
Iranian Journal of Operations Research

Vol. 6, No. 1, 2015, pp. 65-78

A Metaheuristic Algorithm for the Minimum Routing Cost

Spanning Tree Problem

S. Sattari1, F. Didehvar2,*

The routing cost of a spanning tree in a weighted and connected graph is defined as the total

length of paths between all pairs of vertices. The objective of the minimum routing cost

spanning tree problem is to find a spanning tree such that its routing cost is minimum. This

is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic

algorithm for it. GRASP is a multi-start algorithm that in each iteration constructs a

randomized greedy solution and applies local search to it. Path-relinking stores elite

solutions and to find better solutions explores the paths between different solutions.

Experimental results show the performance of our algorithm on many benchmark problems

compared to the other algorithms.

Keywords: Graph, Spanning Tree, Routing Cost, Metaheuristic.

Manuscript was received on --/--/----, revised on --/--/---- and accepted for publication on --/--/----.

1. Introduction

Consider an undirected connected graph 𝐺(𝑉, 𝐸) that has non-negative edge weights. For any

spanning tree 𝑇 of G, we show the path length between any two vertices 𝑣 and 𝑢 by 𝑑𝑇(𝑢, 𝑣) and call

it routing cost of these vertices. The routing cost of the spanning tree 𝑇 is defined as sum of these

costs i.e. 𝐶(𝑇) = ∑ 𝑑𝑇(𝑢, 𝑣)𝑢,𝑣∈𝑉 . The minimum routing cost spanning tree (MRCST) problem seeks

a spanning tree 𝑇 such that 𝐶(𝑇) is the minimum among all spanning trees of the graph.

This optimization problem was introduced by Hu [8] and later Johnson et al. [9] proved that

MRCST is an NP-Hard problem. Applications of this problem are in the bridging of heterogeneous

networks [3], and multiple sequence alignment problem of computational biology [6].

One of the approaches for solving optimization problems is using a metaheuristic approach.

Greedy randomized adaptive search (GRASP) is a multi-start algorithm, which in each iteration

constructs a randomized greedy solution and then applies a local search to the obtained solution. Path-

relinking is a method that is used with other algorithms to improve their results. It stores elite solutions

and to find better solutions, explores the trajectories that connect different solutions. In this paper, we

present a GRASP with path-relinking metaheuristic algorithm for the MRCST problem and report its

performance on a set of benchmark instances.

Throughout this paper, we use symbol 𝑛 for the number of vertices of graph i.e. |𝑉|, so every

solution to MRCST problem consists of 𝑛 − 1 edges. In the rest of the paper, first we review related

*
Corresponding Author.

1
Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran

Email: s.sattari@aut.ac.ir.
2
Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran

Email: didehvar@aut.ac.ir.

66 S. Sattari and F. Didehvar

works. Then, in section 3, we give an introduction to GRASP and path-relinking algorithms. In

Section 4, we present our algorithm for MRCST problem. Section 5 reports experimental results, and

the last section concludes the paper.

2. Related Works

The MRCST problem is a special case of optimal communication spanning tree (OCST) problem

[8]. In OCST problem each pair of vertices has a demand that is multiplied to their path length for

computing their communication cost. In this section we generally consider works on MRCST

problem.

The MRCST problem has been studied from different approaches. In the field of approximation

algorithms, Wong [19] presented a 2-approximation algorithm. In his algorithm, shortest paths trees

are constructed from each vertex as root. The output of the algorithm is a tree, which sum of routing

costs from its root is the least.

Wu et al. [21] provided a polynomial time approximation scheme. In another work, Wu et al [20]

presented approximation algorithms with factors 2, 15/8, and 3/2, respectively with time

complexities 𝑂(𝑛2), 𝑂(𝑛3), and 𝑂(𝑛4).

Ahuja and Murty [1] provided a branch and bound algorithm and a heuristic algorithm for the

OCST problem. This heuristic method at first constructs a tree greedily, and then applies a local

search procedure. In this local search algorithm, every edge of the tree is tested for deletion, and

alternative edges are inserted into the tree. Algorithm selects the best pair that yields the best possible

spanning tree.

Fischetti et al. [6] presented a branch & price algorithm for MRCST problem. In generation of

initial solutions they used a local search approach to improve the initial solution. This local search

approach, tries inserting edges into the current tree and breaking the resulting cycle by deleting

another edge. It selects the best combination that results in the lowest cost possible tree.

Campos and Ricardo [3] proposed a heuristic algorithm. This algorithm constructs a spanning tree

by adding one vertex at each time to the tree. It uses many factors like degree of vertices, and weights

of their edges to choose the next vertex. The algorithm has some parameters that they found them by

simulation.

