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We  present a new mathematical model for a permutation flowshop scheduling problem 
with sequence-dependent setup times considering minimization of two objectives, 
namely makespan and weighted mean total earliness/tardiness. Only small-sized 
problems with up to 20 jobs can be solved by the proposed integer programming 
approach. Thus, an effective multi-objective immune system (MOIS) is specially 
proposed to solve the given problem. Finally, the computational results are reported 
showing that the proposed MOIS is effective in finding solutions of large-sized 
problems. 
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1. Introduction 

A standard flowshop scheduling problem can be formally stated as follows. A set (N= {1, 2, …, 
n} of n jobs is to be processed on m stages sequentially. There is one machine at each stage, in 
which all machines are continuously available. A job is to be processed on one machine at a time 
without preemption, and a machine processes no more than one job at a time. The objective is to 
schedule the jobs minimizing some performance measures such as make span, total completion 
time, maximum tardiness, total tardiness, weighted tardiness, and weighted sum of earliness and 
tardiness. The above-mentioned flowshop problem is an extension of the two-machine flowshop 
problem first considered and solved by Johnson [15] having several simplifying assumptions [9] for 
its formulation and solution. 
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Here, we deal with a bi-objective permutation flowshop scheduling problem considering setup 
times.  The objectives are to minimize the sum of the makespan and weighted mean total 
earliness/tardiness for all the n jobs. An effective multi-objective immune system (MOIS) is used to 
solve the given problem. The rest of this paper is organized as follows. Section 2 gives a literature 
review. Section 3 gives the problem definition. In Section 4, the proposed MOIS algorithm is given. 
The experimental results are provided in Section 5. Finally, Section 6 gives our conclusions. 

 

2. Literature Review 

2.1. Objective Functions 

Some objective functions used in the literature are as follows: Makespan, weighted completion 
time, maximum tardiness, total weighted tardiness, maximum earliness, total weighted earliness, 
maximum flow  

time, total weighted flow time, number of tardy job, and total earliness/tardiness. Some of these 
objectives 

are related to the best utilization of the system minimizing the work-in-process of the job, and a few 
of them are concerned with the due date of the delivery. Studies in bi-objective flowshop problems 
mostly concentrate on the makespan and total flow time. Varadharajan and Rajendran [30] 
considered a problem of permutation flowshop scheduling with the objectives of minimizing the 
makespan and total flow time of jobs, and presented a multi-objective simulated-annealing (MOSA) 
algorithm. Neppalli et al. [18] considered the two-stage bi-criteria flowshop scheduling problem 
with the objective of minimizing the total flow time to obtain the optimal sequence. In the view of 
the NP-hardness of the given problem, two genetic algorithms (GA)-based approaches are proposed 
to solve the problem. 

In bi-objective problems, there is a special concern about minimization of the makespan and 
total completion time. T’kindt et al. [26] developed mathematical programming formulations, a 
branch-and-bound algorithm, and a heuristic algorithm for solving the two-machine flowshop 
scheduling problem with the objective of minimizing the total completion time. Framinan and 
Leisten [8] considered the problem of the total flow time and makespan minimization in a 
permutation flow shop. They introduced a multi-criteria iterative greedy search algorithm iterating 
over a multi-criteria constructive heuristic approach to yield a set of Pareto-efficient solutions (a 
posteriori approach). Two other objectives mostly considered in bi-objective problems are 
makespan and maximum tardiness. Framinanand Leisten [7] considered the problem of makespan 
minimization in a permutation flowshop where the maximum tardiness is limited by a given upper 
bound. They focused on approximate approaches to obtain good heuristic solutions to the given 
problem. Allahverdi [1] addressed the m-machine no-wait flowshop scheduling problem with a 
weighted sum of the makespan and maximum lateness criteria. This problem reduces to the single 
criterion of the makespan or maximum lateness when a weight of zero is assigned to the makespan 
or maximum lateness. They proposed a hybrid simulated annealing and a hybrid genetic algorithm, 
which can be used for the single criterion of the makespan or maximum lateness, or the bi-criteria 
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problem. They also proposed a dominance relation (DR) and a branch-and-bound algorithm. 
Extensive computational experiments show that the proposed heuristics perform much better than 
the best existing heuristics for the make span, and perform very well for the single criterion of the 
maximum lateness and the bi-criteria problem. 

