume that 

the balancing condition  ∑ ܽ௜
௠
௜ୀଵ ൌ ∑ ௝ܾ

௡
௝ୀଵ  holds, i.e., the total demand is equal to the total supply, 

because any imbalance can be corrected by introduction of a “fictitious” source or destination. With 
this assumption, the MOTP can be formulated as follows: 

 

min ܼ௥ ൫ݔ௜௝൯ ൌ ෍ ෍ ܿ௜௝
௥ ௜௝ݔ

௡

௝ୀଵ

௠

௜ୀଵ

ݎ              , ൌ 1, 2, … , ݈, 

.ݏ                                                                        .ݐ

                                ෍ ௜௝ݔ

n

j=1
≤ ܽ௜,                ݅ ൌ 1, 2, … , ݉,                                                     ሺ1ሻ 

෍ ௜௝ݔ ൌ

௠

௜ୀଵ

௝ܾ,                 ݆ ൌ 1, 2, … , ݊, 

௜௝ݔ ൒ 0,                        for all   ݅, ݆, 

where ܽ௜ ൐ 0, for all ݅,  ௝ܾ ൐ 0, for all ݆, ܿ௜௝
௥ ൐ 0, for all ሺ݅, ݆ሻ. 

Note that the balancing condition ∑ ܽ௜
௠
௜ୀଵ ൌ ∑ ௝ܾ 

௡
௝ୀଵ is both necessary and sufficient for the existence 

of a feasible solution for MOTP. 

Owing to lack of qualitative information, model (1) may not admit practical optimal solutions, and so 
we need to develop the multi-objective transportation problem to consider qualitative information. 

2.2.  Using Fuzzy AHP for Quantifying Qualitative Information 

     In qualitative data, the relationship between a consequence (outcome) and the decision variable is 
unknown (i.e., is not quantified). To treat such a problem by means of a linear decision model, we 
have somehow to quantify this relationship. The weight assessment technique used in the AHP 
provides an excellent and systematic way of controlling estimation errors quantifying a qualitative 
relationship. The AHP is a theory of relative measurement with absolute scales of both tangible and 
intangible criteria based on the judgment of knowledgeable and expert people [12].  In AHP, a person 
(an expert or a judge) is asked to give ratios ܽ௜௝, for the relative importance of two criteria ܥ௜ and ܥ௝. 

The relative importance is related using a scale with the values 1, 3, 5, 7 and 9, where 1 refers to 
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equally important, 3 denotes slightly more important, 5 equals strongly more important, 7 represents 
demonstrably more important and 9 denotes absolutely more important. In the conventional AHP, the 
pairwise comparison is made using a ratio scale. Even though the discrete scale of 1 െ 9 has the 
advantages of simplicity and easiness of use, it does not take into account the uncertainly associated 
with the mapping of one’s perception (or judgment) to a number. So, the crisp pairwise comparison in 
the conventional AHP seems to be insufficient. In order to model this kind of uncertainly in human 
preference, fuzzy sets could be incorporated with the pairwise comparison as an extension of AHP. In 
the fuzzy AHP used here, the relative importance of each criterion in the same hierarchy level is 
identified by using triangular fuzzy number via pairwise comparisons. Fuzzy AHP approach allows a 
more accurate description of the decision-making process. The computation procedure of this 
methodology for each hierarchy in summarized in steps 1-6 below. 

Step ૚. {Comparing the performance score} 

     Since each number in the pairwise comparison matrix represents the subjective opinion of the 
decision maker and is thus ambiguous, fuzzy numbers appear to be appropriate to consolidate 
fragmented expert opinions. So, we make use of triangular fuzzy numbers to indicate the relative 
strength of each pair of elements in the same hierarchy. The triangular fuzzy numbers  ݑ෤௜௝ are 

considered as follows: 