Julstrom gave two genetic algorithms and a stochastic hill-climber [10]. These genetic algorithms

differ in the representation method of spanning trees. One uses edge sets and the other uses blob code

[12]. The experimental results show superiority of hill-climber to both genetic algorithms. The hill-

climber starts from a random spanning tree and in each step tries modifying this tree randomly. If this

new tree has lower cost, it becomes current tree. This algorithm runs for 10000n iterations.

Singh [17] proposed a perturbation based local search algorithm. This algorithm, constructs a

solution using a Prim [13] like algorithm, and tries to improve it. Constructing initial solution starts

with selecting a random vertex. Next, in each step either the least cost possible edge, or a random

edge is added to the current tree. Probability of this decision is constant, and probability of selecting

a random edge is inversely related to its weight. The algorithm iteratively applies a local search to the

current solution, and if it finds a better solution than current solution, it becomes the current solution.

The local search method removes a random edge and inserts best possible alternative edge into the

A Metaheuristic Algorithm for the Minimum Routing Cost 67

tree. Deleting this new edge is forbidden in the next iteration. After some non-improving iterations,

algorithm modifies the current solution by deleting and inserting some random edges. They tested

their algorithm on the dataset introduced by [10] and found better results.

Singh and Sundar [18] used an artificial bee colony (ABC) approach with local search. Their

method constructs initial solutions by an algorithm like Prim’s [13]. This algorithm starts by choosing

a random vertex for the tree. Then in each step, one random edge is added to the tree. At the beginning,

with a constant probability, algorithm decides probability of adding edges to be inversely related to

their weight or square of their weight for all of the edges. Artificial bee colony algorithm is a swarm

algorithm that imitates honey bee’s behavior. To improve solutions of this method a local search like

[1] is applied to the results of ABC algorithm. They showed superiority of this method, by running it

on the same dataset as [10, 17].

3. GRASP and Path-relinking

Greedy randomized adaptive search procedure (GRASP) is a multi-start metaheuristic method. In

each iteration it has two phases. In the first phase, it constructs a solution using a randomized greedy

algorithm and in the second phase, it runs a local search on the obtained solution. The best solution

over all iterations is the output of the algorithm. Stopping criteria for this algorithm can be for

example, a maximum number of iterations. This method was proposed by Feo [5] for the set cover

problem and it has been used in many other problems [15]. The outline of a standard GRASP

algorithm for a minimization problem is as follows.

Algorithm 1: GRASP

Output: solution 𝑠∗

1. 𝑠∗ ← ∞
2. while stopping criteria is not met do

3. 𝑠1 ← GreedyRandomizedConstruction

4. 𝑠 ← LocalSearch(𝑠1)

5. if 𝑠 < 𝑠∗ then 𝑠∗ ← 𝑠

6. end

7. return 𝑠∗

In the standard GRASP method, construction phase builds a solution by adding elements one at a

time. In each step a list of elements that can be added to current solution is generated. These elements

are ordered according to a greedy function and its best elements are inserted into a restricted candidate

list (RCL). Then a random member of RCL is selected that is added to the current partial solution.

After updating current solution this process is continued until there is no element that can be added

to the solution. There are different methods of constructing a restricted candidate list, such as limiting

the number of its elements or considering quality of the elements. Some alternative construction

methods were also proposed [15].

Incorporating memory usually can enhance the basic GRASP method. Path-relinking is one of

such methods that can be used with GRASP to improve quality of its solutions, and to increase speed

of finding better solutions. Path-relinking is a procedure that explores trajectories connecting different

solutions in order to find other solutions. This method was proposed by Glover [7] in conjunction

with scatter search, but it can be used with other methods. The input for this algorithm consists of two

solutions. It considers a path of solutions starting from one of the inputs and ending in the other. In

each step, in order to reach the target solution, algorithm changes current solution slightly. The best

68 S. Sattari and F. Didehvar

solution found in this path, is retuned by the algorithm as its output. Algorithm 2 shows general path-

relinking method for a minimization problem.

Algorithm 2: Path-relinking (𝑥𝑠, 𝑥𝑡)

Input: solutions 𝑥𝑠, 𝑥𝑡

Output: solution 𝑠∗

1. 𝑠∗ ← 𝑀𝑖𝑛(𝑥𝑠, 𝑥𝑡)

2. 𝑠 ← 𝑥𝑠

3. while 𝑠 ≠ 𝑥𝑡 do

4. Find best move 𝑚 such that 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠 ⊕ 𝑚, 𝑥𝑡) < 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑥𝑡)

5. 𝑠 ← 𝑠 ⊕ 𝑚

6. if 𝑠 < 𝑠∗ then 𝑠∗ ← 𝑠

7. end

8. return 𝑠∗

To use path-relinking with other methods, usually good solutions are stored in a pool. There are

two general methods of using path-relinking with GRASP. In the first method, after each local search

phase of algorithm, path-relinking is executed once. In the second method during execution of

GRASP or at the end of it, path-relinking is executed between all elite solutions.

