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We consider the reliable multi configuration capacitated logistics network design problem 

(RMCLNDP) with system disruptions, concerned with facilities locating, transportation links 

constructing, and also allocating their limited capacities to the customers in order to satisfy their 

demands with a minimum expected total cost (including locating costs, link constructing costs, as 

well as expected transshipment costs in usual and disruption conditions). The motivating 

application of this class of problem is in capacitated logistics network design with multi 

configuration (including multi-product, multi-vehicle, and multi-type link) regarding system 

disruptions simultaneously. The problem is modelled as a mixed integer program. Also, a hybrid 

heuristic algorithm is proposed. The algorithm, as an efficient approach, is a hybridization of 

sample average approximation, the LP relaxation, and a two stage decomposing heuristic. The 

results of a detailed comprehensive computational analysis are also reported. Computational 

experiments illustrate that the provided algorithm is able to substantially outperform the integer 

programming approach in terms of both finding and verifying the efficient optimal (or near 

optimal) solutions at reasonable processing times. 
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1. Introduction 
 

Due to the manufacturing competitive world of the 21st century, nowadays, the supply chain 

network design (SCND) issue and its related topics have a special importance in optimization. 

Because this issue is a significant subject that can play a key role in the reduction of various costs 

(such as costs of location, construction, operation, production, and transportation) as well as in 

increasing the efficiency of production and service systems. 

 

The past studies demonstrate that a variety of SCND problems have been solved by the 

development of several mathematical programming models. Some reviews have mentioned the 

models, algorithms and applications; see (Daskin et al., 2005) [13], (Meixell and Gargeya, 2005) [37], 

(Vahdani et al., 2012) [62], (Hatefi et al., 2014) [23], (Cardona-Valdes et al., 2014) [10], (Vahdani, 

2015) [67], and (Keyvanshokooh et al., 2016) [31]. 
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Since SCND is known as a long term strategic decision problem, so considering various practical 

factors can help in getting more efficient solutions of the problem under study. Disruption is known 

as a key factor in this context. Recently, this topic in SCND has become a considerable issue for most 

companies in the trade globalization world. 

 

In one view, several potential sources of disruptions threaten the supply chains. In general, 

disruptions are unplanned and unanticipated events that can cause several perturbations in the normal 

flow of products and materials within a supply chain. The disruption at one member of a supply chain 

(SC) can make a significant influence over the whole chain. SCs are threatened by several potential 

sources of disruptions. Some of them are external sources (e.g., natural disaster, terrorist attack, power 

outage, and supplier discontinuity) and some of them are internal sources (e.g., industrial accident, 

labor strike). Although these disruptive events may possibly cause short-term facility eventualities, 

they may also lead to not only severe operational consequences, such as higher transshipment costs, 

order delays, inventory shortages, loss of market shares, and so on, but also increased negative 

financial effects; see (Peng et al., 2011) [43], and (Keyvanshokooh et al., 2013) [30]. 

 

Here, we study the problem of designing a capacitated SCN, subject to system disruptions 

(including facility disruptions and transshipment link disruptions). Once such an SC structure is 

constructed, it will probably be very hard and expensive to change the design. Therefore, it surely is 

much worthed to develop an SC that achieves permanence and efficiency in the presence of all kinds 

of disruptions. 

 

The significant contributions of this study are arranged as follows: (i) the reliable capacitated 

SCND problem with a multi configuration structure is studied regarding facility disruptions and 

transshipment link disruptions simultaneously, (ii) a hybrid heuristic algorithm, a hybridization of 

obtaining sample average approximation (SAA), LP relaxation, and a two stage decomposing 

heuristic, is proposed to solve the problem by near-optimal solutions in reasonable times. To the best 

of our knowledge, such study has not been made in the literature. 

 

The remainder of this paper is organized as follows. Section 2 provides a relatively comprehensive 

literature review in three main streams. Section 3 presents the problem definition and the proposed 

mathematical programming model. Then, in Section 4, at first, a customized SAA for the RMCLNDP 

is proposed and then, a hybrid heuristic algorithm, a hybridization of SAA, the relaxation, and a two 

stage decomposing heuristic, is described in detail. In Section 5, analysis of solving the test problems, 

computational results and discussions about the efficiency of the proposed HHBSAA algorithm are 

presented. Finally, conclusions and guidelines for future research are provided in Section 6. 

 

2. Literature Review  
 

In the SCND and logistics literature, system disruption is known as an special issue of supply 

uncertainty. The disruptions are introduced as casual events leading to a supplier or other components 

of the supply chain to halt functioning, either completely or partially, for usually a partial amount of 

time. Several robust strategies and approaches have been proposed to mitigate the effects of supply 

chain disruptions and improve the efficiency of SC and its logistics at disruption conditions. For more 

study, the reader is referred to the review by (Snyder and Daskin, 2006) [57]), (Snyder et al., 2012) 

[55], and (Vahdani et al., 2012) [62]. 

 

In order to clear up the description of our contribution, three main streams of the literature are 

reviewed that may be interesting for comparison: (i) SCND subject to facility disruptions, (ii) SCND 
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subject to transportation link disruptions, and (iii) capacitated SCND. It is noted that in this study, the 

system disruptions are defined as facility disruptions and transshipment link disruptions. 

 

2.1. Facility Disruptions 

 

The literature related to facility disruptions demonstrates that, at first, (Drezner, 1987) [14] studied 

facility location with unreliable suppliers by formulating some mathematical models. They considered 

the unreliable p-median and (p,q)-center location problems, in which a probability of becoming inactive 

was specified for each facility. In the following studies, Snyder (2003) [54], Snyder and Daskin (2005) 

[56], and Snyder and Daskin (2007) [58]  considered the reliable p-median and fixed charge problems 

due to several level assignments with the unreliable candidate sites. Several approaches have been 

considered to address the facility disruptions within mathematical formulations; see Snyder et al., (2012) 

[55].  