෤௜௝ݑ ൌ ሺ݈௜௝, ݉௜௝, ௜௝ሻ,         ݈௜௝ݑ ൑ ݉௜௝ ൑  ,௜௝ݑ

݈௜௝, ݉௜௝, ௜௝ݑ א ൤
1
9

, 1൨ ׫ ሾ1,9ሿ,                         

݈௜௝ ൌ ݉݅ ݊൫ܤ௜௝௞൯,                                          

݉௜௝ ൌ ඩෑ ௜௝௞ܤ

௡

௞ୀଵ

೙

 ,                                   

௜௝௞ݑ ൌ ݉ܽ                                  ,௜௝௞൯ܤ൫ݔ

where the parameters ݈௜௝, ݉௜௝ and ݑ௜௝, respectively denote the smallest possible value, the most 

possible value and the largest possible value to describe a fuzzy event. Each ܤ௜௝௞ represents a judgment 

of expert ݇ for the relative importance of two criteria ܥ௜ and ܥ௝. 

Step ૛. {Constructing the fuzzy comparison matrix} 

By using triangular fuzzy numbers, via pairwise comparisons, the fuzzy matrix ࡭෩ is constructed as:  
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ሚܣ ൌ ൣ ෤ܽ௜௝൧ ൌ
ܥ ଵ
ଶܥ
ڭ

௡ܥ

ଵܥ ଶܥ                ௡ܥ                                      ڮ  

൮

1
ሺ݈ଶଵ, ݉ଶଵ, ଶଵሻݑ

ሺ݈ଵଶ, ݉ଵଶ, ଵଶሻݑ
                      1                     

ڮ
ሺ݈ଵ௡, ݉ଵ௡, ଵ௡ሻݑ
ሺ݈ଶ௡, ݉ଶ௡, ଶ௡ሻݑ

ڰ         ڭ                                        ڭ ڭ
ሺ݈௡ଵ, ݉௡ଵ, ௡ଵሻݑ ሺ݈௡ଶ, ݉௡ଶ, ௡ଶሻݑ ڮ 1

൲ 
, 

 

where  ෥ܽ ௜௝ ൌ ሺ݈௜௝, ݉௜௝,  ௜௝ሻ  denotes a triangular fuzzy number for the relative importance of twoݑ

criteria ܥ௜ and  ܥ௝.  Also, ݈௜௝ ൌ
ଵ

௨ೕ೔
 ,  ݉௜௝ ൌ

ଵ

௠ೕ೔
௜௝ݑ , ൌ

ଵ

௟ೕ೔
,  for all  ݅, ݆ ൌ 1, ڮ , ݊, ݆ ് ݅. 

Step ૜. {Defuzzification} 

Among various defuzzification methods, the method used here is due to the method in [2]. This 
method expresses fuzzy perceptions as follows: 

                                  ሺܽ௜௝
ఈ ሻఒ ൌ ௜௝݈ߣൣ

ఈ ൅ ሺ1 െ ௜௝ݑሻߣ
ఈ ൧,         0 ൑ ߣ ൑ 1,   0 ൑ ߙ ൑ 1,                                   (2) 

where   ݈௜௝
ఈ ൌ ൫݉௜௝ െ ݈௜௝൯ߙ ൅ ݈௜௝    and    ݑ௜௝

ఈ ൌ ௜௝ݑ െ ൫ݑ௜௝ െ ݉௜௝൯ߙ  respectively represent the left-end 

value and right-end value of ߙ-cut for ܿ௜௝, and 

 ሺ ௝ܽ௜
ఈሻఒ ൌ

1
ሺܽ௜௝

ఈ ሻఒ ,         0 ൑ ߣ ൑ 1,   0 ൑ ߙ ൑ 1,   ݅ ൐ ݆. 

Notably, ߙ can be viewed as a stable or fluctuating condition. The range of uncertainly is the greatest 
when ߙ ൌ 0. Meanwhile, the decision-making environment stabilizes by increasing ߙ,  while, 
simultaneously, the variance for decision-making decreases. Additionally, ߙ can be any number 
between 0 and 1, and is usually set as the following 10 numbers, 0.1, 0.2, ڮ , 1, for uncertainly 
emulation. Note that ߣ can be viewed as the degree of a decision maker’s pessimism. When ߣ is 0, the 
decision maker is more optimistic and thus, the expert consensus is the upper-bound value ௜ܷ௝ of the 

triangular fuzzy number. Conversely, when ߣ ൌ 1, the decision maker is pessimistic; however, five 
number 0.1, 0.3, 0.5, 0.7 and 0.9, are used to emulate the state of mind of the decision. 