The first approach usually yields better results. In this approach, after finding a solution by

GRASP, one elite solution from the pool is selected randomly, and path-relinking procedure is

executed for these two solutions. The obtained solution is tested for insertion into the pool. If the pool

is not full, it is inserted; otherwise the new solution may replace one of its members. There are

different replacement strategies. In one of the approaches, if the new solution is better than the worst

member of the pool, the new solution replaces it. In another approach, all members of pool that are

worse than the new solution are listed, and it replaces the one which is more similar to it. In algorithm

3 we show steps of the GRASP with path-relinking algorithm.

Algorithm 3: GRASP-Path-relinking

Output: solution 𝑠∗

 1. 𝑠∗ ← ∞

 2. 𝑃 ← ∅

 3. while stopping criteria is not met do

 4. 𝑠1 ← A greedy random solution

 5. 𝑠2 ← LocalSearch(𝑠1)

 6. if 𝑃 ≠ ∅ then

 7. 𝑡 ← A random member of 𝑃

 8. Set 𝑥𝑠 ← 𝑠2, 𝑥𝑡 ← 𝑡 or 𝑥𝑠 ← 𝑡, 𝑥𝑡 ← 𝑠2

 9. 𝑠 ← Path-relinking(𝑥𝑠, 𝑥𝑡)

10. end

11. Update 𝑃 with 𝑠

12. if 𝑠 < 𝑠∗ then 𝑠∗ ← 𝑠

13. end

14. return 𝑠∗

GRASP with path-relinking was introduced by Laguna and Marti [11]. A detailed description of

this method along with its extensions and applications has been given by Resende and Ribeiro [14].

A Metaheuristic Algorithm for the Minimum Routing Cost 69

4. GRASP with Path-relinking for MRCST Problem

In this section, we present our GRASP with path-relinking algorithm for the minimum routing

cost spanning tree problem. First, we describe our GRASP algorithm. Then, we present a path-

relinking algorithm, and finally we give our GRASP with path-relinking algorithm for the MRCST

problem.

4.1 GRASP Algorithm

Every GRASP algorithm needs two components: a greedy randomized construction algorithm and

a local search algorithm. In the basic GRASP after constructing RCL, one element is chosen

randomly. Bresina [2] proposed a construction method which uses a rank function for all candidate

elements and by incorporating a bias function applies a different probability distribution for random

selection. The benefit of this method is that by using a problem related rank function more effective

elements can be selected. In our construction algorithm, we follow a similar approach.

To construct a solution at first using Dijkstra's algorithm [4] we generate all shortest paths trees,

and we calculate routing costs of them and memorize roots of the two least cost trees. To generate a

spanning tree, we randomly select one of these roots, call it 𝑟, and then in a way similar to the Prim's

algorithm [13] we add other vertices to the tree. In each step, for each edge (𝑣, 𝑤) that vertex 𝑣 is

inside tree and vertex 𝑤 is outside of it, the probability of selecting this edge is inversely related to

its weight multiplied to the distance of 𝑤 to vertex 𝑟. The steps of this algorithm are given in algorithm

4.

Algorithm 4: RandomizedGreedy-MRCST

Output: tree 𝑇

Initialization:

 1. for 𝑖 = 1 to 𝑛

 2. 𝑡 ← Shortest paths tree with root 𝑣𝑖

 3. 𝑐𝑜𝑠𝑡[𝑖] ← 𝐶(𝑡)

 4. end

 5. Find 𝑟1 such that ∀𝑖 ∈ {1, … , 𝑛} ∙ 𝑐𝑜𝑠𝑡[𝑟1] ≤ 𝑐𝑜𝑠𝑡[𝑖]
 6. Find 𝑟2 ≠ 𝑟1 such that ∀𝑖 ∈ {1, … , 𝑛} − {𝑟1} ∙ 𝑐𝑜𝑠𝑡[𝑟2] ≤ 𝑐𝑜𝑠𝑡[𝑖]

Construction:

 1. Randomly set 𝑟 = 𝑟1 or 𝑟 = 𝑟2

 2. Put 𝑟 in 𝑇

 3. for 𝑖 = 1 to 𝑛 − 1 do

 4. if 𝑣 ∈ 𝑇 ⋀ 𝑤 ∈ 𝑉 − 𝑇 then

 5. 𝑃(𝑣, 𝑤) =
𝑐(𝑣,𝑤).𝑑𝑇(𝑟,𝑤)

∑ 𝑐(𝑣,𝑤).𝑑𝑇(𝑟,𝑤)𝑣∈𝑇,𝑤∈𝑉−𝑇

 6. else

 7. 𝑃(𝑣, 𝑤) = 0

 8. end

 9. Select an edge (𝑣, 𝑤) with probability 𝑃(𝑣, 𝑤)

10. Put vertex 𝑤 and edge (𝑣, 𝑤) in 𝑇

11. end

12. return 𝑇

70 S. Sattari and F. Didehvar

In local search part of GRASP, we use the method of Ahuja and Murty [1]. The following

algorithm shows details of this best improvement local search method.