 

Scenario is a known approach related to uncertain conditions. In most stochastic programming 

models, there are disruption scenarios in which all (or sometimes a sample) of the disruption scenarios 

are enumerated. This approach is simple and tangible, but, once the number of facilities and 

subsequently the problem size grows, it becomes insupportable. Snyder and Daskin (2006) [57] 

proposed some mathematical models using this approach. Peng et al. (2011) [43] considered the effect 

of system failure conditions in logistic network design problems with facility disruptions as several 

scenarios. Moreover, Jabbarzadeh et al. (2012) [26] formulated an SC design problem with the 

distribution centers having partial or complete disruptions. Aydin and Murat (2013) [4] studied the 

capacitated reliable facility location problem (CRFLP) regarding facility disruptions as scenarios. They 

proposed an efficient algorithm as a hybridization of particle swarm intelligence (PSO) and sample 

average approximation (SAA) methods. Garcia-Herreros et al. (2014) [21] developed a two-stage 

stochastic program in order to design resilient SCs in which the distribution centers are subject to the 

risk of disruptions at each potential location. The problem is concerned with selecting distribution center 

locations, determining storage capacities for multiple commodities, and making suitable distribution 

strategies in scenarios that explain disruptions at potential distribution centers. Cardona-Valdes et al. 

(2014) [10] formulated a two-stage stochastic problem in order to minimize the total cost and the total 

service time simultaneously, for designing a two echelon production-distribution network with multiple 

manufacturing plants, distribution centers and a set of candidate warehouses. They proposed a scenario 

based approach in order to consider the impacts of the uncertainty. Ivanov et al. (2014) [25] formulated 

a multi-period and multi-commodity distribution (re)planning problem for a multi-stage centralized 

upstream network with structured dynamic conditions. Their approach considers several execution 

scenarios and proposes some efficient suggestions on (re)planning in the case of system failures. Also, 

the graph of structural reliability identifies the optimistic and pessimistic scenarios.  

 

Probability distribution terms is another approach in which the probability distributions of the 

uncertain conditions are known to decision makers and the related terms can be applied in proposing 

the mathematical model. Berman et al. (2007) [8] studied a p-median problem in which the facility 

disruptions have the probability with a similar value as suggested by Snyder and Daskin (2005) [56]. 

They focused on structural properties and special cases of their non-linear model and presented two 

formulations for the reliable facility location problem (RFLP) model of Snyder and Daskin (2005) [56] 

with site-specific disruption probabilities. One model applies a scenario approach within a stochastic 

programming framework, while the other one involves computing the expected travel costs 

endogenously using highly non-linear multiplicative terms in a manner similar to Berman et al. (2007) 

[8]. They developed a heuristic based on the sample average approximation of Kleywegt et al. (2002) 

[32] for the first model and two greedy–adding–type heuristics for the latter. Computational results 
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showed that one of the greedy-adding methods outperforms the other two heuristics. Also, for the 

problem with site-specific disruption probabilities, a non-linear formulation was developed by Cui et 

al. (2010) [12]. They reformulated their model using the reformulation-linearization technique (RLT), 

resulting in a model that is both linear in the decision variables and polynomial in the problem size. 

They also introduced a continuum approximation (CA) model that requires simulation and regression, 

but may be solved in closed form to allow for managerial insights. In another study, Aboolian et al. 

(2012) [1] reformulated the MINLP model of Cui et al. (2010) [12] by an approximate model in which 

the probability that a customer was assigned to a given facility was calculated assuming that all closer 

facilities were open. 

 

Comparing the two scenario and probabilistic approaches, it can be observed that in the probabilistic 

approach, for each event, a probability distribution is considered and its related probability is proposed 

in the calculations. Although it tends to provide a better perspective of the problem, applying this 

approach generally leads to a considerable complexity of the problem so that finding an appropriate and 

effective response for the problem is faced with several difficulties. In contrast, the scenario approach 

assign a specified numerical value to each event and this value is used in calculations. Although 

applying these approaches may turn to reduce the application of the obtained solution, by using the SAA 

approach, the solving procedure and the complexity of the mathematical formulation will be 

significantly reduced even in large sizes, and subsequently, efficient solutions can be achieved at the 

reasonable times. 

 

Other approaches are considered to address the facility disruptions. Lim et al. (2009) [35] presented 

that wrong estimation of the disruption probability can have some considerable negative effects on the 

obtained solution of the facility location problem under random facility disruptions. Cui et al. (2010) 

[12] studied another CA model, in which disruptions are assumed to be geographically correlated. They 

introduced closed-form approximations for the total cost and the individual cost components and 

demonstrated that these were quite accurate. Berman (2010) [9] considered a continuous version of the 

median problem with unreliable facilities (MPUF) model in which two unreliable facilities, with 

correlated disruptions, are to be located on a line segment. They developed closed-form solutions for 

the problems and performed parametric analysis to describe how the optimal locations and costs change 

when the disruption characteristics change. O’Hanley and Church (2011) [40] formulated a robust 

locating of the facility location–interdiction covering model. Shishebori et al. (2013) [48] and 

Shishebori and Jabal Ameli (2013a,b) [49, 50]  considered facility disruptions as a constraint for the 

maximum allowable disruption cost of the system. They proposed a MINLP model for the problem and 

investigated it by a case study. Haldar et al. (2014) [22] developed an efficient fuzzy group decision 

making approach due to a fuzzy technique for strategic supplier selection in a fuzzy environment 

regarding a disaster scenario. Recently, Azizi et al. (2014) [5] proposed a mathematical model in order 

to study building of hub-and-spoke network systems under the risk of hub disruption. Their model 

assumed that once a hub stops normal operations, the entire demand initially served by the hub is 

handled by a backup facility. The objective function of the model minimizes the weighted sum of 

transportation cost in regular situation and the expected transportation cost following a hub failure. 

Fattahi et al. (2015) [18] developed different mixed-integer linear programming (MILP) models for 

designing of centralised and decentralized supply chains by using two-stage stochastic programming. 

