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Fuzzy set theory has been applied to many fields, such as operations 
research, control theory, and management sciences. We consider two 
classes of fuzzy linear programming (FLP) problems: Fuzzy number linear 
programming and linear programming with trapezoidal fuzzy variables 
problems. We state our recently established results and develop fuzzy primal 
simplex algorithms for solving these problems. Finally, we give illustrative 
examples. 
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1. Introduction 

Many application problems, modeled as mathematical programming problems, 
may be formulated with uncertainty. The concept of fuzzy mathematical programming 
at general level was first proposed by Tanaka et al. [13] in the framework of the fuzzy 
decision of Bellman and Zadeh [1]. The first formulation of fuzzy linear programming 
(FLP) was proposed by Zimmermann [17]. A review of the literature concerning fuzzy 
mathematical programming as well as comparison of fuzzy numbers can be seen in Klir 
and Yuan [6] and also Lai and Hwang [7]. Several authors considered various types of 
the FLP problems and proposed several approaches for solving them [3, 4, 5, 8, 9, 10, 
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14]. One convenient method is based on the concept of comparison of fuzzy numbers by 
use of ranking functions [3, 8, 9, 10, 11, 12]. 
Here, we first review some necessary concepts of fuzzy set theory in Section 2. In 
Section 3, we explain the notion of comparison of fuzzy numbers by use of a linear 
ranking function. After defining fuzzy linear programming problems in Section 4, we 
describe fuzzy number linear programming in Section 5 and give a corresponding 
primal simplex algorithm in Section 6. Section 7 discusses linear programming with 
trapezoidal fuzzy variables and a corresponding primal simplex algorithm is given in 
Section 8. Section 9 illustrates the working of the two algorithms through two examples. 
We conclude in Section 10. 
 
2. Definitions and Notations 

Here, we give some necessary definitions and results of fuzzy set theory given 
by Bellman and Zadeh [1] (taken from Bezdek [2] and Lai and Hwang [7]). 
 
A. Fuzzy sets 
Definition 2.1. Fuzzy sets and membership functions. If X  is a collection of objects 
denoted generically by x , then a fuzzy set A  in X is defined to be a set of ordered 
pairs {( , ( )) | }AA x x x Xμ= ∈ , where ( )A xμ is called the membership function for the 
fuzzy set. The membership function maps each element of X to a membership value 
between 0 and 1.  
 
Remark 2.1. We assume that X  is the real line R . 
 
Definition 2.2. Support. The support of a fuzzy set A is the set of points x in X with 

( ) 0A xμ > .                           
 
Definition 2.3. Core. The core of a fuzzy set is the set of points x in X with  

( ) 1A xμ = . 
 

Definition 2.4. Normality.  A fuzzy set A is called normal if its core is nonempty. In 
other words, there is at least one point x X∈ with  ( ) 1A xμ = .  
 

Definition 2.5. cutα −  and strong cutα − .The cutα −  or levelα − set of a fuzzy set 
A is a crisp set defined by { | ( ) }AA x X xα μ α= ∈ ≥ . The strong cutα − is defined to be 

{ | ( ) }AA x X xα μ α= ∈ > .  
 

Definition 2.6. Convexity. A fuzzy set A  on X  is convex if for any ,x y X∈ and 
any [0,1]λ∈ , we have, 
                               ( (1 ) ) min{ ( ), ( )}A A Ax y x yμ λ λ μ μ+ − ≥ . 
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Remark 2.2. A fuzzy set is convex if and only if all its cutsα −  are convex.  
 

Definition 2.7. Fuzzy number. A fuzzy number A  is a fuzzy set on the real line that 
satisfies the conditions of normality and convexity.  
In fact, any fuzzy number is defined by its corresponding membership function. Assume 
that the membership function of any fuzzy number a%  is: 
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The fuzzy number with the above membership function is shown in Fig. 1, and is called 
trapezoidal fuzzy number. 
 

 
                                            La α−     La                    Ua      Ua β+  

Figure 1. A trapezoidal fuzzy number. 
 

A trapezoidal fuzzy number can be shown by ( , , , ).L Ua a a α β=%  The support of a%  is 
( , )L Ua aα β− +  , and the core of a%  is [ , ]L Ua a . Let F(R )  denote the set of all 
trapezoidal fuzzy numbers. 
  