Algorithm 5: LocalSearch-MRCST (𝑇)

Input: tree 𝑇

Output: modified tree 𝑇

 1. 𝑏 ← 1

 2. while 𝑏 = 1 do

 3. 𝑐𝑚𝑖𝑛 ← 𝐶(𝑇)

 4. 𝑏 ← 0

 5. foreach edge 𝑒 ∈ 𝑇 do

 6. 𝑇 = 𝑇 − {𝑒}

 7. Find set 𝐹 of edges different from 𝑒 such that each of them joins components of 𝑇

 8. foreach edge 𝑓 ∈ 𝐹 do

 9. if 𝐶(𝑇 ∪ {𝑓}) < 𝑐𝑚𝑖𝑛 then 𝑐𝑚𝑖𝑛 ← 𝐶(𝑇 ∪ {𝑓}), 𝑒𝑑𝑒𝑙 ← 𝑒, 𝑒𝑖𝑛𝑠 ← 𝑓, 𝑏 ← 1

10. end

11. 𝑇 = 𝑇 ∪ {𝑒}

12. end

13. if 𝑏 = 1 then 𝑇 = 𝑇 − {𝑒𝑑𝑒𝑙} ∪ {𝑒𝑖𝑛𝑠}

14. end

15. return 𝑇

In each iteration of this algorithm, an edge is removed from current tree, and another edge is added

to it such that it remains a tree. It tries deleting each edge of the tree, and then finds all possible

replacement edges and calculates resulting routing costs. If no replacement produces a tree with lower

cost than current tree, the local search ends, otherwise the best pair of edges is chosen and this change

is applied to the current tree and algorithm continues with this new spanning tree. By using this local

search algorithm and construction algorithm 4, we can have a GRASP algorithm.

4.2 Path-relinking Algorithm

Our path-relinking algorithm has as input a starting spanning tree 𝑇𝑠𝑡𝑎𝑟𝑡 and a target spanning tree

𝑇𝑒𝑛𝑑. Consider 𝐴 as the set of 𝑇𝑠𝑡𝑎𝑟𝑡 edges not present in 𝑇𝑒𝑛𝑑, and 𝐵 as the set of 𝑇𝑒𝑛𝑑 edges not

present in 𝑇𝑠𝑡𝑎𝑟𝑡. In each step, we remove an edge of the current tree which belongs to 𝐴; this results

in two components. We add another edge such that it connects these components; we choose this edge

from the set 𝐵. This process is done using best improvement strategy; we choose a pair of edges that

results in the lowest possible cost. After updating the current tree and removing selected edges from

the sets 𝐴 and 𝐵, algorithm proceeds. This path-relinking algorithm returns the best obtained tree in

this process as output.

It is possible that we reach a state that none of the edges that we can remove from current tree

have an alternative edge in 𝐵. In this situation, we stop the algorithm and report the best solution so

far. Algorithm 6 presents our path-relinking approach.

Algorithm 6: Path-relinking-MRCST (𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑒𝑛𝑑)

Input: trees 𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑

Output: tree 𝑇∗

 1. 𝐴 ← 𝑇𝑠𝑡𝑎𝑟𝑡 − 𝑇𝑒𝑛𝑑

 2. 𝐵 ← 𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡

A Metaheuristic Algorithm for the Minimum Routing Cost 71

 3. if 𝐶(𝑇𝑠𝑡𝑎𝑟𝑡) < 𝐶(𝑇𝑒𝑛𝑑) then 𝑇∗ ← 𝑇𝑠𝑡𝑎𝑟𝑡 else 𝑇∗ ← 𝑇𝑒𝑛𝑑

 4. 𝑇 ← 𝑇𝑠𝑡𝑎𝑟𝑡

 5. 𝑏 ← 1

 6. while 𝑏 = 1 do

 7. 𝑐𝑚𝑖𝑛 ← ∞

 8. 𝑏 ← 0

 9. foreach edge 𝑒 ∈ 𝐴 do

10. 𝑇 = 𝑇 − {𝑒}

11. Find set 𝐹 ⊂ 𝐵 of edges such that each of them joins components of 𝑇

12. foreach edge 𝑓 ∈ 𝐹 do

13. if 𝐶(𝑇 ∪ {𝑓}) < 𝑐𝑚𝑖𝑛 then 𝑐𝑚𝑖𝑛 ← 𝐶(𝑇 ∪ {𝑓}), 𝑒𝑑𝑒𝑙 ← 𝑒, 𝑒𝑖𝑛𝑠 ← 𝑓, 𝑏 ← 1

14. end

15. 𝑇 = 𝑇 ∪ {𝑒}

16. end

17. if 𝑏 = 1 then

18. 𝑇 = 𝑇 − {𝑒𝑑𝑒𝑙} ∪ {𝑒𝑖𝑛𝑠}, 𝐴 = 𝐴 − {𝑒𝑑𝑒𝑙}, 𝐵 = 𝐵 − {𝑒𝑖𝑛𝑠}

19. if 𝐶(𝑇) < 𝐶(𝑇∗) then 𝑇∗ = 𝑇

20. end

21. end

22. return 𝑇∗

4.3 GRASP with Path-relinking Algorithm

The method of path-relinking we have used that starts from the better solution is called backward