The crisp pairwise comparison matrix is expressed as follows: 

ሻఒܣ)                                                    ൌ ሾሺܽ௜௝ሻఒ] ֜ ሺܣఈሻఒ ൌ ሺ ሾ൫ܽ௜௝
ఈ ሻఒ൧.                                                  (3) 

 

 

Step ૝. {Computing eigenvalue and eigenvector} 

Assume ߣҧ
௠௔௫ to be the maximal eigenvalue of the crisp pairwise comparison matrix (3). Compute ݓ 

by 

ݓఈሻఒܣ) ൌ ҧߣ
௠௔௫ݓ ֜ ሺܣఈሻఒݓ െ ҧߣ

௠௔௫ݓ ൌ 0, 



38                                                                                                                           Zangiabadi and Rabie 
                                                                                                                                                                                                
 
 

where  ݓ  denotes the eigenvector of the matrix ሺܣఈሻఒ. 

Comparing ܣ and ሺܣఈሻఒ,  the traditional AHP methods only use a specific figure geometric mean to 
represent the expert opinions for the pairwise comparison matrix. However, the triangular fuzzy 
numbers are used to present the fuzzy opinions and expert consensus. Meanwhile, both approaches use 
the eigenvector method for weight calculation. 

Step ૞. {Consistency test} 

The essential idea of the AHP is that a matrix ܣ of rank ݊ is only consistent, if it has one positive 
eigenvalue ݊ ൌ  ௠௔௫, while all other eigenvalues are zero. Furthermore, Saaty [13] developed theߣ
consistency index ሺܫܥሻ to measure the deviation from a consistent matrix: ܫܥ ൌ(ߣ௠௔௫ െ ݊ሻ/ሺ݊ െ 1ሻ. 

The consistency ratio ሺܴܥሻ is introduced to aid the decision on revising the matrix or not. It is defined 
as the ratio of ܫܥ to the so-called random index ሺܴܫሻ which is  ܫܥ of randomly generated matrices: 

ܴܥ ൌ  .ܫܴ/ܫܥ

For ݊ ൌ  3,  the required consistency ratio ሺ ீܴܥ௢௔௟ሻ should be less than 0.05, for ݊ ൌ  4, it should be 
less than 0.08,  and for ݊ ൒ 5, it should be less than 0.10 to get a sufficiently consistent matrix. 
Otherwise, the matrix should be revised [14]. 

Step ૟. {Computing the overall hierarchy weight} 

After the weights for various hierarchy and elements are computed, compile the computation results 
for the overall hierarchy weights. 

3.    Quantify a Qualitative Data in Transportation Problem 

3.1.  A Qualitative Relationship Evaluation 

Qualitative data in a MOTP can be described by a linear objective function as follows: 

௞ݖ                                    ൌ ෍ ෍ ௞௜௝ݖ ൌ ෍ ෍ ܽ௞௜௝ݔ௜௝

௡

௝ୀଵ

௠

௜ୀଵ

௡

௝ୀଵ

௠

௜ୀଵ

, ݇ ൌ 1, 2, … ,  ሺ4ሻ                                                       ,ݐ

 where 

௞௜௝ݖ ൌ ܽ௞௜௝ݔ௜௝,        ݅ ൌ 1, 2, … , ݉,      ݆ ൌ 1, 2, … , ݊. 

Because of the linearity of the model, it is possible to evaluate each coefficient ܽ௞௜௝ in row ݇ 

independently of the others. However, the lack of natural quantitative scale for decision variable ݔ௜௝ or 

an outcome variable ݖ௞, among other things, may make it difficult to specify the linear objective 
function. 