B.  Arithmetic on trapezoidal fuzzy numbers  

Let ),,,(~ βαUL aaa =  and ),,,(~ θγUL bbb =  be two trapezoidal fuzzy numbers 
and x R∈ . Define [6]: 

0, ( , , , ),L Ux x a x a x a x xα β≥ =%  
0, ( , , , ),U Lx xa xa xa x xβ α< = − −%    

),,,(~~ θβγα ++++=+ UULL bababa . 
 

As an illustration of the above arithmetic, consider two trapezoidal fuzzy 
numbers as given in Fig. 2.  
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                                          ( 2,1,1, 2)a = −%                  (2, 4,1,1)b =%  

Figure 2. Two trapezoidal fuzzy numbers. 
 

The results of negation, addition and subtraction are shown in Fig. 3.                   
 

 
( 4, 2,1,1)b− = − −%  

 

 
(0,5, 2,3)a b+ =%%  

 

 
( 6, 1,2,3)a b− = − −%%  

Figure 3. Results of negation, addition and subtraction of trapezoidal fuzzy numbers. 
 

3. Ranking Functions 
Ranking is a viable approach for ordering fuzzy numbers.  Various types of 

ranking functions have been introduced and some have been used for solving linear 
programming problems with fuzzy parameters [3, 7, 8, 9, 10]. A review of some 
common methods for ranking fuzzy subsets of the unit interval can be seen in [15]. 
Here, we deal with ranking the elements of F(R ) . In fact, an effective approach for 
ordering the elements of F(R ) is to define a ranking function R :  F(R )   (R )    
mapping trapezoidal fuzzy numbers into R . Consider a%  and b% in F(R ) . Define order 
on  F(R )  as follows [8, 9]:    

ba ~~
ℜ
≥  if ( ) ( )a bℜ ≥ℜ %% ,         (1) 
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ba ~~
ℜ
>  if ( ) ( )a bℜ >ℜ %% ,         (2) 

ba ~~
ℜ
=  if ( ) ( )a bℜ =ℜ %% ,         (3) 

 
where a~  and b~   are  in F(R ) .  Also we write ba ~~

ℜ
≤  if ab ~~

ℜ
≥ .  Then, for any linear 

ranking function ℜ we may obtain: ba ~~
ℜ
≥ if and only if 0a b

ℜ
− ≥% %% , or if and only if 

ab ~~
−≥−

ℜ
. Also, if  ba ~~

ℜ
≥  and dc ~~

ℜ
≥ , then dbca ~~~~ +≥+

ℜ
.  

 

Remark 3.1:  For a trapezoidal fuzzy number a% , the relation 0a
ℜ
≥ %%  holds, if there exist 

0ε ≥ and 0α ≥  such that ( , , , )a ε ε α α
ℜ
≥ −% . We realize that ( , , , ) 0ε ε α αℜ − =  (we also 

consider 0a
ℜ
= %% if and only if ( ) 0aℜ =% ). Thus, without loss of generality, throughout the 

paper we let 0 (0,0,0,0)=% as the zero trapezoidal fuzzy number.    
We consider a linear ranking function on ( , , , ) ( )L Ua a a Fα β= ∈% �     as: 

( ) L U
L Ua c a c a c cα βα βℜ = + + +% , 

where , ,L Uc c cα and cβ  are constants, at least one of which is nonzero. A special version 
of the above linear ranking function was first proposed by Yager [16]:  

)).(
2
1(

2
1)~( αβ −++=ℜ UL aaa           (4) 

Thus, using (4), for trapezoidal fuzzy numbers ),,,(~ βαUL aaa =  and 
),,,(~ θγUL bbb = , we have: 

ba ~~
ℜ
≥ if and only if ).(

2
1)(

2
1 γθαβ −++≥−++ ULUL bbaa  

 
4. Fuzzy Linear Programming 

An application of fuzzy set theory to decision making is fuzzy linear 
programming, first introduced by Zimmermann [17]. Here, we introduce fuzzy linear 
programming (FLP) problems and divide them into two main subclasses: Fuzzy number 
linear programming (FNLP) and linear programming with trapezoidal fuzzy variables 
(FVLP) problems.  