A few papers address the completion time and total tardiness. T’kindt and Billaut [25] 
considered a flowshop problem that minimizes the maximum completion time and total tardiness. 
Basseur et al. [3] used an innovative multi-objective genetic memetic algorithm (MGMA). Besides 
the criterion of the maximum completion time, in multi-objective problems, the most usable 
function is the criterion of the total completion time. Ravindran et al. [22] dealt with the multi-
criteria approach to flowshop scheduling (FSS) problems by considering the makespan and the total 
flow time. Three heuristic algorithms, namely HAMC1, HAMC2 and HAMC3 have been proposed 
for the problem. Rahimi-Vahed et al. [21] considered a bi-criteria no-wait flowshop scheduling 
problem (FSSP) that minimizes the weighted mean completion time and weighted mean tardiness. 
They proposed a new multi-objective scatter search (MOSS) to find the locally Pareto-optimal 
frontier of the given problem. Tavakkoli-Moghaddam et al. [28] presented a novel multi-objective 
model for a no-wait flowshop scheduling problem that minimizes both the weighted mean 
completion time and weighted mean tardiness. They proposed a new hybrid multi-objective 
algorithm based on the features of a biological immune system (IS) and bacterial optimization (BO) 
to find Pareto optimal solutions for the given problem. 

Naderi et al. [17] investigated an extended problem of jobshop scheduling with sequence-
dependent setup times and machine availability constraints to minimize the total completion time. 
They proposed a novel meta-heuristic method based on the artificial immune algorithm (AIA). 
Gupta et al. [10] developed and compared different local search heuristics for a two-stage flowshop 
problem with the makespan minimization as the primary criterion and the minimization of either the 
total flow time, total weighted flow time, or total weighted tardiness as the secondary criterion. 

A limited number of bi-objective scheduling problems are as follows: Maximum earliness, 
machines idle time, and the number of tardy jobs. Qian et al. [19] proposed an effective hybrid 
algorithm based on differential evolution (DE), namely HDE, to solve a multi-objective permutation 
flowshop scheduling problem (MPFSSP) with limited buffers between consecutive machines. The 
convergence property of HDE is analyzed by using the theory of finite Markov chains. Finally, 
simulations and comparisons based on benchmarks demonstrate the effectiveness and efficiency of 
the proposed HDE. 

Make span, total completion time, and total tardiness are mainly used in the literature. Eren and 
Guner [6] considered a tri-criteria two-machine flowshop scheduling problem with the tardiness 
criterion. The objective is to minimize the weighted sum of the total completion time, total 
tardiness, and make span. Yagmahan and Yenisey [31] considered the flowshop scheduling problem 
with multi-objectives of the make span, total flow time, and total machine idle time. Their proposed 
algorithm is based on an ACS meta-heuristic method. To verify the performance of the proposed 
algorithm, computational experiments were conducted on the benchmark problems. The related 
results showed that the proposed ant colony algorithm performed better than the HC and NEH 
heuristics for the multi-objective flowshop scheduling problem. Tavakkoli-Moghaddam et al. [29] 
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proposed an efficient memetic algorithm (MA) combined with a novel local search engine, namely 
nested variable neighborhood search (NVNS), in order to solve the flexible flow line scheduling 
problem (FFLB) with processor blocking and without intermediate buffers. The results obtained by 
the proposed MA were compared with the classical genetic algorithm (CGA). Chen et al. [5] 
proposed an integrated model based on a hybrid flowshop scheduling problem with precedence 
constraint, setup times and blocking for a container handling system. They also proposed a tabu 
search algorithm to solve the problem. Han et al. [11] considered a scheduling problem of two 
uniform machines with different speeds. They proposed optimal online algorithms to find a 
sequence and a schedule minimizing the makespan and the machine activation cost. Jiang et al. [14] 
considered an online scheduling problem of two parallel and identical machines with some different 
grades of service (GoS) levels. They proposed an optimal algorithm minimizing the make span. 