To estimate ܽ௞௜௝, we have presented each relationship by the following form: 
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௞௜௝ݖߜ                      ൌ ܽ௞௜௝ݔߜ௜௝,         ݅ ൌ 1,2, ڮ , ݉,     ݆ ൌ 1,2, ڮ , ݊,    ݇ ൌ 1,2, ڮ ,  (5)                                .ݐ

To begin with, we need to fix the difference in each ݔ௜௝ being considered. It is not necessary that there 

exist a numerical scale for ݔ௜௝. However, it is possible to describe the change in ݔ௜௝ using soft 

expressions such as: “a little”, “a lot”, “much”, “some”, etc. Next, one needs to estimate the 
corresponding change in ݖ௞௜௝, regardless of whether ݖ௞ having a natural numerical scale or not. 

Now, the change ݖߜ௞ in row ݇ can be written as follows: 

ሻݔߜ௞ሺݖ=௞ݖߜ ൌ ݇          ,ݔߜ௞ݓ௞ݏ ൌ 1, 2, …  ,ݐ

where ݏ௞ ሺ݇ ൌ 1, 2, … , ݇ ,݇ ሻ  is an (unspecified) scaling factor for the coefficients rowsݐ ൌ
1, 2, … ,  Thus, we have . ݐ

ܽ௞௜௝ ൌ ݅          ,௞௜௝ݓ௞ݏ ൌ 1, 2, … , ݉,     ݆ ൌ 1, 2, … , ݊. 

In order to specify the linear objective function (4), we should find a vector ݓ௞ and a scaling factor ݏ௞. 
By using the fuzzy AHP described in Section 2.2  for row ݇ ሺ݇ ൌ 1,2, … ,  ሻ,  we can easily find aݐ

vector ݓ௞ ൌ ൛ݓ௞௜௝, ݅ ൌ 1, 2, … , ݉, ݆ ൌ  1, 2, … , ݊ൟ, ∑ ∑ ௞௜௝ݓ
௡
௝ୀଵ

௠
௜ୀଵ ൌ 1, to describe the relative effect 

of the change (ݔߜ௜௝ሻ of each decision variable on row ݇. Recall from Korhonen and Wallenius [7] that 

we can use one of the following principles to find the scaling factor ݏ௞: 

ሺ1ሻ ݏ௞ ൌ 1  or any other constant, for all ݇ ൌ 1, 2, … ,  .ݐ

௞ݏ  (2) ൌ
ଵ

୫ୟ୶ ೔ೕ ௪ೖ೔ೕ
 ,       for all ݇ ൌ 1, 2, … ,  .ݐ

  ௞ is calibrated by the decision maker (DM), e.g., on the base of a one-unit change in eachݏ (3)
,௜௝ݔ            ݅ ൌ 1, 2, … , ݉,   ݆ ൌ 1, 2, … , ݊. 

 .௞ is calibrated with respect to an ideal value of a consequenceݏ  (4)

The first principal is appropriate, if the scale of consequence ݖ௞ is not very important and the DM is 
only interested in how the current value is related to the range of ݖ௞ . If each decision variable is 
allowed to change by one unit, then the change in the value of ݖ௞ is equal to one. 

The second principle is suitable, when the maximum value/unit has a special meaning for the DM. In a 
maximization problem, this principle implies that a one-unit change in the value of the decision 
variable with the largest coefficient changes the value of the consequence ݖ௞by one unit.  

When there exists a natural scale for some of the rows, we could calibrate the corresponding outcome 
variable ݖ௞ onto this scale. We may ask the DM to evaluate how large of a change a one-unit change in 
each decision variable will cause in the outcome variable. This proved us with the following pairs 

൫ݖߜ௞௜௝, ݅    ,௜௝൯ݔߜ ൌ 1, 2, … , ݉,    ݆ ൌ 1, 2, … , ݊, in which ݔߜ௜௝ ൌ 1. We have assumed that ݖߜ௞௜௝ ൌ