A crisp linear programming (LP) problem in a standard form is defined as: 
                                                  Max   z cx=  

s.t.   Ax b=               (5) 
                                                            0x ≥ , 
 

where the parameters 1( ,..., ),nc c c= 1( ,..., ) ,T
mb b b=  ,m n≤  and [ ]ij m nA a ×=  are given 

F(R )  
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with crisp components (members of R ) and n  is an unknown vector of variables 
to be found. If some parameters are considered to be fuzzy numbers, then we obtain a 
fuzzy linear programming (FLP) problem. We consider the FLP problems in two main 
classes: (1) Fuzzy number linear programming (FNLP), and (2) linear programming 
with trapezoidal fuzzy variables (FVLP) problems. 
 
5. Fuzzy Number Linear Programming 
 

A. The definition of FNLP problem   
    A fuzzy number linear programming (FNLP) problem is defined as: 
 

                                                  Max xcz ~~
ℜ
=  

s.t.  bAx =               (6) 
                                                             0≥x , 
 
where , , , ( ( ))m n m n T nb x A c F×∈ ∈ ∈ ∈%� � � � , and  is a linear ranking function. 
 

Definition 5.1. Any x satisfying the set of constraints (6) of the FNLP problem is called 
a feasible solution. Let NQ  be the set of all feasible solutions of the FNLP problem. 
Then, we say that 0 NQx ∈  is an optimal feasible solution for the FNLP problem if 

0cx cx
ℜ
≥% % for all NQx ∈ . 

One approach for solving these problems is to use the same ranking function for 
every equality and inequality. For example, we may use the ranking function (4). 
Applying the ranking function, we obtain a crisp model, equivalent to the FNLP 
problem, the optimal solution of which is the optimal solution of the FNLP problem. 
In fact, one can show that problem (5) and (6) are equivalent (see Mahdavi-Amiri and 
Nasseri [9]), in the sense that the feasible solution sets of the two problems are the same. 
Then, the two problems either are infeasible and hence have no solution, or are feasible, 
and hence have the same optimal solutions, or are unbounded.  
 
B. Basic feasible solution   

Consider the system Ax b=  and 0,x ≥  where A  is an m n×  matrix and b  is 
an m vector. Suppose that ( , ) ( )rank A b rank A m= = . Partition A , after possibly 
rearranging the columns of A , as [ B ]N  where B , m m× , is nonsingular. It is 
apparent that 

1

1( ,..., ) , 0
m

T
B B B Nx x x B b x−= = =  is a solution of Ax b= . The point 

( , )T T T
B Nx x x=  where 0Nx =  is called a basic solution of the system. If 0Bx ≥ , then x  

is called a basic feasible solution (BFS) of the system and the corresponding fuzzy 
objective value is B Bz c x

ℜ
= %% , where 

1
( ,..., )

mB B Bc c c= . Now, corresponding to every index 

ℜ ℜ ℜ ℜ
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,j 1 ,j n≤ ≤ define: 1
j jy B a−= and j B jz c y

ℜ
= %% . Observe that for any basic 

index ij B= , mi ≤≤1 , we have:  
1 0j j B j j B i j j jz c c B a c c e c c c−

ℜ ℜ ℜ ℜ
− = − = − = − = %% % % % % % %% , 

where ie  is the ith unit vector. Note that B  is called the basic matrix and N  is called 
the nonbasic matrix. The components of Bx  are called basic variables, and the 
components of Nx  are called nonbasic variables.  
 

The following theorem concerns the so-called nondegenerate FNLP problems, 
where every basic variable corresponding to every feasible basis B  is positive [9]. 
 
Theorem 5.2. Let the FNLP problem be nondegenerate. A basic feasible solution 

1 , 0B Nx B b x−= =  is optimal to (6) if and only if j jz c
ℜ
≥ %% , for all ,j  1 j n≤ ≤ .  

Proof: Suppose that * ( , )T T T
B Nx x x=  is a basic feasible solution to (6), 

where 1 , 0B Nx B b x−= = . Then, 1
B B Bz c x c B b−

ℜ ℜ
= =% %% . On the other hand, for every feasible 

solution ,x we have .B Nb Ax Bx Nx= = +  Hence, we obtain:   

1 1( )
i

B B N N B B j j j
j B

z cx c x c x c B b c B a c x− −

ℜ ℜ ℜ
≠

= = + = − −∑% % % % % %% . 