relinking. Ribeiro et al. [16] have observed that often starting the path-relinking from the lower cost

solution, yields better results. This is because a lower cost solution has better neighbors around itself

compared to a higher cost solution, and if we start the trajectory from a good solution the chance of

finding another good solution increases. We have also observed this fact in our preliminary

experiments, so we use backward relinking.

Another option that we have in designing our GRASP with Path-relinking algorithm is choosing

the method of applying path-relinking. One strategy is to apply path-relinking as a post-optimization

step to all members of the pool of elite solutions. The other strategy is to use the path-relinking

procedure as an intensification method in each iteration of the GRASP. As mentioned in [14] and as

our initial experiments showed, the later method often results in better results; hence we apply path-

relinking in each iteration of GRASP after local search step.

Now we describe details of the GRASP with Path-relinking algorithm. We use a fixed size pool

for our GRASP with Path-relinking algorithm. In the first iteration, we put the result of GRASP

algorithm in this pool. In the next iterations, after local search phase of GRASP finds a solution, we

select a random solution form the pool and for these two solutions we run the path-relinking algorithm

starting from the lower cost solution. The result of path-relinking procedure is tested for insertion into

the pool. If the pool is not full yet, this new solution is inserted into it; otherwise if it is better than

the worst solution of the pool, then the new solution replaces it in the pool. The best tree found over

all iterations is returned as the result of algorithm. Algorithm 7 illustrates steps of our GRASP with

Path-relinking approach.

Algorithm 7: GRASP-Path-relinking-MRCST

Output: tree 𝑇∗

72 S. Sattari and F. Didehvar

 1. 𝑇∗ ← A random spanning tree

 2. 𝑃 ← ∅

 3. while stopping criteria is not met do

 4. 𝑇1 ← RandomizedGreedy-MRCST

 5. 𝑇2 ← LocalSearch-MRCST (𝑇1)

 6. if 𝑃 ≠ ∅ then

 7. 𝑅 ← A random member of 𝑃

 8. if 𝐶(𝑇2) < 𝐶(𝑅) then

 9. 𝑇𝑠𝑡𝑎𝑟𝑡 = 𝑇2

10. 𝑇𝑒𝑛𝑑 = 𝑅

11. else

12. 𝑇𝑠𝑡𝑎𝑟𝑡 = 𝑅

13. 𝑇𝑒𝑛𝑑 = 𝑇2

14. end

15. 𝑇 ← Path-relinking-MRCST (𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑒𝑛𝑑)

16. else

17. 𝑇 ← 𝑇2

18. end

19. if |𝑃| < 𝑝 then

20. 𝑃 ← 𝑃 ∪ {𝑇}

21. else

22. Find 𝐵 ∈ 𝑃 such that ∀𝐷 ∈ 𝑃 ∙ 𝐶(𝐵) ≥ 𝐶(𝐷)

23. if 𝐶(𝑇) < 𝐶(𝐵) then 𝑃 ← 𝑃 ∪ {𝑇} − {𝐵}

24. end

25. if 𝐶(𝑇) < 𝐶(𝑇∗) then 𝑇∗ = 𝑇

26. end

27. return 𝑇∗

This is our final algorithm. It remains to specify the pool size and the stopping criteria. We give

the value of pool size and the conditions for stopping the main loop of algorithm in the next section.

5. Experimental Results

In order to show effectiveness of the proposed approach, we executed Algorithm 7 on a set of

benchmark instances proposed by Julstrom [10]. Furthermore, they were used by Singh [17] and

Singh and Sundar [18]. This dataset consists of 35 instances and it includes two groups of graphs:

Euclidean graphs, and random graphs.

Euclidean graphs are obtained from OR-Library [22]; they were proposed for the Steiner tree

problem. Each graph consists of a set of points in a unit square in the plane. These points are

considered as vertices of a complete graph. The group contains seven Euclidean graphs for each size

of 50, 100, and 250 vertices.

Random graphs are complete graphs that were generated specially for this problem by Julstrom

[10]. This group consists of 14 graphs and it has seven random graphs for each size of 100, and 300

vertices. The weights of the edges between vertices of these graphs are chosen randomly from the

interval [0.01, 0.99].

A Metaheuristic Algorithm for the Minimum Routing Cost 73

We implemented our algorithm using C++ language under Microsoft Visual Studio, on a 2.8 GHz

Pentium 4 Windows XP machine with 512 MB RAM. We executed the algorithm for 30 runs on each

instance of the dataset; other authors [10, 17, 18] have also used this number of runs.