They investigated a multiple period replenishment problem based on the (s, S) policy for these supply 

chain models. To deal with demand uncertainty, scenarios were generated using the Latin Hypercube 

Sampling method and their number was reduced by a scenario reduction technique. To solve this 

problem, they proposed an evolutionary strategy (ES) and an imperialist competitive algorithm (ICA) 

to find near optimal solutions. 
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2.2. Link Disruptions 

 

Some studies related to link disruptions were performed. Most of them, in the literature, 

extensively studied the design of survivable telecommunication networks (Soni, 2000) [60]. Ferris 

(2000) [20] proposed a robust two-stage flow model where the plan specifies the value of flow to be 

sent to the static optimal route and the value of rerouted flow in presence of the probability of some 

disruptions. Waller (2002) [69] presented some algorithms for the online shortest path problems 

regarding capacitated link-cost dependencies. In their study, disruptions were considered by using 

online-recourse models where once real-time information becomes available, the remaining path till 

the destination is re-evaluated. Sever et al. (2013)[47] considered networks in which the travel time 

of the transshipment links can increase, because the links are subject to several disruptions and are 

subsequently vulnerable. They considered some predetermined link disruption probabilities for 

recovering from or getting into a disruption. For more reviews, we refer to Soni (2000) [60], Klibi 

(2009) [33], Vahdani et al. (2013) [63, 64],  Esmaeilikia et al. (2014) [17], and Vahdani and 

Mohammadi (2015) [68]. 

 

As a remarkable point, it should be mentioned that reliable communication networks can still work 

suitably when some partial system failures happen in some components. However, the amount of the 

flow and the total cost of these networks significantly differ from those in supply chains. 

 

2.3. Capacitated Network Design 

 

Capacity is known as another significant factor that plays a critical role in SCND. Several studies 

were done regarding the SC limited capacity. Mahajan et al. (2002) [36] analyzed an SC consisting 

of uncapacitated/capacitated suppliers for distributing two independent commodities through 

multiple retailers and studied the problem by means of game theory. Jemai and Karaesmen (2007) 

[28] considered the framework of a Nash game for a two-stage SC consisting of a capacitated supplier 

and a retailer. (Sitompul et al. 2008) [53] studied the effect of the safety stock placement strategy for 

an n-stage capacitated serial SC as a shortest path problem and presented an efficient approach with 

the objective of maintaining the essential overall service level at the lowest cost. Toktas-Palut (2011) 

[61] investigated a decentralized two-stage SC with multi independent capacitated suppliers. They 

modeled the problem as an M/M/1 make-to-stock queuing network in order to coordinate the 

inventory policies of the suppliers in the SC. In their study, the end-customer demand follows a 

Poisson distribution probability, and the service times of the suppliers are exponentially distributed. 

Nepal et al. (2012) [39] investigated a three echelon supply chain with some capacity restrictions and 

step-changes in supply consumption rate regarding the life-cycle demand phases. Duan and Liao 

(2013) [15] proposed a simulation-based optimization approach in order to determine the near- 

optimal supply chain replenishment policies in presence of various demands and control strategies 

for a capacitated supply chain. They examined a capacitated single distributor-multi retailer supply 

chain system in detail. Shishebori et al. (2013) [48] considered facility disruptions via a constraint on 

the maximum allowable disruption cost of the system in the context of a facility location–network 

design problem with disruptions. They proposed a MINLP model for the problem and illustrated it 

by a case study. Shishebori et al. (2014) [51] consider a similar facility location–network design 

problem and proposed an LP-based heuristic to solve it. Recently, Rahmaniani and Ghaderi (2015) 

[44] developed some simple and efficient meta-heuristics based on the variable neighborhood search 

method in order to solve the CFLNDP effectively. Moreover, other related studies dealt with the 

capacitated supply chain in different capacitated conditions (e.g., Jemai and Karaesmen (2007) [28], 

Hennet and Arda (2008) [24], Vahdani et al. (2013) [63, 64], and Vahdani et al. (2014) [65]). 
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2.4. Supply Chain Network Design with Multi-Configuration 

 

Considering several possible aspects of the proposed problem can lead to more practical solutions. 

This can help to decision makers to have several alternatives for the proposed SCND and logistics. 

The several possible aspects can include multi-product, multi-type link, and multi-vehicle. In this 

paper, we refer to them by multi-configuration.  

 

Several studies were done at the SCND and logistics with multi-configuration structure. Chen and 

Lee (2004) [11] formulated a multi-product multi-stage multi-period model with multiple 

incompatible goals of a multi-echelon SCN as a MINLP, in which the fuzzy sets were considered to 

explain the uncertainties involved in market demands and product prices. Park et al. (2007) [41] 

formulated a multi-period multi-product SC model, including supplier, manufacturer, and distribution 

center to minimize the total cost. You and Grossmann (2008) [70] proposed the optimization of a bi-

criteria multi-echelon supply chain in presence of demand uncertainty with the objectives of 

maximizing the net present value and minimizing the expected lead time. Ferrio and Wassick (2008) 

[19] developed a MILP model for redesigning and optimizing a multi-product chemical supply 

network, including production sites, an arbitrary number of DCs, and customers. Also, El-Sayed et 

al. (2010) [16] considered maximizing the total expected profit of a multi-period three-echelon 

forward-reverse logistics network under demand uncertainty in the forward direction and 

deterministic customer demand in the reverse direction. Mirzapour Al-E-Hashem et al. (2011) [38] 

modelled a multi-site, multi-period, multi-product three echelon SC in presence of uncertainties of 

cost parameters and demand changes. They solved the proposed bi-objective problem as a single-

objective mixed integer programming (MIP) problem through an LP-metric method. Amrani et al. 

(2011) [3] proposed a MIP model for a multi-commodity production–distribution network with 

alternative facility configuration and solved it by a variable neighborhood search (VNS) method. 

Bashiri et al. (2012) [7] formulated a new multi-product mathematical model for a multi-echelon 

network with strategic and tactical planning and different time resolution decisions. Jamshidi et al. 

(2012) [27] modelled a bi-objective multi-echelon SCN design problem in which several 

transshipment alternatives at each level of the chain were considered with different costs and a limited 

capacity.(Karimi-Nasab et al. (2013) [29] proposed a multi-objective approach in order to determine 

the distribution policy for a wholesaler. In their approach, the wholesaler distributes supplementary 

nutrition to a set of local distribution centers positioned around the wholesaler, geographically. Their 

approach optimizes selling price, carrying cost, batch size and services level of multi-items for each 

local distribution centre in every planning period. Badri et al. (2013) [6] presented a mathematical 

technique based on the Lagrangian relaxation method for solving a multi-commodity SCND model 

with different time resolutions for strategic and tactical decisions. The objective function maximizes 

the total net income over time. Moreover, Song et al. (2014) [59] modelled a manufacturing SC 

problem with multiple suppliers. Their proposed SC is subject to several simultaneous uncertainties 

such as uncertain material supplies, stochastic production times, and random customer demands. 