Then, 

                               * ( )
i

j j j
j B

z z z c x
ℜ

≠

= − −∑ %% % % .    (7) 

The proof can now be completed using (7) and Theorem 6.2 given in Section 6. �  
 

In the next section, we devise a fuzzy primal simplex algorithm for solving the 
FNLP problems.  
 
6. Simplex Method for the FNLP Problems  
 
A. FNLP simplex method in tableau format 

Consider the FNLP problem as in (6). We rewrite the FNLP problem as: 
Max  B B N Nz c x c x

ℜ
= +% %%  

s.t.   B NBx Nx b+ =  
                                                     0Bx ≥ , 0Nx ≥ . 
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Hence, we have 1 1 .B Nx B Nx B b− −+ =  Therefore, 1 1( ) .B N N Bz c B N c x c B b− −

ℜ
+ − =% % %%  With 

0,Nx =  we have  1
0Bx B b y−= = , and 1

Bz c B b−

ℜ
= %% . Thus, we rewrite the above FNLP 

problem as in Table 1. 
 

Table 1. The FNLP simplex tableau. 

 
 

Remark 6.1:  Table 1 gives all the information needed to proceed with the simplex 
method. The fuzzy cost row in Table 1 is 1

0 ,T
By c B A c−

ℜ
= −% %% where 

1
0 j B j j j jy c B a c z c−

ℜ ℜ
= − = −% % % %% , 1 j n≤ ≤ , with 0 0jy

ℜ
= %%  for ij B= , 1 i m≤ ≤ . According to 

the optimality conditions (Theorem 5.2), we are at the optimal solution if 0 0jy
ℜ
≥%  for 

all ,ij B≠ 1 i m≤ ≤ . On the other hand, if 0 0ky
ℜ
<% , for some ,ik B≠ 1 i m≤ ≤ , then the 

problem is either unbounded or an exchange of a basic variable
rBx and the nonbasic 

variable kx can be made to increase the rank of the objective value (under 
nondegeneracy assumption). The following results established in [9] help us to devise 
the fuzzy primal simplex algorithm. 
 
Theorem 6.1.  If in an FNLP simplex tableau, there is a column k (not in basis) so that 

0 0k k ky z c
ℜ ℜ
= − < %% %%  and 0iky ≤ , 1,...,i m= , then the FNLP problem is unbounded.  

 
Theorem 6.2. If in an FNLP simplex tableau, a nonbasic index k exists such that 

0 0k k ky z c
ℜ ℜ
= − < %% %%  and there exists a basic index iB  such that 0iky > , then a pivoting row 

r  can be found so that pivoting on rky  yields a feasible tableau with a corresponding 
nondecreasing (increasing under nondegeneracy assumption) fuzzy objective value. 
 
Remark 6.2 (see [9]): If k exists such that 0 0( ) 0k ky y= ℜ <%  and the problem is not 
unbounded, then r  can be chosen so that  

 

0 0

1
min | 0 ,r i

iki m
rk ik

y y y
y y≤ ≤

⎧ ⎫
= >⎨ ⎬

⎩ ⎭
 



76                                                                             Mahdavi-Amiri, Nasseri and Yazdani 
 

 
in order to replace 

rBx  in the basis by kx , resulting in a new basis 

( )1 1 1
ˆ , , , , , , .

r rB B k B mB a a a a a
− +

= K K  The new basis is primal feasible and the 
corresponding fuzzy objective value is nondecreasing (increasing under nondegeneracy 
assumption). It can be shown that the new simplex tableau is obtained by pivoting  on 

rky , that is, doing Gaussian elimination on the k th column using the pivot row r , with 
the pivot rky , to transform the k th  column to the unit vector re . It is easily seen that 

the new fuzzy objective value is: 0
00 00 0 00ˆ ,r

k
rk

yy y y y
y

= − ≥  where 0 0( ),j jy y=ℜ %  for all 

j , since 0 0ky <  and  0r

rk

y
y

 (if the problem is nondegenerate, then 0 0r

rk

y
y

>  and hence 

00 00ŷ y> ). 
We now describe the pivoting strategy. 
 
B. Pivoting and change of basis 

If kx  enters the basis and 
rBx leaves the basis, then pivoting on rky  in the 

simplex tableau is carried out, as follows: 
1) Divide row r  by rky . 
2) For 0,1,...,i m=  and i r≠ , update the i th row by adding to it iky−  times the new 
r th row. 
 