 ௜௝ . The scaling factor can now simply be found throughݔߜ௞௜௝ݓ௞ݏ

∑ ∑ ௞௜௝ݖߜ
௡
௝ୀଵ

௠
௜ୀଵ ൌ ௞ݏ ∑ ∑ ௜௝ݔߜ௞௜௝ݓ

௡
௝ୀଵ

௠
௜ୀଵ ൌ ௞ݏ ∑ ∑ ௞௜௝ݓ

௡
௝ୀଵ

௠
௜ୀଵ ൌ  .௞ݏ
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The forth principle refers to an idea, in which the DM is asked to specify the ideal values (not all 
zeros) for the decision variables, and to specify the value of the corresponding outcome. This idea may 
work for problem in which the best value for each decision variable is, for example, one and the DM 
can easily specify the impact of the sum of the variables. 

Now, we are ready to present the proposed model for the multi-objective transportation problem with 
consideration of qualitative data. 

3.2.  Model Formulation 

     The proposed model for the multi-objective transportation problem with consideration of qualitative 
data can be written as 

min ௥ݖ ൫ݔ௜௝൯ ൌ ෍ ෍ ܿ௜௝
௥ ௜௝ݔ

௡

௝ୀଵ

௠

௜ୀଵ
ݎ           , ൌ 1, 2, … , ݈,                                 

min ௞ݖ ൫ݔ௜௝൯ ൌ ෍ ෍ ௞ݏ௞௜௝ݓ

௡

௝ୀଵ

௠

௜ୀଵ
݇              ,௜௝ݔ ൌ ݈ ൅ 1, ݈ ൅ 2, … , ݈ ൅  ,ݐ

.ݏ                                (6)                                                                                                                                                    .ݐ

෍ ௜௝ݔ

n

j=1
≤ ai,             ݅=1, 2, …, m,                                

෍ ௜௝ݔ

m

௜ୀଵ
=bj,             ݆=1, 2, …, n,                                     

௜௝ݔ ൒ 0,    for all  ݅, ݆ .                                                          

Here, it will be assumed that the first ݈ quantitative objectives are significantly more important than the 
qualitative objectives. Therefore, we use the preemptive fuzzy goal programming approach to solve the 
proposed model. 

3.3. Preemptive Fuzzy Goal Programming Approach 

     Goal programming (GP) is one of the most popular method for solving multi-objective linear 
programming problems, first introduced by Charnes and Cooper [3]. The idea of goal programming is 
to establish a goal level of achievement for each criterion. However, it is difficult for the decision-
maker to determine precisely the goal value of each objective, since possibly only some partial 
information is known. An application of fuzzy set theory to GP was made by Narasimhan in 1980 [10]. 

     In the proposed model, we supposed that the first ݈ quantitative objective functions are significantly 
more important than the qualitative objectives, and so we use the preemptive fuzzy goal programming 
to solve model (6). We apply the following linear membership function corresponding to the ݎth goal: 
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ሻ൯ݔ൫ܼ௥ሺߤ ൌ

ە
۔

ۓ
1,                                                ݂݅ ܼ௥ ൑           ,௥ܮ

1 െ
ܼ௥ െ ௥ܮ

௥ܷ െ ௥ܮ
௥ܮ ݂݅                             , ൏ ܼ௥ ൏ ௥ܷ

0,                                                ݂݅  ܼ௥ ൒        ,௥ܮ

, 

where, ߤሺݖ௥ሻ  is the membership function of ݎth goal and ܮ௥ and  ௥ܷ are the  best and the worst values 
for the ݎth objective function, respectively. 