Recently, Pasandideh et al. (2014) [42] proposed a mathematical model for a bi-objective 

optimization of a multi-product multi-period three-echelon SC network problem considering several 

system uncertainties. The goal is to minimize the total production costs, supply and warehouse costs, 

transportation costs, inventory costs, and shortage costs such that the expected and the variance of the 

total cost are simultaneously minimized. Sarrafha et al. (2014) [45] studied an SCND including 

suppliers, factories, DCs, and retailers. They proposed a multi-period structure such that a flow-shop 

scheduling model in the manufacturing part of the SC, and also, the shortage in the form of backorder 

in each period were integrated. Their main goals are minimizing the total SC costs as well as 

minimizing the average tardiness of the product to DCs. Shishebori and Yousefi (2015) [52] studied 

a robust and reliable medical service (MS) center location network design problem, which 

simultaneously takes uncertain parameters, system disruptions, and investment budget constraint into 
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account. Their programming model is formulated based on an efficient robust optimization approach 

to protect the network against uncertainty. In the literature, another approach to the parameter 

uncertainty makes use of fuzzy theory. In several decision making situations, high degree of 

uncertainties, with fuzziness aspect, are involved in the data set. Fuzzy set theory provides a 

framework for handling the uncertainties of this type. 

 

2.5. Research Gap and Our Contribution 

 

Some existing works studied the SCND and logistics with facility disruptions regarding link 

disruptions separately. However, most methods did not consider the capacity (including facilities and 

transportation links). But, in some manufacturing industries, there are some capacitated SC and 

logistics systems in which a variety of disruptions (failures) may occur. The most obvious examples 

are SC of different spare parts, food products manufacturing, petrochemicals, etc. 

 

Here, we investigate the problem of designing a capacitated SC network, consisting of suppliers, 

DCs, and demand nodes as well as some transportation links. These are considered as potentials and 

it should be decided which potential nodes and links should be built. It is noted that modifying the 

SCND and its related logistics will be very difficult and costly. 

 

3. Problem Definition and Formulation 
 

The working conditions of the RMCLNDP can be described as follows. Suppose that there is an 

SC network GG = (G , A). Let GS, GT , and GD signify the sets of supply, transshipment, and demand 

nodes, respectively. Also, let G0 be defined as the set of all supply and transshipment nodes (G0 = 

GS ∪ GT), in which the nodes can have open/close final situation after decision making. The set G0 

can be called ‘‘facilities’’. All of the facilities and transportation links are capacitated and each has a 

maximum level (capacity) in order to give service to the demand nodes. Let S be the set of scenarios, 

each of which specifies a set of facilities and transportation links that are simultaneously disrupted. 

Suppose s=0 as the nominal scenario in which no disruptions happen. The set P illustrates several 

types of products that should be produced and transshipped to the demand nodes. The set L presents 

different kinds of transshipment links. For example, for each link, it is assumed that three several 

quality levels (i.e., |L| = 3), each of which is defined as follows: the dirt road (type 3), the paved road 

with low quality (type 2) and the paved road with the standard quality (type 1). As a remark, if a link 

with type 1 quality is constructed, its construction cost will be more than the other types, but its 

capacity is more and its transshipment cost is lower than the other types of road links (Rahmaniani 

and Ghaderi, 2015) [44]. Here, links (roads) with three quality types are defined; however, several 

quality types can be defined for the problem. The set V shows several types of transportation vehicles. 

The best type of the vehicle has the highest cost of investment, but the lowest cost of transportation. 

 

In order to avoid the infeasible situations, a penalty fee is ordained for the demands of nodes that 

cannot feasibly be met. It can be denoted that these demands are fulfilled from some outside suppliers 

as emergency facilities but with high transportation costs. Also, it can be interpreted that the demand 

of a node cannot be served if the penalty is smaller than the cost of serving the demand of the node. 

Here, this contingency is considered by supposing that NS involves an ‘‘emergency facility’’ such that 

it has no fixed cost and it is never disrupted, and also has infinite capacity. Obviously, in the optimal 

solution, it is always open and doesn’t have any disruptions. For each transshipment link, from the 

emergency facility to other nodes, the unit transshipment cost is equal to the unmet-demand penalty 

fee. The sets and parameters of the problem are defined as follows. 
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Sets: 

G:   set of nodes (G = GS∪GT∪GD), 

G0: set of "facilities" nodes (G0 = GS∪GT), 

P:   set of products (P=1, 2, 3, …) 

L:   set of several quality types of transportation links (L=1, 2, 3, …) 

V:   set of several types of transportation vehicles (V=1, 2, 3, …) 

A:  set of potential transportation links 

S:  set of scenarios; each scenario illustrates the facilities and also link disruptions 

 

Parameters: 

fj    = fixed cost for locating of facility j∈G0 

πs   = probability of happening of scenario s∈S 

cij
l   = construction cost of link (i, j)  ∈A with quality type l (l∈L) 

tij
plv= unit transshipment cost of product p (p∈P) on link (i, j)  ∈A with quality type l (l∈L) by 

vehicle v (v∈V) 

γij
v  = investment cost of vehicle v (v∈V) at link (i, j)∈A 

λij
v = capacity of vehicle v (v∈V) at link (i, j)∈A (in kilograms) 

Γj   = capacity of facility at node j∈NS (according to processing time criterion) 

φj
p = processing time of product p(p∈P) at node j∈GS 

Θj  = capacity of facility at node j∈NT (in kilograms) 

Πij
l= capacity of link (i, j)∈A with quality type l (l∈L) (in kilograms) 

ψp = weight of product p (p∈P) 