We now present the simplex algorithm for the FNLP problem.            
 
C. The main steps of FNLP simplex algorithm 
 

Algorithm 1: The fuzzy simplex method for the FNLP problem.   
Assumption: A basic feasible solution with basis B  and the corresponding simplex 
tableau is at hand.  
 
1. The basic feasible solution is given by 0Bx y=   and 0Nx = . The fuzzy objective 

value is: 00z y
ℜ
= %% .  

2. Calculate 0 ( )j j jy z c=ℜ − %% , 1,...,j n= , ij B≠ , 1,..., .i m=  
Let 0ky =

1,...,
min
j n= 0{ }jy . If 0 0ky ≥ , then stop; the current solution is optimal. 

3. If 0ky ≤ , then stop; the problem is unbounded. Otherwise, determine an index r  
corresponding to a variable 

rBx  leaving the basis as follows:  

0 0

1
min{ | 0}r i

iki m
rk ik

y y y
y y≤ ≤

= > . 
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4. Pivot on rky  and update the simplex tableau. Go to step 2. 

 
7. Linear Programming with Trapezoidal Fuzzy Variables 
 
A. The definition of FVLP problem 

A linear programming with trapezoidal fuzzy variables (FVLP)  problem  is: 
 

                                                  Max   xcz ~~
ℜ
=  

s.t.   bxA ~~
ℜ
=             (8)  

                                                              0x
ℜ
≥ %% , 

 
where ( ( )) ,mb F∈% � ( ( )) ,nx F∈% � ,m nA ×∈�  and .T nc ∈�  
 

Note that an FVLP problem is a linear programming problem in fuzzy 
environment with the decision making variables being fuzzy numbers. 
Definition 7.1. We say that a fuzzy vector ( ( ))nx F∈% � is a fuzzy feasible solution for 
(8) if x~  satisfies the constraints bxA ~~

ℜ
= and 0x

ℜ
≥ %% . 

Definition 7.2. A fuzzy feasible solution *
~x  is a fuzzy optimal solution for (8), if for 

every fuzzy feasible solution x~  for (8), we have xcxc ~~
* ℜ
≥ . 

B. The fuzzy basic feasible solution   
Here, we describe fuzzy basic feasible solution (FBFS) for the FVLP problem (8) 

as established by Mahdavi-Amiri and Nasseri [8]. Let [ ]ij m nA a ×= . 
Assume ( )rank A m= . Partition A , rearranging columns of A , if needed, as [B  

]N , where B , m m× , is a nonsingular matrix. Let jy  be the solution to jBy a= . It is 
apparent that the basic solution, 

1

1
0( ,..., ) , 0

m

T
B B B Nx x x B b y x−

ℜ ℜ ℜ
= = = =% %% % % % % ,       (9) 

is a solution of .~~ bxA
ℜ
=  We call x% , accordingly partitioned as ( , )T T T

B Nx x% % , a fuzzy basic 

solution corresponding to the basis B .  If 0Bx
ℜ
≥ %% , then the fuzzy basic solution is feasible. 

Now, corresponding to every fuzzy nonbasic variable ,1 , , 1,..., ,j ix j n j B i m≤ ≤ ≠ =%  
define: 

1
j B j B jz c y c B a−= = .           (10) 

The following result concerns the nondegenerate problems, where every fuzzy 
basic variable corresponding to every feasible basis B is positive [8]. 
 

ℜ ℜ ℜ ℜ

ℜ
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Theorem 7.1. Assume the FVLP problem is nondegenerate. A fuzzy basic feasible 
solution 1 , 0B Nx B b x−

ℜ ℜ
= =% %% %  is optimal to (8) if and only if  j jz c≥ , for every j , 1 j n≤ ≤ .  

Proof: See [8]. 
 

Maleki et al. [10] proposed a method for solving FVLP problems by use of an 
auxiliary problem. They discussed some relations between the FVLP problem and the 
auxiliary problem and used the results for solving the FVLP problem by an algorithm 
based on the solution of the auxiliary problem. Recently Mahdavi-Amiri and Nasseri [8] 
developed the duality results for the FVLP problem. They showed that the auxiliary 
problem in [10] is indeed the dual of the FVLP problem. Based on the results obtained, 
they presented a dual simplex algorithm for solving the FVLP problems directly using 
the primal simplex tableau. Here, we discuss and develop the fuzzy primal simplex 
algorithm for solving the FVLP problems.    
 