The only parameter of our GRASP with path-relinking algorithm (GRASP+PR) is the pool size

that we set it to be 4√𝑛. We found this value by performing some initial experiments. We set the

stopping criteria to be a time limit of 40 seconds for graphs having at most 100 vertices, and 300

seconds for larger graphs. In addition, if the algorithm reaches the best known value of the routing

cost of the input graph, it stops.

Results of our method on these benchmark problems were compared to the perturbation based

local search (PB-LS) of Singh [17], and the artificial bee colony with local search (ABC+LS) of Singh

and Sundar [18]. Both of these approaches have better results than the one of [10], and so we did not

include results of [10] in this comparison. In tables 1 to 4, we present results of our algorithm and

results of ABC+LS, and PB-LS algorithms. In these tables, we report the best value, mean value,

standard deviation, and average execution time for the algorithms.

In Table 1, for each instance, the best value found in 30 runs is reported. In each row of this table,

the smallest best values are shown in boldface. On Euclidean graphs, our algorithm always finds the

best value, except for the e250.6 instance. Moreover, on six other graphs of size 250, our results are

better than the ones due to the other algorithms. Results of ABC+LS are similar to ours on graphs of

size 100 and 50. Algorithm PB-LS is successful on 50 vertices graphs and some 100 vertices graphs.

On random graphs, the three algorithms have similar results for all instances.

Table 1. Best values found by algorithms on Euclidean (e) and random (r) graphs

 Algorithms

 Instance PB-LS ABC+LS GRASP+PR

 e50.1 983.5 983.5 983.5

 e50.2 901.3 901.3 901.3

 e50.3 888.3 888.3 888.3

 e50.4 776.9 776.9 776.9

 e50.5 847.9 847.9 847.9

 e50.6 818.1 818.1 818.1

 e50.7 865.6 865.6 865.6

 e100.1 3507.0 3507.0 3507.0

 e100.2 3308.0 3307.9 3307.9

 e100.3 3566.3 3566.3 3566.3

 e100.4 3448.2 3448.1 3448.1

 e100.5 3637.7 3637.0 3637.0

 e100.6 3437.6 3436.5 3436.5

 e100.7 3703.7 3703.5 3703.5

 e250.1 22137.4 22089.6 22087.9

 e250.2 22797.9 22775.2 22770.7

 e250.3 21888.8 21886.1 21871.2

 e250.4 23456.6 23428.5 23422.7

 e250.5 22420.1 22386.9 22378.4

 e250.6 22312.6 22285.3 22290.3

 e250.7 22936.5 22923.9 22908.8

 r100.1 597.9 597.9 597.9

74 S. Sattari and F. Didehvar

 r100.2 586.0 586.0 586.0

 r100.3 607.0 607.0 607.0

 r100.4 598.4 598.4 598.4

 r100.5 624.4 624.4 624.4

 r100.6 615.5 615.5 615.5

 r100.7 514.7 514.7 514.7

 r300.1 4131.1 4131.1 4131.1

 r300.2 4040.7 4040.7 4040.7

 r300.3 4134.8 4134.8 4134.8

 r300.4 4229.3 4229.3 4229.3

 r300.5 3951.9 3951.9 3951.9

 r300.6 4314.4 4314.4 4314.4

 r300.7 4093.9 4093.9 4093.9

Table 2 shows mean values of the algorithms in 30 runs. On Euclidean instances, algorithm

GRASP+PR finds the best mean value on all of the instances, except for the e250.6 instance, where

result due to ABC+LS is better. On other instances, our algorithm is clearly superior. Algorithm

ABC+LS for two, and algorithm PB-LS for three instances have a similar result to ours. On random

graphs ABC+LS reaches the same mean values as the ones for GRASP+PR, except for the r300.6

instance, and PB-LS reaches the best mean value for six 100 vertices graphs.