Uij
max = maximum number of vehicle types which can be used at link (i, j)∈A 

bj
p = bj

p≥ 0 if j∈Gs, representing the supply of product p (p∈P); bj
p = 0, if j∈GT, representing 

the transshipment of product p (p∈P); and bj
p≤ 0 if j∈GD, representing the demand of product 

p (p∈P) 

 

Φj
s = 

1,

0 ,





 
if facility at node j ∈N0 is disrupted in scenario s∈S 

otherwise 

Ωij
s = 

1,

0 ,





 
if link (i, j)  ∈A is disrupted in scenario s∈S 

otherwise 

Δij
lvs = 

1,

0 ,





 
if vehicle v (v∈V) at link (i, j)  ∈A with quality type l (l∈L) is disrupted in scenario s∈S 
 

otherwise 

Although the Φj
s, Ωij

s, and Δij
lvs are defined as binary parameters, the proposed mathematical 

programming model may function well if these parameters are considered to be fractional, indicating 

partial disruptions. 
 

Decision variables: 

 

Zj = 
1,

0 ,





 
if a facility is located at node j∈G0 

otherwise 

Xij
l = 

1,

0 ,





 
if link (i , j) ∈A is constructed with quality type l (l∈L) 

otherwise 

Wij
v = 

1,

0 ,





 
if vehicle v (v∈V) is established at link (i , j)∈A 

otherwise 
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Yij
plvs = amount of flow of product p (p∈P) on link (i ,j) ∈A with quality type l (l∈L) by vehicle 

v (v∈V) in scenario s∈S 

 

Therefore, we propose the following MIP model for the RMCLNDP: 
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The objective function (1) minimizes the expected total costs (ETC), involving fixed location 

costs, link construction costs, vehicle establishment costs, and also the expected transshipment costs 

for all possible scenarios with respect to their probabilities. Constraints (2)–(4) are known as the flow 

conservation constraints. Constraints (2) emphasize that, for supply nodes, the flow out should be less 

than or equal to the supply. Also, constraints (3) enforce that the flow in should be to equal the flow 

out for transshipment nodes. Sequentially, for demand nodes, constraints (4) ensure that the flow in 
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will be to equal the demand. It is noted that each of supplier, DCs and demand nodes can be applied 

as transshipment nodes, i.e., the demands can be imported and exported from each of the supplier, 

DCs and demand nodes. Constraints (5) ensure that the summation of processing time of products, 

produced by supply node j∈GS, cannot exceed its total processing time capacity Γj when it is opened 

(i.e. Zj=1) and is fully functional in scenario s ∈S, and prevent any flow when it is closed or disrupted. 

Also, constraints (6) guarantee that the summation of weights of the flow of products, transported by 

DC j∈GT, does not exceed its capacity Θj when it is opened (i.e. Zj=1) and is totally functional in 

scenario s ∈S, and prevent any flow when it is disrupted or closed. Moreover, constraints (7) 

emphasize that the total flow through the link (i , j) ∈A does not exceed its capacity Πij
l when it is 

constructed (i.e., Xij
l+Xji

l=1) and is fully functional in scenario s ∈S, and prevent any flow when it is 

disrupted or closed. Constraints (8) guarantee that the summation of weights of the flow, transshipped 

by vehicle v through the link (i , j) ∈A with type l, does not exceed its capacity λij
v when it is established 

(i.e., Wij
v=1) and is totally functional in scenario s ∈S, and prevent any flow when it is closed or 

disrupted. Constraints (9) prevent links from being opened in both directions with several quality 

types at once. Constraints (10) limit the maximum number of vehicle type that can be applied through 

the link (i ,j) ∈ A. Constraints (11) guarantee that the vehicle establishing at link (i ,j) ∈A  can be 

happed when the link, with at least one of the quality type, is opened. Constraints (12)-(14) declare 

the binary variables and finally, constraints (15) guarantee that the variable Yij
plvs will be non-negative. 

 

Now, knowing that the RMCLNDP can be reformulated as an extended version of the p-LNDP, 

which is itself NP-hard, proposition 1 presents that RMCLNDP is NP-hard,. 

 

Proposition 1. The RMCLNDP is NP-Hard. 

 

Proof. In the p-LNDP, introduced by Peng et al. (2011) [43], let p, the desired robustness level, be 

equal to infinity; therefore, the p-robust constraint in the p-LNDP is inactive. Moreover, let ps = 1 for 

the nominal scenario s=0 and 0 \ {0}
s

p s S   . Also, assume that the disruption scenarios do not 

include any link disruptions and all of the links are uncapacitated. Moreover, assume that there is just 

only one kind of product which is produced and transshipped, there is only one quality type link can 

be opened, and there is only one type of vehicle that can be used in the links. Then, RMCLNDP 

reduces to p-LNDP, which is NP-hard Peng et al. (2011) [43]. Therefore, RMCLNDP is NP-hard. □ 

 

4. Solution Procedure 
 

Since the RMCLNDP is categorized as an NP-hard combinatorial optimization problem, even 

solving the medium-size test instances can be very hard with conventional methods. This practically 

intensifies specially when the number of scenarios considerably. In this section, we propose two 

solution methods. At first, the classical sample average approximation (SAA) method, is customized 

to solve the RMCLNDP. Then, our proposed HHBSAA algorithm is presented. In order to improve 

the solution quality and efficiency, the hybrid HHBSAA algorithm integrates a heuristic strategy 

inspired by LP-relaxation with the classical SAA method. 

 

4.1. Sample Average Approximation (SAA) 

 

One of the most efficient solution approaches to solve large size stochastic optimization problems 

is SAA method Ahmed and Shapiro (2002) [2], Kleywegt et al. (2002) [32], Schutz et al. (2009) [46], 

Aydin and Murat (2013) [4]. In a general view, the SAA method solves a sample of scenarios of the 
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problem and accordingly, it approximates the objective function value of the stochastic program. 

Accordingly, the final solution is the best performing sample solution. In the following, the efficiency 

of the proposed hybrid procedure with that of SAA is considered and evaluated. The steps of the SAA 

method to solve the RMCLNDP are as follows. 