Nowadays, the scheduling issue of incorporating the earliness/tardiness (E/T) measure has been 
attracting intensive research. This measure is, in fact, compatible with the concept of the just-in-
time (JIT) production system [2]. Considering the active research interests in the last few decades, 
production operation managers have made their efforts not only to reduce all kinds of waste in 
production processes but also to meet delivery times of goods. However, under such JIT scheduling 
circumstances, any job completed earlier than its due date can cause an opportunity cost to be 
charged for its carrying in the inventory till the due date, while any job not completed till its due 
date can cause unhappiness of the customer. Therefore, it is desired to get all the jobs finished on 
their assigned due dates as exactly as possible. This has provided motivations for the E/T measure 
consideration in recent scheduling research to pursue production commitment to due date [24]. 
Many scheduling research considering such scheduling problems with the E/T measure have been 
reported in the literature. Most of them have considered only a single machine or parallel discrete 
processing machines. The early research is traced back to the late 1970s and early 1980s as 
evidenced by the literature [2]. 

Radhakrishnan and Ventura [20] studied the parallel machine earliness/tardiness scheduling 
problem (PETNDDSP) with non-common due dates, sequence-dependent setup times and varying 
processing times, where the objective is to minimize the sum of the absolute deviations of 
completion times from their corresponding due dates. Iranpoor et al. [13] presented a general 
flexible flowshop scheduling problem to minimize the earliness and tardiness penalties. They 
considered a finite planning horizon including some equal periods. The objective in all the periods, 
except the last period, was to minimize the total penalties of E/T originated from the less or excess 
quantity produced as compared to the cummulative undelivered demands. Tavakkoli-Moghaddam 
et al. [27] presented the optimal single machine scheduling with idle insert that minimizes the sum 
of maximum earliness and tardiness. Sakuraba et al. [23] addressed the minimization of the mean 
absolute deviation from a common due date in a two-machine flowshop scheduling problem. They 
presented heuristics that use an algorithm based on proposed properties to obtain an optimal 
schedule for a given job sequence. Computational experiments showed that the developed heuristics 
outperformed the results found in the literature for problems up to 500 jobs. A literature review 
shows only a few published works on the ET measure considering the task scheduling on multiple 
non-similar machines with the objective of minimizing the total cost of earliness and tardiness, 
along with the sequence-dependent setup times needed for the machines. 
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2.2. Multi-objective Optimization  

A multi-objective decision problem is defined as follows: Given an n-dimensional decision 
variable vector x={x1 ,…, xn} in the solution space X, find a vector x* that minimizes a given set of 
K objective functions z (x*)={z1 (x*), …, zK (x*)}. The solution space X is generally restricted by a 
set of constraints such as gj (x*)= bj,, for j=1, …, m, and bounds on the decision variables. In many 
real-life problems, objectives conflict with each other. Hence, optimizing x with respect to a single 
objective often results in unacceptable results with respect to other objectives. Therefore, a perfect 
multi-objective solution that simultaneously optimizes each objective function is almost impossible. 
A reasonable solution to a multi-objective problem is to investigate a set of solutions, each of which 
satisfies the objectives at an acceptable level without being dominated by any other solution. If all 
objective functions are for minimization, a feasible solution x is said to dominate another feasible 
solution y (written x>y) if and only if zi (x) ≤ zi (y) for i=1, …, K and zj (x) <zj (y), for at least one 
objective function j. A solution is said to be a Pareto optimal, if it is not dominated by any other 
solution in the solution space. A Pareto optimal solution cannot be improved with respect to any 
objective without worsening at least one other objective. The set of all feasible non-dominated 
solutions in X is referred to as the Pareto optimal set. For a given Pareto optimal set, the 
corresponding objective function values in the objective space is called the Pareto front. For many 
problems, the number of the Pareto optimal solutions is enormous, maybe infinite. 

In the literature concerning multi-objective scheduling problems, we can distinguish five main 
approaches as follows [16]: 

 

(a) Hierarchical approach: The objectives considered are ranked in a priority order and 
optimized in that order. 

(b) Utility approach: A utility function or weighting function - often a weighted linear 
combination of the objectives is used to aggregate the considered objectives in a single 
one. 

(c) Goal programming (or satisfying approach): All the objectives are taken into account as 
constraints which express some satisfying levels (or goals) and the objective is to find a 
solution which provides a value as close as possible to the predefined goals corresponding 
to the objectives. Sometimes, one objective is chosen as the main objective and is 
optimized under the constraint related to other objectives. 