To compute ܮ௥ and  ௥ܷ ,  we solve the multi-objective transportation problem as a single objective 
transportation problem and compute the objective function value, taking each time only one objective 
as the objective function and ignore all the others. Each time for each objective we find min (ܮ௥ሻ  and 
max ( ௥ܷሻ values for an ݎth objective function. Using the preemptive priority structure of the fuzzy goal 
programming approach presented by Zangiabadi and Maleki [16] for the model (6), we have the 
following problem: 

lex min ሾ߶ଵ, ߶ଶሿ                                                                              

.ݏ                                                                                           .ݐ

௥ሻݖሺߤ ൅ ݀௥
ି െ ݀௥

ା ൌ ݎ    ,1 ൌ 1, 2, … , ݈ ൅  ,ݐ

߶ଵ ൒ ݀௥
ݎ                ,ି ൌ 1, 2, … , ݈,                   

߶ଶ ൒ ݀௥
ݎ                ,ି ൌ ݈ ൅ 1, 2, … , ݈ ൅      ,ݐ

                                                      ݀௥
ା݀௥

ି ൌ ݎ                        ,0 ൌ 1, 2, … , ݈ ൅  (7)                                                  ,ݐ

෍ ௜௝ݔ ൌ ܽ௜ ,
௡

௝ୀଵ
      ݅ ൌ 1, 2, … , ݉,                  

෍ ௜௝ݔ ൌ ௝ܾ

௠

௜ୀଵ
, ݆ ൌ 1, 2, … , ݊,                  

߶ଵ ൑ 1, ߶ଶ ൑ 1,                                       

߶ଵ ൒ 0,     ߶ଶ ൒ ௜௝ݔ   ,0 ൒ 0,     for all  ݅, ݆ . 

     In this model, we minimize the negative deviation variables from 1 to obtain a compromise solution 
for the multi-objective transportation problem. We use the Linear Interactive General Optimization 
LINGO 11.0 software package to solve the model (7). 
 
 

4. Application Example 
 
     As mentioned previously, to alleviate the shortcomings of the conventional transportation model, 
we presented a multi-objective transportation model with consideration of both quantitative and 
qualitative data. In the proposed model, we supposed that the quantitative objective functions are 
significantly more important than the qualitative objectives. Thus, we use the preemptive fuzzy goal 
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programming to solve the model. To illustrate the proposed approach, a case study of the distribution 
problem is presented. The proposed model considers both the depot to customer and customer to 
customer relationships by determining the lowest total transportation cost and the nearest vicinity of 
customers. 
 
Example 1. Most existing research works on transportation problems only consider depot to customer 
relationship. However, the relationship between customer and customer is also critical, because, in 
fact, the vehicle route for each depot, is not comprised of merely movement from depot to customer, 
and back from customer to depot, as conveniently assumed in the conventional transportation model. 
However, the movement may more realistically be considered from depot to customer followed by 
movements to other customers. Moreover, suppose that two or more customers need to be served by 
the same depot. The conventional models appear to be improper as a result of lacking the customer to 
customer relationship as a qualitative data. In the following, a simple problem with two depots and ten 
customers is considered with the assumption that the demand of each customer must be served by only 
one depot. Moreover, a depot’s capacity is sufficient to serve a customer. Fig. 1 depicts the location 
map, which we can presume the anticipated solution by quantitative data (the distance between depot 
and customer) with the depot to customer relationship consideration in which customers ܥଵ, ,ଶܥ  ଷ andܥ
,଻ܥ ଵ, and customersܦ ସ should be served by depotܥ ,଼ܥ  ,ଶܦ ଵ଴ should be served by depotܥ  ଽ andܥ
whereas customers ܥହ and ܥ଺ may be assigned by depot ܦଵ or ܦଶ. But, we can clearly observe that 
customer ܥହ and ܥ଺ should be served by depot ܦଵ, because of being in the vicinity of  ܦଵ. This means 
that customer to customer relationship consideration is also necessary for a transportation problem. So, 
we use the proposed approach in order to quantify the customer to customer relationship. The list of 
the basic data is shown in Table 1. 
 