 

SAA method for RMCLNDP: 

 

Initialize: Generate M independent random samples (m = 1, 2, . . . , M) with the scenario sets Nm, 

where |Nm|=N. Each sample m consists of N conceptions of independently and identically distributed 

random scenarios. Besides, a reference sample which is large enough is selected; e.g., |𝑁´| ≫ 𝑁. 

 

Step 1: For each sample m, solve the following optimization problem and save the sample optimal 

objective function value 𝜉𝑚 and the sample optimal solution
0

{ }
m m

j j G
Z Z

 
 : 

 

SAA- RMCLNDP (m): 
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Step 2: Calculate the average 𝜉̅𝑀 of the sample optimal objective function values obtained in step 1 

as follows: 

 

1

1
M

M m

mM
 



  . (31) 

 

Step 3: Estimate the true objective function value 𝜉𝑚 of the original problem to each sample’s optimal 

solution. Solve the following optimization problem for each sample using the optimal first stage 

decisions Zm from Step 1: 
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 (32) 

 
subject to constraints (16) to (30), and using 𝑁𝑚 ≡ 𝑁′. 

 

Step 4: Select the solution Zm with the best ˆ m
 ; i.e., ZSAA = arg minm= 1,...,M 

ˆ m
 , as the solution and 

S A A
  = minm= 1,...,M

ˆ m
 , as the solution value of SAA. 

 

The optimal objective function value of the original problem RMCLNDP is denoted by 𝜉∗. 

Moreover, 𝜉̅𝑀 illustrates an unbiased estimator of 𝐸𝑥𝑝[𝜉], which is the expected optimal objective 

function value of sample problems. Since 𝐸𝑥𝑝[𝜉]  ≤ 𝜉∗, 𝜉̅𝑀 can be known as a statistical lower bound 

on the ξ*; see Ahmed and Shapiro (2002) [2]. While 𝜉̅𝑀 cannot always be a lower bound on the 𝜉∗, 

it is beneficial to evaluate the quality of the solution value of SAA 𝜉𝑆𝐴𝐴. The reference set 𝑁′ is 

applied to estimate the objective function value of the sample problem solutions in the original 

problem RMCLNDP. 
 

4.2. Hybrid Heuristic Based SAA (HHBSAA) Algorithm 

 
The proposed algorithm, as an efficient approach, is a hybridization of the SAA, the LP relaxation, 

and a two stage decomposing heuristic. The stimulation for this hybridization arises from the last 

stage of the SAA method (Step 4) in which the best performing solution is selected and the rest is 

abandoned. However, this abandoning of (M–1) sample solutions can lead to both a loss of precious 

sample knowledge and a loss of time spent in solving each sample’s solution. We consider combining 

the implementation of the classical SAA procedure and the LP-relaxation in the context of the 

proposed heuristic and use all of the obtained information of the sample solutions together. This 
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combined approach is worked as follows. At first, the SAA method is applied such that for each m, 

the LP-relaxation of the SAA- RMCLNDP (m) is solved and the vector Zm is obtained. The elements 

of the vector Zm are not necessarily binary, because we solved the LP-relaxation of the SAA-

RMCLNDP. Therefore, we have M vector Z. A new vector Z is established regarding the M vector Z 

such that the sum of all elements in one column are calculated and then, the non-zero elements in the 

summation of the M vector Z (called Zsum) are changed to 1 at the new vector Z (Znew). Here, we 

explain this technique with an illustrative example. Assume that M=7 and |G0|=10, that is, the vector 

Z has 10 elements. By executing the SAA, 7 vectors Zm are obtained as shown in Fig. 1.  
 

 
 m=1 Z1 0.84 0 0.23 1 0.54 0 0 0.99 0 0 

             

 m=2 Z2 0.42 0.05 0.10 0.74 0.64 0 0 0.84 0 0 

             

 m=3 Z3 0.64 0.10 0.15 0.81 0.72 0 0 0.87 0 0 

             

 m=4 Z4 0.72 0.15 0.08 0.72 0.80 0 0 0.72 0 0 

             

 m=5 Z5 0.58 0.20 0.19 0.65 0.58 0 0 0.68 0 0 

             

 m=6 Z6 0.67 0.18 0.14 0.79 0.74 0 0 0.92 0 0 

             

 m=7 Z7 0.81 0.25 0.05 0.71 0.82 0 0 0.76 0 0 

             

             

Sum of Z1 to Z7(Zsum) 4.68 0.93 0.94 5.42 4.84 0 0 5.78 0 0 

   
 

         

             

Znew 1 1 1 1 1 0 0 1 0 0 

Fig. 1. An illustrative example of generating Znew 

The Znew is obtained by combining the obtained information due to all the vectors Zm together, as 

presented in Fig. 2. 

 

At the following, Znew is used as an input data (initial solution) in stage 2 of the algorithm (stage 

2: Setting and solving using Fig. 3). In fact, the overall logic of the algorithm is organized such that 

the original problem is disintegrated into two sub-problems. At the first stage of the first sub-problem, 

the LP-relaxation of the SAA-RMCLNDP is solved and Znew is obtained. Then, Znew is set as the input 

data matrix to the second stage and the main model (RMCLNDP) is solved by applying the input data 

matrix. Accordingly, the complexity of the model of RMCLNDP is reduced by fixing of some integer 

variables (i.e., vector Z). It is mentioned that HHBSAA solves the sample problems to optimality. 

However, since the samples are not related to all members of the scenario set, these optimal solutions 

are sub-optimal for the original problem, unless the reference sample set is equal to all of the scenarios 

(i.e., 𝑁′ ≡ 𝑆). The main steps of HHBSAA algorithm are presented in Fig. 2. 
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supply/transport some demands?

Keep its relevant element equal to 1 at the vector Z new 
No

Save the obtained optimal solution as vectors Z new, X, W, and matrix Y and its relevant objective function value

Solve the RMCLNDP model

Recalculate the objective function value with the updated vector Z new, the vectors X, W, and matrix Y



Stage 1: Initializing

Stage 2: Setting and solving

For each sample m, solve the LP-relaxation of SAA-RMCLNDP 

Round Z sum to 0 or 1 and save the new vector, named as Z new

Generate M independent random samples m    M with scenario sets N m, where |N m|= N. 