8. Simplex Method for the FVLP Problems 
 
A. FVLP simplex method in tableau format   
Consider the FVLP problem (8), rewritten in the following form:  
                                                     Max B B N Nz c x c x

ℜ
= +% %%  

s.t.   B NBx Nx b
ℜ

+ = %% %             (11) 

                                                                         0Bx
ℜ
≥ %%  

                                                            0Nx
ℜ
≥ %% . 

 
We can write 1 1

B Nx B b B N x− −

ℜ
= −%% % , 1 1( )B N N Nz c B b B Nx c x− −

ℜ
= − +% % %% , and 

hence 1 1
B Nx B Nx B b− −

ℜ
+ = %% % , and 1 1( ) .B N N Bz c B N c x c B b− −

ℜ
+ − = %%%  

Letting 0~~
ℜ
=Nx , we have 1

0Bx y B b−

ℜ ℜ
= = %% %   and 0Bz c y

ℜ
= %% . Thus, we write the above 

FVLP problem in the following tableau format (Table 2). 
 
 Table 2.  The FVLP simplex tableau. 

 
 

Table 2 gives us all the information needed to proceed with the fuzzy primal 
simplex method. The cost row in the above tableau is:  
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0 0,jy = ij B= , 1 i m≤ ≤ , 

0 ,j B j j j jy c y c z c= − = −  
1 , , 1ij n j B i m≤ ≤ ≠ ≤ ≤ . 

According to the optimality conditions for these problems, we are at the optimal 
solution if 0 0jy ≥ , for all , 1ij B i m≠ ≤ ≤ . On the other hand, if 0 0ky < , for some 

ik B≠ , 1 i m≤ ≤ , then the problem is either unbounded or an exchange of a basic 
variable 

rBx% , for some r , and the nonbasic variable kx%   can be made to increase the 
rank of the objective value (under nondegeneracy assumption). 
 

The following theorems taken from [8] state the conditions for unboundedness 
of the FVLP problem and the conditions permitting the update of the tableau to a new 
tableau having a nondecreasing (increasing under nondegeneracy assumption) rank of 
the objective value.   
 
Theorem 8.1. If in an FVLP simplex tableau, there is a column k  (not in basis) for 
which 0k kz c− <  and 0iky ≤ , 1,...,i m= , then the FVLP problem is unbounded. 
 
Theorem 8.2. If in an FVLP simplex tableau, a nonbasic index k exists such that  

0k kz c− <   and there exists a basic index  iB  such that 0iky > , then a pivoting row r  
can be found so that pivoting on rky  yields a fuzzy feasible tableau with a 
corresponding nondecreasing (increasing under nondegeneracy assumption) objective 
value. 
 
B. Pivoting and change of basis 

If kx% enters the basis and 
rBx% leaves the basis, then pivoting on rky  in the 

simplex tableau is carried out, as follows: 
 
1) Divide row r  by rky . 
2) For 0,1,...,i m=  and i r≠ , update the i th row by adding to it iky−  times the new 
r th row. 
 
Note: The pivoting results in the simplex tableau corresponding to the new basis. 
 
C. The main steps of FVLP simplex algorithm 
  
Algorithm 2: The fuzzy simplex method for the FVLP problem   
Assumption: A basic feasible solution with basis B  and the corresponding simplex 
tableau is at hand.  
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1. The basic feasible solution is given by 0Bx y
ℜ
=% %   and 0Nx

ℜ
=% . The fuzzy objective value 

is: 00 0Bz y c y
ℜ ℜ
= =% %% .  

 2. Let 0 0min{ }, 1,..., , , 1,...,k j ij
y y j n j B i m= = ≠ = . If 0 0ky ≥ , then stop; the current 

solution is optimal.  
 
3.  If 0ky ≤ , then stop; the problem is unbounded. Otherwise, determine the index rB  

of the variable 
rBx%  leaving the basis as follows:  

0 0

1
min{ | 0},r i

iki m
rk ik

y y y
y y≤ ≤

= >  

where 0 0( ),i iy y= ℜ % 1,...,i m= . 
4. Pivot on rky  and update the simplex tableau. Go to Step 2. 
 