     This problem considers two objective functions. The first objective function is to minimize the total 
transportation cost. The second objective function is to minimize the overall independence value 
between customer and customer. By using fuzzy AHP, we find a vector ݓ௞ to describe relative effects 
of change of each decision variable on the value of customer to customer relationship. Then, the 
relative effect on the independence value of customer to customer relationship can be calculated 
from ݓ௠௔௫ െ  ௠௔௫ is the maximum scale of the relative effect of decision variable on theݓ ௞, whereݓ
value of customer relationship which is assigned to be 1. 
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Figure 1: The location map 
 
 

Table 1: Transportation cost per unit (in U.S. dollars) and customer’s demand 
 
                                                                            Depot  ݅ 

Transportation cost per unit 
             Customer j                           ܥଵ௝ ܥଶ௝              ௝ܾ  (Unit) 

 ଵ 10 35 500ܥ
 ଶ 15 35 250ܥ
ଷ 12.5ܥ  30 300 
ସ 20ܥ  35 750 
ହ 15ܥ  15 280 
 ଺ 10 10 370ܥ
 ଻ 30 14 450ܥ
 650 15 35 ଼ܥ
 ଽ 30 10 1000ܥ
 ଵ଴ 40 15 250ܥ

Available supply    
          ௝ܽ(unit)                                  3000                                  3000                      
 
 
 
     A zero-one integer programming is integrated into the proposed model while enforcing that each 
customer’s demand can solely be served by only one depot. Let ݏ௞ ൌ 1. Then, the mathematical model 
for this problem can be shown as follows: 
 

min   ݖଵሺݕ௜௝ሻ ൌ ෍ ෍ ܿ௜௝ݕ௜௝ ௝ܾ

௡

௝ୀଵ

௠

௜ୀଵ

 

min ଶݖ ൫ݕ௜௝൯ ൌ ෍ ෍ ௜௝ݕଵ௜௝ݓ

௡

௝ୀଵ

௠

௜ୀଵ

 

.ݏ                                                  .ݐ

෍ ௜௝ݕ ௝ܾ ൑ ܽ௜

௡

௝ୀଵ

,       ݅ ൌ 1,2, 

෍ ௜௝ݕ

௠

௜ୀଵ

ൌ 1,       ݆ ൌ 1, 2, … , ݊, 

௜௝ݕ ൒ 0,           for all  ݅, ݆, 
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where ݕ௜௝ is 1, if customer ݆ is served by the ݅th depot; otherwise, it is 0. According to Table 1, the 

model is specified as follows: 
 

       min ଵݖ  ൌ ଵଵݕ500  ൅ ଵଶݕ3750 ൅ ଵଷݕ3750 ൅ ଵସݕ15000 ൅ ଵହݕ4200 ൅ ଵ଺ݕ3700 ൅ ଵ଻ݕ13500

൅ ଵ଼ݕ22750 ൅ ଵଽݕ30000 ൅ ଵଵ଴ݕ10000 ൅ ଶଵݕ17500 ൅ ଶଶݕ8750 ൅ ଶଷݕ9000

൅ ଶସݕ26250 ൅ ଶହݕ4200 ൅ ଶ଺ݕ3700 ൅ ଶ଻ݕ6300 ൅ ଶ଼ݕ9750 ൅ ଶଽݕ10000

൅  ଶଵ଴ݕ3750

min ଵݖ  ൌ ଵଵݕ0.924  ൅ ଵଶݕ0.8792 ൅ ଵଷݕ0.722 ൅ ଵସݕ0.8742 ൅ ଵହݕ0.9404 ൅ ଵ଺ݕ0.9404

൅ ଵ଻ݕ0.94849 ൅ ଵ଼ݕ0.9898 ൅ ଵଽݕ0.9796 ൅ ଵଵ଴ݕ0.9941 ൅ ଶଵݕ0.9873 ൅ ଶଶݕ0.9911

൅ ଶଷݕ0.9937 ൅ ଶସݕ0.9788 ൅ ଶହݕ0.954 ൅ ଶ଺ݕ0.954 ൅ ଶ଻ݕ0.9369 ൅ ଶ଼ݕ0.8295

൅ ଶଽݕ0.9369 ൅  ଶଵ଴ݕ0.9492

.ݏ                                                                                                                                                        .ݐ