(d) Simultaneous (or Pareto) approach: The aim is to generate - or to approximate in case of a 
heuristic method - the complete set of efficient solutions. 

(e) Interactive approach: At each step of the procedure, the decision maker expresses his 
preferences with regards to one (or several) proposed solutions so that the method will 
progressively converge to a satisfying compromise between the considered objectives. 
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     Each approach has its own advantages and drawbacks as discussed in the general literature on 
multi-objective optimization problems: Some approaches require more parameters or a priori 
information (cases (a), (b) and (c)), some are more pragmatic (cases (a) and (b), for instance); 
however, they are unable to generate some efficient solutions. Others are more general or 
theoretical (case (d)) or more oriented to real case studies (cases (c) and (e)), and the like. Clearly, 
the approach used depends essentially on the aim of the study and/or the context of the application 
treated. Independently of the approach used, Hoogeveen [12] and Chen and Bulfin [4] studied the 
complexity of bi-criteria and multi-criteria single machine problems. They proved that only 
problems including flow time as the primary criterion, in a hierarchical optimization, and problems 
minimizing flow time and maximum tardiness can be solved in a polynomial time. All other 
problems are either shown to be NP-hard or remain open as far as computational complexity is 
concerned. Obviously, the problems including more than one machine and two criteria are more 
difficult to solve. 

 

3. Problem Definition 

The main goal of the flowshop scheduling problem is to find a sequence for processing all the 
jobs on machines so that a given objective is optimized. There are a few articles found in the 
literature explaining the cost of earliness/tardiness along with another objective. Also, there are a 
few research works considering the sequence-dependent setup times. Here, we consider these 
objectives to arrive at a model closer to real-life conditions. The notations are: 

Pij    Processing time of job j on machine i 

Sijk    Setup time on machine i if job j is sequenced before job k 

dj    Due date for job j 

Cik      Completion time of a job positioned in sequence k on machine i 

    Penalty cost of stopping job j 

    Tardiness/earliness cost for any job 

 

1, if job j is assigned to sequence k 

0, otherwise 

Cj =Cmj    Completion time of job j 

Cmax= maxjCj Makespan 

V=∑ jvj       Sum of jobs’ weights. 

Wjk 
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The first considered objective is the minimization of the maximum completion time (i.e., make 
span). This objective is computed by  

 

                                                           
1 1min max n

j jZ C .                                                               (1) 

 

The second objective is to minimize the weighted mean total earliness and tardiness of all jobs. 
To compute the objective function value, we use 
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A job is to be processed on one machine at a time without preemption and a machine processes 
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Note that the earliness and tardiness of job j are given by the constraints (9) and (10). 

 

4. Proposed Multi-objective Immune System 

An effective multi-objective immune system (MOIS) is developed here. The appropriate 
definition about system’s components is very important for meta-heuristic algorithms, and it can be 
effective in finding the answer, or at least it can affect the computing time. Another main aspect of 
the appropriate definition of the system components is that the definition can facilitate or harden 
computer programming of the algorithm for solving the problem. After a careful study of the 
problem’s structure, the following components were selected for the algorithm. The attempt is to 
prevent the need for studding limitations during the problem solving, and to design the components 
in a way that they contain limitations. The MOIS implementation is described in the following 
sections. 

 

4.1. Definitions 

The algorithm proposed here is based on the clonal selection principle, in which only the highest 
affinity antibodies proliferate. The criterion distinguishing between antigens and antibodies is 
Pareto dominance. In immune algorithms (IAs), antigens refer to the objective function that needs 
to be optimized. The antibodies refer to the candidate solutions to a problem. Usually, initial 
antibodies are randomly generated on a feasible space. The algorithm proposed here is based on the 
clonal selection principle, which recognizes that only the highest affinity antibodies will proliferate. 
The criterion distinguishing between antigens and antibodies is the Pareto dominance. In other 
words, non-dominated solutions are the antigens and dominated solutions are the antibodies. 

Here, we use an adaptive Pareto archive set updating procedure proposed by Tavakkoli-
Moghaddam et al. [28], which prevents losing new non-dominated solutions when the Pareto 
archive has reached its maximum size. When a new non-dominated solution is found, one of the 
two following possibilities may occur: 

 The number of solutions in the archive set is less than Arch_size, and thus the new 
solution joins the archive set. 