Calculate the summation of vector Z m for all  m    M and save as Z sum 

Save the sample solution as vector Z m





 
Figure. 2. The main procedure of the HHBSAA algorithm 
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5. Results and Discussions 
 

Numerous test data are generated and solved by the CPLEX 12.1 solver in the software package 

GAMS 23.5.1.  Then, the proposed algorithms were coded in MATLAB R2011a. All computations 

are carried on a PC with Windows 7 professional, with 2.67 GHz dual core processor and 4 GB of 

RAM. Also, the CPU solution time was limited to 3600 seconds for CPLEX solver and the proposed 

heuristic algorithms. 

 

5.1. Design of Experiments 

 

In order to demonstrate the efficiency of the proposed heuristic algorithms, several test problems 

were solved with different sizes of M and N. The procedure for the random test problems generation 

is similar to that described in the literature (Peng et al., 2011) [43]. In more details, random test 

problems with different sizes were generated. The numbers of supply nodes, transshipment nodes and 

demand nodes were fixed to 2, 3, and 4 respectively. Also, the number of scenarios at S is set 300. 

The edge density was chosen from 25%, 35% and 55%. At the beginning, the number of supplier, 

DCs and demand nodes was selected and accordingly the constructed transshipment links among 

nodes were specified by the edge density regarding the predetermined probability. The links between 

the ‘‘emergency’’ facility and the demand nodes were opened with probability 1. 

 

The fixed costs fj of suppliers and of DCs were generated uniformly from [25000, 30000] and 

[5000, 10000], respectively. Also, the unit transshipment costs tij
plv were drawn uniformly from [1 , 

500]. The per-unit transshipment cost from the emergency facility to each demand node was named 

unmet-demand penalty and set to 1400. At each demand node, the parameter bj
p is a negative number 

and illustrates the demand of product p. This was also generated uniformly from [–110 , –50]. At each 

supply node, the supply bj
p was specified as follows. To provide a warranty for the feasibility of the 

model regarding most of the data sets, at first, the average necessary supply of product p, s , was 

calculated by 

 

.
Dp p

S

G
s d

G
 , 

(33) 

 

where
p

d  is the average demand of product p, which is set to 50, 60, and 70, respectively, in this 

case. Each bj
p was then generated uniformly from 1 , 3

p p
s s 

 
. 

 

The capacity of a supply node j, Γj, is drawn uniformly from [1000, 2000], as minutes (according 

to the processing time criterion). Moreover, the capacity of each DC is specified equivalently by first 

calculating 
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(34) 

 

and then, Θj is drawn uniformly from  1 , 3c c . The capacity of the emergency facility was 

obviously set to infinity. The disruption scenarios were randomly generated, such that each facility 

was possibly disrupted with probability q∈{0.01, 0.03, 0.05, 0.1, 0.15}, where q gives the set of 
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probabilies of facility disruptions. Several probabilities were intentionally chosen in order to present 

the effect of disruptions and the efficiency of the model, as disruption being an important factor. If 

duplicate scenarios were generated by this process, then the duplicates were withdrawn and the 

procedure was repeated till the |S| unique scenarios were obtained. 

 

5.2. Performance of Algorithm 

 
Here, the efficiencies of SAA, and the proposed HHBSAA are compared. The efficiency of the 

proposed HHBSAA is analyzed the exact method and the SAA method over several sample sizes (N) 

and number of samples (M). For the SAA method, the test instances with M ={5, 10, 20} and N ={5, 

10, 20, 30} were experimented. On the other hand, all HHBSAA sample tests were set to M =5 with 

varying sample sizes from N={5, 10, 15}. The results were reported according to 10 replications (i.e., 

10 random sample instances for each combination of sample size and number of samples were 

generated) and solved with both SAA and HHBSAA. For q∈{0.01, 0.03, 0.05, 0.1, 0.15}, the 

comparison of the results of the two proposed algorithms is reported in Table 2. Both the results of 

best solution and various statistics of 10 replications are reported for each failure probability of 

failure. 

 

The best solution obtained by each method throughout all replications was demonstrated as the 

Lbest column. For the test problem with q= 0.03, the SAA’s solution locates facilities Lbest ={1, 3, 4, 

10} with M=20 and N=30, while the HHBSAA (for all sample sizes) and the exact solution method 

locate facilities Lbest ={1, 2, 3, 4, 5, 10}. The “ξbest” column illustrates the best obtained objective 

function value for the SAA, HHBSAA, and the exact method (i.e., ξSAA, ξHHBSAAand ξ*). The ξmin and
M

 columns are the minimum and average value of the sample optimal objective functions, 

respectively for the sample set related to the replication with the best objective. Here, two optimality 

gap measures are presented. Since the first gap (GAP1) according to the assumption is that 
M

 is a 

statistical lower bound on ξ*, this gap is only suitable for SAA. It is defined as 
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(35) 

 

Another kind of optimality gap (GAP2) can be defined as 
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(36) 

 

Note that GAP2 is suitable for both the SAA and the HHBSAA algorithms. Table 2 shows that 

once the scale of the test instance increases, the SAA’s objective function is not constantly decreasing, 

whereas the CPU time is exponentially increasing. Correspondingly, increasing the sample size can 

lead to increase in the HHBSAA’s CPU time; however the rate of the increase is less than that of the 

SAA. This is referred to the reduced number of HHBSAA iterations and increased efficiency of the 

algorithm. Anyhow, when the scale of the test instance for HHBSAA is increased beyond N=20, the 

CPU time starts to increase exponentially (it is like that of SAA). As the results in Table 1 

demonstrate, the SAA algorithm cannot even find a feasible solution when q increases (q>0.03), while 

the HHBSAA algorithm can find suitable feasible solutions with reasonable optimal gaps at the 

reasonable times. 
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In Table 1, with q=0.01, it can be concluded that the SAA method finds some feasible solutions 

when the value of M and N increase to more than 10 and 20 respectively, while the HHBSAA’s 

solution is optimal even for the (M, N)={(5,5)}. Since the effect of sampling is not significant with 

this probability of failure (q=0.01), the RMCLNDP is comparably easy to solve. With q={0.03, 0.05}, 

the HHBSAA’s average GAP2 is 0% with an average CPU time of 1113.5s and 1696.78s,  

respectively. In comparison, the SAA’s average GAP2 is 10.42% and 5.10% with CPU time of 

7131.66s and 10413.90s, respectively. Across all replications, SAA cannot find even any feasible 

solution (except for q=0.03, M=20, N=30) when the M and the N increase considerably, while 

HHBSAA can find the optimum solution for test instances (M,N)={(5,5),(5,10)} within much less 

CPU times. 