ଵଵݕ500        ൅ ଵଶݕ250 ൅ ଵଷݕ300 ൅ ଵସݕ750 ൅ ଵହݕ280 ൅ ଵ଺ݕ370 ൅ ଵ଻ݕ450 ൅ ଵ଼ݕ650                 
൅ ଵଽݕ1000 ൅ ଵଵ଴ݕ250 ൑ 3000, 

ଶଵݕ500            ൅ ଶଶݕ250 ൅ ଶଷݕ300 ൅ ଶସݕ750 ൅ ଶହݕ280 ൅ ଶ଺ݕ370 ൅ ଶ଻ݕ450 ൅ ଶ଼ݕ650 ൅ ଶଽݕ1000

൅ ଶଵ଴ݕ250 ൑ 3000, 

෍ ௜௝ݕ

௠

௜ୀଵ

ൌ 1,       ݆ ൌ 1,2, ڮ , ݊,                                                                           

௜௝ݕ ൒ 0.                                                                                                                

The solution corresponding to each single objective transportation problem is: 
 

ଵܷ  ൌ ଵݖ          ,145.650   ൌ ଵܮ   ൌ   65.200,      
ଵܷ  ൌ ଵݖ         ,9.77089     ൌ ଵܮ  ൌ  8.932700, 

 

Then, the proposed model for this problem can be shown as follows: 

ݔ݈݁ min  ሾ߶ଵ, ߶ଶሿ                                               

.ݏ                                                                .ݐ

                     1 െ
ଵݖ െ 65.200

80.450
൅ ݀ଵ

ି െ ݀ଵ
ା ൌ 1,               

                       1 െ
ଶݖ െ 8.932700

0.83819
൅ ݀ଶ

ି െ ݀ଶ
ା ൌ 1,           

߶ଵ ൒ ݀ଵ
ି,                                    

߶ଶ ൒ ݀ଶ
ି,                                     
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݀ଵ
ା݀ଵ

ି ൌ 0,                                   

݀ଶ
ା݀ଶ

ି ൌ 0,                                   

෍ ௜௝ݕ ൑ ܽ௜

௡

௝ୀଵ

,       ݅ ൌ 1, 2, … , ݉, 

߶ଵ ൑ 1, ߶ଶ ൑ 1,                              

߶ଵ ൒ 0, ߶ଶ ൒ 0,                             

௜௝ݕ ൌ 0 or 1,            for all  ݅, ݆.     

This model was solved by using the LINGO software package and the results are: 
 

ଵଵݕ
כ ൌ ଵଶݕ 

כ ൌ ଵଷݕ 
כ ൌ ଵସݕ

כ ൌ ଵହݕ 
כ ൌ ଵ଺ݕ

כ ൌ, ଶ଻ݕ
כ ൌ ଶ଼ݕ

כ ൌ ଶଽݕ
כ ൌ ଶଵ଴ݕ 

כ ൌ  1, 
 
with all the other variables being zero. This is the best solution among all possible solutions which can 
be obtained by using our proposed model. In order to illustrate the effectiveness of the proposed 
model, we consider the case study given by Nunkaew et al. [11]. They solved a large scale 
transportation problem with consideration of the relationships among all customers. They concluded 
that the solution obtained by assigning customers to depots is different from the one obtained by the 
conventional approach. Moreover, the obtained delivery cost was reduced, as compared to the total 
delivery cost obtained by the conventional approach (for more details, see [11]). We expect that for 
large transportation problems with more than a thousand customers, consideration of customer to 
customer relationship may result in delivery costs for the transportation. Since customer to customer 
relationship is a qualitative feature of our proposed model, the model may be useful to arrive at better 
solutions for large-scale transportation problems. 
 

5.  Conclusions 
 
     Owing to the lack of qualitative data in transportation problems, a multi-objective transportation 
model with consideration of qualitative data was presented. The proposed model is more realistic than 
the conventional transportation model. Using a fuzzy goal programming technique, the decision maker 
may obtain a satisfactory solution. We made use of preemptive fuzzy goal programming to solve the 
proposed model. The proposed model can obtain a reasonable solution considering both the 
quantitative and the qualitative data.  
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