Table 2. Mean values found by algorithms on Euclidean (e) and random (r) graphs

 Algorithms

 Instance PB-LS ABC+LS GRASP+PR

 e50.1 983.6 983.6 983.5

 e50.2 901.5 901.3 901.3

 e50.3 888.3 888.7 888.3

 e50.4 777.0 776.9 776.9

 e50.5 847.9 848.0 847.9

 e50.6 818.1 818.2 818.1

 e50.7 865.7 866.1 865.6

 e100.1 3510.4 3507.9 3507.2

 e100.2 3310.0 3308.7 3307.9

 e100.3 3567.7 3566.5 3566.3

 e100.4 3451.3 3451.0 3448.3

 e100.5 3643.3 3639.4 3637.3

 e100.6 3442.0 3438.0 3437.3

 e100.7 3706.4 3704.6 3703.9

 e250.1 22199.2 22144.8 22125.6

 e250.2 22970.8 22838.6 22783.6

 e250.3 22069.4 21927.7 21895.5

 e250.4 23581.4 23467.6 23440.4

 e250.5 22492.9 22423.8 22395.0

 e250.6 22397.2 22314.2 22314.7

 e250.7 23003.3 22966.2 22941.7

 r100.1 597.9 597.9 597.9

 r100.2 586.0 586.0 586.0

 r100.3 607.0 607.0 607.0

A Metaheuristic Algorithm for the Minimum Routing Cost 75

 r100.4 602.1 598.4 598.4

 r100.5 624.4 624.4 624.4

 r100.6 615.5 615.5 615.5

 r100.7 514.7 514.7 514.7

 r300.1 4196.1 4131.1 4131.1

 r300.2 4131.2 4040.7 4040.7

 r300.3 4220.6 4134.8 4134.8

 r300.4 4272.6 4229.3 4229.3

 r300.5 4041.6 3951.9 3951.9

 r300.6 4458.8 4314.5 4314.4

 r300.7 4299.4 4093.9 4093.9

Table 3 compares standard deviation of the three algorithms on each benchmark instance. On

Euclidean graphs, our algorithm always has the lowest standard deviation, and only in some 50

vertices graphs, algorithms PB-LS and ABC+LS reach the same values. On random graphs, ABC+LS

and GRASP+PR have the best standard deviations, but PB-LS reaches best values only on six

instances.

Table 3. Standard deviation of algorithms on Euclidean (e) and random (r) graphs

 Algorithms

 Instance PB-LS ABC+LS GRASP+PR

 e50.1 0.2 0.1 0.0

 e50.2 0.1 0.0 0.0

 e50.3 0.1 0.4 0.0

 e50.4 0.4 0.0 0.0

 e50.5 0.0 0.0 0.0

 e50.6 0.0 0.0 0.0

 e50.7 0.2 0.5 0.0

 e100.1 2.7 1.1 0.5

 e100.2 2.0 1.1 0.0

 e100.3 0.9 0.8 0.0

 e100.4 4.4 2.2 0.3

 e100.5 6.4 1.9 0.4

 e100.6 2.3 2.7 0.9

 e100.7 2.6 2.0 1.1

 e250.1 77.1 33.0 19.5

 e250.2 117.4 54.6 17.2

 e250.3 161.2 16.5 13.7

 e250.4 101.3 19.9 12.5

 e250.5 50.7 30.0 8.2

 e250.6 86.6 22.3 9.8

 e250.7 34.6 30.4 16.2

 r100.1 0.0 0.0 0.0

 r100.2 0.0 0.0 0.0

 r100.3 0.0 0.0 0.0

 r100.4 3.0 0.0 0.0

 r100.5 0.0 0.0 0.0

 r100.6 0.0 0.0 0.0

 r100.7 0.0 0.0 0.0

76 S. Sattari and F. Didehvar

 r300.1 91.3 0.0 0.0

 r300.2 138.2 0.0 0.0

 r300.3 82.5 0.0 0.0

 r300.4 31.6 0.0 0.0

 r300.5 69.8 0.0 0.0

 r300.6 52.9 0.0 0.0

 r300.7 159.7 0.0 0.0

In Table 4, we reported average execution times in seconds for the algorithms. Running

environments of the algorithms have been different. We executed our algorithm on a 2.8 GHz Pentium

4 Windows XP machine, but algorithms PB-LS and ABC+LS were executed on a 3.0 GHz Pentium

4 under Red Hat Linux 9.0. Moreover, PB-LS runs its main loop for 50000 times and ABC+LS after

20n non-improving iterations, executes a local search algorithm. These termination conditions differ

from ours. Due to these facts, we are not able to exactly compare the running times. However, it can

be seen that in most instances GRASP+PR has less running time, specially for random graphs.

Table 4. Average execution time of the algorithms on Euclidean (e) and random (r) graphs (in seconds)