 The number of solutions in the archive set is equal to (or greater than) Arch_size, and thus 
the new solution will be added, if its distance to the nearest non-dominated solution in the 

(11) 
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archive is greater-than-or-equal-to the ‘‘Duplication Area’’ of that nearest non-dominated 
solution in the archive. Consequently, the size of the Pareto archive increases. 
 

Here, each antibody has two different forms for display at the same time, namely (1) job-to-
position representation, and (2) continuous representation. Each one of the two display forms is 
used in special stages of the proposed algorithm. For the mentioned immune system, three operators 
of mutation, copy, and crossover are considered as used in genetic algorithms.  

 

4.2. Steps of MOIS 

The main MOIS steps shown in Fig. 1are described in the following six subsections. 

4.2.1. Determination of the Ideal Point 

The ideal point for a multi-objective problem is a virtual point whose coordinates are obtained 
by separately optimizing each objective function with the same Pareto solution. Determining the 
ideal point requires separately optimizing each of the objective functions of the problem. However, 
optimizing even a single objective non-linear problem is a difficult task. To overcome this obstacle, 
the problem is first linearized. Then, each objective function is optimized by an available 
optimization software package such as Lingo 8. Another difficultly in the process of finding the 
ideal point, even after linearization, is the NP-hardness of the problem, which prohibits finding the 
global optimum (even a strong local optimum) in a reasonable time. As such, an approximation of 
the ideal point is used instead. The approximation involves interrupting the optimization software 
(e.g., Lingo 8) for ω seconds after the first feasible solution is found. The best solution found in this 
way is considered as the corresponding coordinate of the ideal point. The value of ωis determined 
after running various test problems. 

 

4.2.2. Initialization 

If the number of available solutions in each repetition is N, then N primary solutions should be 
produced for each objective function. For this, we should generate an initial set of solutions 
randomly and search other solutions besides the initial solutions by a mutation operator with Pm = 
0.05.  Since the initial population has a major effect on the produced solutions, this action will be 
repeated £ times, and N solutions with shortest distances to the ideal point will be selected. 

 

4.2.3. Pareto Archive 

In many investigations, a Pareto-archive set is provided to explicitly maintain a limited number 
of non-dominated solutions. This approach is incorporated to prevent losing certain portions of the 
current non-dominated front during the optimization process.  
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4.2.4. Distance Evaluation of Antibodies 

In clonal selection, only the highest affinity antibodies are selected to go into the pool. In our 
proposed approach, antibodies gain membership to the pool according to their qualities or 
diversities. In other words, the pool is a subset of both diverse and high quality antibodies 
consisting of an approximation of the Pareto-optimal set. The construction of the pool starts with 
the selection of all non-repeated, non-dominated antibodies from the Pareto archive set. If the 
number of such non-dominated antibodies is smaller than the required pool size, then the remaining 
antibodies are selected from among the dominated antibodies. For this purpose, the dominated 
antibodies are divided into various fronts, and the required numbers of antibodies are selected with 
a selection mechanism shown below.  

In this study, the Hamming distance is used as a measure to diversify the solution space. This 
measure is the number of positions in two strings of equal length for which the corresponding 
elements are different. It allows for measuring the number of substitutions required to change one 
into another. 

 

4.2.5. Antibodies Improvement  

X percent of selected antibodies will transfer to the next generation by reproduction, Y percent of 
the next generation antibodies will be produced from the selected antibodies by mutation, and Z 
percent will transfer by crossover. 

 

4.2.6. Termination 

The proposed immune system is repeated a pre-specified number of times. 

5. Experimental Results  

The performance of the multi-objective immune system is compared with the best solution 
obtained by the branch-and-bound (B-B) method and the lower bound (LB) on the integer 
programming model. These algorithms are coded in Matlab7 and executed on a 4.0 GHz ®Pentium, 
with a Windows XP operating system using 1 GB of RAM. For optimal solving time limitation, the 
adjustment of CPU allowable maximum processing time is regarded in the Lingo software package 
as 18000 seconds (i.e., five hours). The experiments are implemented in two folds: small and large-
sized problems. 
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Figure 1. Steps of the proposed MOIS 

 

5.1. Design of Experiments 

For the given problems, the processing times on machines are generated from a uniform 
distribution in the interval [1, 100]. Setup times are randomly generated from uniform distribution 
on the integers between [1, 20]. Due dates (dj) are defined to be 

                                                 dj= Ŝi
jk+∑Pij ,                                                                                   (13) 

where Ŝi
jk is the average setup time. The experimental set is illustrated in Table 1. Nine and eleven 

test problems are solved as small and large-sized problems, respectively. 