9. Numerical Illustrations 

For illustrations of the FNLP and FVLP simplex methods, we solve an FNLP 
problem and an FVLP problem by use of  FNLP and FVLP simplex algorithms, 
respectively.   
 
Example 9.1. Consider the FNLP problem,  

Max  1 2(5,8, 2,5) (6,10, 2,6)z x x
ℜ
= +%  

                                                 s.t.    1 22 3 6x x+ ≤  
                                                          1 25 4 10x x+ ≤  

                                                            1 2, 0x x ≥ . 
 
Adding the slack variables, we have the new constraints: 
                                                       1 2 32 3 6x x x+ + =  
                                                       1 2 45 4 10x x x+ + =  
                                                       1 2 3 4, , , 0x x x x ≥ . 
 
The FNLP simplex tableau corresponding to ,B I=  1 3,B = 2 4B =  is given in Table 3. 
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Table  3.  The first simplex tableau of the FNLP problem. 

 
 

Since 01 02( , ) (( 8, 5,5,2), ( 10, 6,6,2)),
ℜ
= − − − −% %y y  and 01 02( ( ), ( )) ( 7.25, 9)ℜ ℜ = − −% %y y , 

then 2x  enters the basis and the leaving variable is 3x . Pivoting on 32 3y =  results in the 
next tableau as in Table 4.  
 

 Table 4. The next feasible simplex tableau. 

 
 

From 01 03( , )y y% % 5 19 10 2
3 3 3 3(( 4, , ,6), (2, , , 2))

ℜ
= − , 01 03 01 03( , ) ( ( ), ( )) ( 1.25,3),y y y y= ℜ ℜ = −% %  it 

follows that 1x  is an entering and 4x  is a leaving variable. The last tableau is shown in 
Table 5. 
 
 Table 5. The optimal simplex tableau of the FNLP problem. 

 
Note that Table 5 is optimal, because 03y% , 0 4 0y

ℜ
> %% , as shown below: 

1 90 148 32 90
7 7 7 7( , , , )Bc B b−

ℜ
=% , 

1
03 04( , ) B Ny y c B N c−= −% %% % 30 30 38 5 18 192 12

7 7 7 7 7 7 7 7(( , , , ), ( , , , ))−−

ℜ
= . 
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 Example 9.2. Consider the FVLP problem, 
                                                 Max 1 23 4z x x

ℜ
= +% %%  

s.t.  1 23 (2,4,1,3)x x
ℜ

+ ≤% %  

                                                            9 1
1 2 2 22 (3, ,3, )x x

ℜ
+ ≤% %  

                                                             1 2, 0x x
ℜ
≥ %% % . 

Adding the slack variables, we rewrite the constraints of the problem as: 
   1 2 33 (2,4,1,3)x x x

ℜ
+ + =% % %  

                                                       9 1
1 2 4 2 22 (3, ,3, )x x x

ℜ
+ + =% % %  

                                                        1 2 3 4, , , 0x x x x
ℜ
≥ %% % % % . 

Now, we rewrite the above problem as the FVLP simplex tableau (Table 6). 
 

 Table 6. The first simplex tableau of the FVLP problem. 

 
 

Since 01 02( , ) ( 3, 4),y y = − −  then 2x%  enters the basis and the leaving variable is  

4x% , by the fact that 5 3 9 1
20 10 202 2 2 2min{ ( ) ( ,1, ,6), ( ) (3, ,3, )}y y y−= ℜ =ℜ ℜ =ℜ% % . Then, 

pivoting on 22 1y = , we obtain the next tableau given as Table 7.  
 
  Table 7. The optimal simplex tableau of the FVLP problem. 

 
 

Since 0 0jy ≥ , for all , 1 2ij B i≠ ≤ ≤ , then the basis is optimal and the optimal 
fuzzy objective value is:   (12,18,12,2)z

ℜ
=% . 
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10. Conclusions 
We considered two classes of fuzzy linear programming problems: (1) Fuzzy 

number linear programming (FNLP), and (2) linear programming with trapezoidal fuzzy 
variables (FVLP) problems. We made use of trapezoidal fuzzy numbers and a linear 
ranking function to describe a fuzzy concept of the basic feasible solutions for both 
problems. We then used the optimality conditions for the FNLP and the FVLP problems 
and developed fuzzy primal simplex algorithms for solving these problems. Finally, we 
solved illustrative examples using the proposed simplex algorithms.   
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