 Algorithms

 Instance PB-LS ABC+LS GRASP+PR

 e50.1 7.5 4.7 0.3

 e50.2 7.9 3.6 0.5

 e50.3 7.6 4.4 0.7

 e50.4 8.2 3.2 0.6

 e50.5 8.7 3.2 0.1

 e50.6 8.2 4.1 0.1

 e50.7 8 4.1 0.2

 e100.1 54.7 29.7 16.9

 e100.2 53.9 28.9 9.4

 e100.3 60.6 25.1 5.0

 e100.4 53.5 25.1 26.5

 e100.5 50.5 29.5 31.8

 e100.6 56.5 28.9 35.6

 e100.7 55.4 28.5 13.8

 e250.1 590.5 266.9 290.0

 e250.2 573.3 277.2 269.6

 e250.3 590.7 303 256.9

 e250.4 573 309.5 259.9

 e250.5 563.3 296.5 272.2

 e250.6 605 377 298.5

 e250.7 585.4 321 286.6

 r100.1 52.9 16.3 0.3

 r100.2 54.5 16.3 0.2

 r100.3 52.6 11.1 0.2

 r100.4 51.6 16.5 0.3

 r100.5 54.9 16.5 0.2

 r100.6 54.4 16 0.2

 r100.7 53.1 14.8 0.2

 r300.1 709.1 472.4 13.5

 r300.2 674.3 307.9 9.7

A Metaheuristic Algorithm for the Minimum Routing Cost 77

 r300.3 697.1 467.8 13.0

 r300.4 668.2 364.7 11.7

 r300.5 681.1 272.6 5.4

 r300.6 681.3 600 12.8

 r300.7 689.4 383.5 12.1

6. Conclusion

We presented a GRASP with path-relinking algorithm for the MRCST problem. The

computational results on a set of benchmark problems showed the effectiveness of our algorithm.

This fast algorithm improved the best known values for some of the benchmark instances and

compared to the best published algorithms, the average quality of solutions was better. In addition,

our algorithm resulted in lower standard deviations than the ones corresponding to other algorithms.

References

[1] Ahuja, R.K. and Murty, V.V.S. (1987), Exact and heuristic algorithms for the optimum

communication spanning tree problem, Transportation Science, 21, 163-170.

[2] Bresina, J.L. (1996), Heuristic-biased stochastic sampling. Proceedings of the 13th National

Conference on Artificial Intelligence, AAAI Press: Portland, pp. 271–278.

[3] Campos, R. and Ricardo, M. (2008), A fast algorithm for computing minimum routing cost

spanning trees, Computer Networks, 52, 3229-3247.

[4] Dijkstra, E.W. (1959), A note on two problems in connexion with graphs, Numerische

mathematik, 1, 269-271.

[5] Feo, T.A. and Resende, M.G.C. (1989), A probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters, 8, 67-71.

[6] Fischetti, M., Lancia, G. and Serafini, P. (2002), Exact algorithms for minimum routing cost

trees, Networks, 39, 161-173.

[7] Glover, F. (1996), Tabu search and adaptive memory programming-advances, applications

and challenges. In: Barr, R.S. Helgason, R.V. and Kennington, J.L. (Eds), Interfaces in

Computer Science and Operations Research, Springer, US, 1, pp. 1-75

[8] Hu, T.C. (1974), Optimum communication spanning trees, SIAM Journal on Computing, 3,

188-195.

[9] Johnson, D.S., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1978), The complexity of the

network design problem, Networks, 8, 279-285.

[10] Julstrom, B.A. (2005), The blob code is competitive with edge-sets in genetic algorithms

for the minimum routing cost spanning tree problem, Proceeding of the 2005 conference on

Genetic and evolutionary computation, ACM, pp. 585-590.

[11] Laguna, M. and Marti, R. (1999), GRASP and path relinking for 2-layer straight line

crossing minimization, INFORMS Journal on Computing, 11, 44-52.

[12] Picciotto, S. (1999), How to Encode a Tree, Ph.D. thesis, University of California, San

Diego.

[13] Prim, R.C. (1957), Shortest connection networks and some generalizations, Bell System

Technical Journal, 36, 1389-1401.

[14] Resende, M.G.C. and Ribeiro, C.C. (2005), GRASP with path-relinking: recent advances

and applications, In: Ibaraki, T. Nonobe, K. and Yagiura, M. (Eds), Metaheuristics: progress

as real problem solvers, Springer US, pp. 29-63.

78 S. Sattari and F. Didehvar

[15] Resende, M.G.C. and Ribeiro, C.C. (2010), Greedy randomized adaptive search procedures:

advances, hybridizations, and applications, In: Gendreau M. and Potvin J. (Eds), Handbook

of Metaheuristics, Springer US, pp. 283-319.

[16] Ribeiro, C.C., Uchoa, E. and Werneck. R.F. (2002), A hybrid GRASP with perturbations

for the Steiner problem in graphs, INFORMS Journal on Computing, 14, 228-246.

[17] Singh, A. (2008), A new heuristic for the minimum routing cost spanning tree problem,

Proceeding of the International Conference on Information Technology (ICIT’08), IEEE,

pp. 9-13.

[18] Singh, A. and Sundar, S. (2011), An artificial bee colony algorithm for the minimum routing

cost spanning tree problem, Soft Computing, 15, 2489-2499.

[19] Wong, R.T. (1980), Worst-case analysis of network design problem heuristics, SIAM

Journal on Algebraic Discrete Methods, 1, 51-63.

[20] Wu, B.Y., Chao, K.M. and Tang, C.Y. (2000), Approximation algorithms for the shortest

total path length spanning tree problem, Discrete Applied Mathematics, 105, 273-289.

[21] Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R. and Tang, C.Y. (1999), A

polynomial-time approximation scheme for minimum routing cost spanning trees, SIAM

Journal on Computing, 29, 761-778.

[22] Beasley J., OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html, 2005.