 

5.2. Comparison Metrics 

Results obtained by the algorithms are compared with results of the best solution obtained by the 
integer model. Considering the disability of the Lingo software package for solving the multi-
objective models, we regard the linear composition of multi-lateral objectives on the form of the 
single objective function. The normalized coefficients are used here for getting the optimal solution 
of the problems and the study of accuracy and inaccuracy of the presented model. Also, for 
unification of the range of objective function changes, each one of the functions are normalized by 
the equation (14) below in order to appropriate the comparability of solutions with the MOIS’s 
outputs: 

 max
i

i
i

f
Z

f
   , i=1, 2, 3,                                                                 (14) 
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where max fi is the maximum value of the ith objective function due to the single objective problem, 
as regarded by the B-B algorithm. 

To study the accuracy of the solutions obtained by the presented model, small-sized problems 
were solved by the B-B algorithm, and in other sample problems, the lower bound (LB) was used 
for comparison with the proposed MOIS. Also, to show the effectiveness of the presented algorithm 
on large-sized problems, several sample problems were solved by MOIS and a set of Pareto optimal 
solutions as the possible solutions along with their lower bounds were obtained by Lingo 8 in five 
hours. Different weight compositions of objective functions were provided by the decision makers. 
The maximum Pareto archive size (i.e., Arch_Size) was fixed at 10, the population size for initial 
solution (£) was set to 5, the algorithm was terminated after 100 iterations, ‘x’ was set to 30% , ‘y’ 
was set to 62%, ‘z’ was set to 8%, and ‘ω’ was fixed at 16000 seconds. 

5.3. Results on Small-sized Problems 

Table 2 shows the lower bound (LB) and best solutions reported by Lingo 8 in terms of the 
objective function value (OFV). We solved ten examples in each experiment. Since there were nine 
experiments for each algorithm, we had 90 examples for each algorithm. To analyze the outcome of 
the OFV and to prove the algorithm’s effectiveness on small-sized problems as well as not having 
an optimal solution in a reasonable computing time, a statistical analysis of the related results 
obtained by the MOIS was carried out with the results obtained by the B-B algorithm and the lower 
bound. Table 2 shows the results in 9 categories, in which each category shows the average relative 
deviance for 10 samples. Results of 9 categories were obtained by the three methods with regards to 
coefficients of 0.75 and 0.25 for the linear composition of the objective functions. It is worth noting 

 

Table 1. Experimental set for problems 

Large sizes  Small sizes 
Parameter 

Values Alternative  Values Alternative 

200,100 3  14,10,6 3   No. of jobs 

20,10,5 2  20,10,5 3 No. of machines 

~U[1,100] 1  ~U[1,100] 1 Pi j (Processing 
time) 

~U[1,20] 1  ~U[1,20] 1   Ŝi
jk (Setup time)  

dj = Ŝi
jk +∑Pij 1  dj = Ŝi

jk +∑ Pij 1   Dj (Due date)  

(0.25,0.75) ; (0.5, -0.5) 2  (0.25,0.75) 1   Penalties(α,β) 

2×3×1×1×1×2=12  3×3×1×1×1×1=9 Total problem 
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that appropriate results cannot be found by Lingo for solving some small-sized problems in the 
limited five hour period. Thus, they were ignored. Also, the average values for the remaining 
problems during this limited time are illustrated in the related columns. However, there is no 

solution for problems with the sizes of 1410 and 1420. In this case, we rely on comparing the 
MOIS’s outputs with the obtained lower bounds during the time limit. 

The objective function values of 9 categories are compared by MOIS and B-B algorithms as 
depicted in Fig. 2. In this figure, the proposed MOIS gives fairly good results and is quite effective 
on the given problems. In addition, this algorithm produces more accurate results than the B-B 
algorithm almost in all cases. 

5.4. Results on Large-sized Problems 

We carried out 15 different examples in each experiment. Since we had six categories in each 
experiment, where there were two different weight compositions [(0.5, 0.5) and (0.3, 0.7)] in each 
category, 90 examples were solved in general. It is impossible to find the optimal solution in a 
reasonable time by any exact optimization software package for large-sized problems. In addition, 
nonlinearity of the proposed model did not create a difficulty for our proposed MOIS, even though 
in this case the solutions close to the optimal one are acceptable to the designer. The optimization 
methods can present solutions close to the optimum in a short time. However, on the other hand, the 
MOIS nature shows its effectiveness better for large-sized problems. Because, if the possible points 

Table 2. Computational results for small-sized problems 

Difference of 
MOIS&LB (%)

Difference of B-
B&LB (%) 

Time of 
MATLAB

Normalized 
obj. of MOIS 

Normalized 
obj. of B-B 

Normalized 
obj. of LB 

Size 

(nm) 

8.32 133.44 9 0.318 0.685 0.293 65 

15.27 37.72 11 0.613 0.732 0.532 610 

29.83 71.68 17 0.492 0.651 0.379 620 

9.75 33.27 11 0.479 0.582 0.437 105 

12.07 63.46 37 0.390 0.569 0.348 1010 

14.46 60.80 65 0.638 0.849 0.528 1020 

23.52 72.59 33 0.448 0.626 0.363 145 

20.83 unlimited 71 0.475 unlimited 0.415 1410 

17.86 unlimited 98 0.673 unlimited 0.571 1420 
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Figure 2. Comparison of the proposed MOIS and B-B algorithms with the LB 

 

for the given problem is increased, then the fast convergence possibility of the generations is 
decreased and diversification of the population is protected. Therefore, the proposed algorithm has 
more time for finding solutions close to the optimal ones. It is worth noting that clue to the MOIS 
nature, the program output is a set of effective results as Pareto solutions, where different 
compositions can be selected from multi-objective functions as the best solutions on the basis of the 
decision maker’s preferences.  

 

Table  3. Computational results for large-sized problems 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

6×5 6×10 6×20 10×5 10×10 10×20 14×5 14×10 14×20

N
or

m
al

iz
ed

 o
bj

ec
tiv

e

Size of problem

LB B-B MOIS

Normalized obj. of the proposed 
MOIS with weights of 0.5 and 0.5 

Normalized obj. of the proposed 
MOIS with weights of 0.3 and 0.7 Time (sec.) Size(nm)

Norm obj. Obj. 2 Obj. 1 Norm. obj. Obj. 2 Obj. 1 

0.507 0.58 0.434 0.443 0.387 0.574 310 10100 

0.710 0.866 0.553 0.549 0.611 0.403 348 20100 

0.539 0.685 0.392 0.479 0.537 0.344 335 10200 

0.421 0.436 0.406 0.555 0.672 0.281 386 20200 

0.630 0.821 0.439 0.704 0.752 0.592 407 10500 

0.663 0.783 0.542 0.680 0.629 0.799 522 20500 
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Six categories of the unsolvable problems were considered to be solved in a time limit by the exact 
optimization software package, in which each category was the average relative deviation of 15 
examples. Table 3 illustrates two kinds of different weight compositions, (0.5, 0.5) and (0.3, 0.7), 
defined for bi-objective functions, and the best Pareto solutions in a normalized form between 0 and 
1. As shown, for large-sized problems, the convergence rate becomes slower with the increase of 

solution diversifications. Also, in experiments of 20200 dimensions, the same values are found 
using both coefficients. 

 

6. Conclusions 

We presented a new mathematical model for a multi-objective flowshop scheduling problem 
with sequence-dependent setup times minimizing the makespan and weighted mean total 
earliness/tardiness. A multi-objective immune system (MOIS) was proposed for the given problem 
and the related results were compared with lower bounds and optimal solutions obtained by a 
conventional optimization algorithm to show the effectiveness of the proposed MOIS. To evaluate 
the algorithms, a design of experiments was performed. The outcomes of three algorithms in two 
categories indicated that the proposed MOIS is a powerful and effective tool in exhibiting almost 
optimal and reasonable possible solutions. Other objectives such as maximum earliness and number 
of tardy job with sequence-dependent family setup times can also be interesting to be considered in 
future research. Furthermore, more extensive comparison of the obtained solution by our proposed 
MOIS with other multi-objective algorithms are welcome. 
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