 

Also, for q={0.05, 0.1, 0.15}, Table 1 shows that SAA cannot find even any feasible solution, 

whereas HHBSAA finds the optimal solution in all of the test instances. With q=0.1 and in 4304.62s 

CPU time on the average, HHBSAA converged to the optimal solution with an optimality gap (GAP2) 

of 8.54%. The SAA’s average CPU time is 12037.51s without any feasible solution for all instances. 

With q=0.15 and in 5668.97s CPU time on the average, the HHBSAA converged to the optimum 

solution with an optimality gap 18.22%. The SAA’s average CPU time is 14325.59s without any 

feasible solution for all the instances. The obtained results present that HHBSAA can find some 

feasible (and of course better quality) solutions in much less times than SAA. 

 

Fig. 3, presents the impact of facility's failure probability on the efficiency of HHBSAA with N=5, 

10, and 20 in comparison with those of SAA with N=5, 10, 20, and 30 scenarios. It is remaindered 

that the CPU time performance of HHBSAA with N=5, 10, and 20 is comparable to that of SAA with 

N=20 and significantly better than N=30. Hence, in comparison with SAA, HHBSAA not only find 

some feasible solutions, but also can improve the solution quality using an equivalent computational 

attempt. Moreover, the computing time needed for obtaining the same solution is much less with 

HHBSAA than SAA. 

 

Fig. 4 demonstrates the impact of facility failure probability (q) on the average solution quality 

(GAP2) of HHBSAA with N=5, 10, and 20 in comparison with those of SAA with N=5, 10, 20, and 

30 scenarios. It is obviously concluded that HHBSAA is evermore outperforming SAA according to 

feasibility and quality of the obtained solution. It is noted that the values of “Gap2” are not seen in 

Fig.4, because these values are more than 100, and thus are not presented in Fig. 4. 

 

6. Conclusions and Directions for Further Research 
 

In this study, the reliable capacitated logistic network design problem was investigated with a 

multi-configuration structure (RMCLNDP) in the presence of several system disruptions. Multi-

configuration structure includes multi-product, multi-vehicle, and multi-type link structure. 

Moreover, system disruptions include facility and transshipment link disruptions. The problem was 

formulated as a MILP model. It was proved that the proposed was an NP-hard problem. We also 

proposed an efficient hybrid heuristic algorithm. The proposed algorithm hybridization of SAA, the 

LP relaxation, and a two stage decomposing heuristic. The results of a detailed comprehensive 

computational analysis illustrated that the proposed algorithm substantially outperformed the integer 

programming approach in terms of both finding and verifying the efficient optimal (or near optimal) 

solutions at a reasonable processing times. Some directions for future research can be proposed as 

follows. Instead of scenario states, the system disruptions can be considered as some probability 

distributions and RMCLNDP can be reformulated accordingly. This may lead to a more accurate 
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view of RMCLNDP and consequently to more practical solutions for the proposed problem. Another 

continuation of our work here is testing of other hybrid heuristic (meta-heuristic) or approximation 

algorithms in order to obtain more efficient solutions. This can be useful to decision makers in order 

to make more accurate and practical decisions on the proposed logistic networks. 
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Table 2.  Analyses of solution performance and CPU time efficiencies of SAA and HHBSAA for RMCLNDP with several facility failure probabilities (q) 

Algorithm 
M-N 

q=0.01                 

  Lbest ξbest ξmin
 

M
  σ GAP1 CPU-SAA (s) Total CPU (s) GAP2 

SAA 5--5 n/a Inf 86575.64 94192.79 4029.32 n/a 62.54 445.13 n/a 

 5--10 n/a Inf 82995.39 90063.73 7733.73 n/a 377.56 871.46 n/a 

 5--20 n/a Inf 84326.24 85757.58 835.94 n/a 3426.15 4734.69 n/a 

 5--30 n/a Inf 83294.34 89645.94 1465.32 n/a 5467.95 8004.25 n/a 

 10--20 1,4, 10 148452.65 84216.34 88916.45 2349.26 66.96 4351.64 5894.43 37.07 

 10--30 1,3, 10 117345.61 82647.35 87342.61 5469.65 34.35 6431.26 9016.42 8.35 

 20--30 1,3, 10 108302.34 83164.34 91469.24 8234.61 18.40 7841.25 10643.59 0.00 

 Average 124700.20    39.90  5658.57 15.14 

                      

HHBSAA 5--5 1,3, 10 108302.34 86575.64 94192.79 4029.32 14.98 62.54 189.21 0.00 

 5--10 1,3, 10 108302.34 82995.39 90063.73 7733.73 20.25 377.56 447.23 0.00 

 5--20 1,3, 10 108302.34 84326.24 85757.58 835.94 26.29 3426.15 2704.06 0.00 

 Average 108302.34    20.51  1113.50 0.00 

                      

Exact - 1, 3, 10 108302.34 - - - - - 12049.25 - 

           

Algorithm 
M-N 

q=0.03                 

  Lbest ξbest ξmin
 

M
  σ GAP1 CPU-SAA (s) Total CPU (s) GAP2 

SAA 5--5 n/a Inf 96806.47 135375.19 32619.79 n/a 102.43 812.45 n/a 

 5--10 n/a Inf 84785.32 161420.13 56205.30 n/a 589.47 1234.64 n/a 

 5--20 n/a Inf 102765.35 125097.69 13183.93 n/a 3573.54 5879.34 n/a 

 5--30 n/a Inf 115642.31 136947.62 8654.91 n/a 6245.14 9321.64 n/a 

 10--20 n/a Inf 120624.37 154624.61 9451.62 n/a 5876.45 8024.56 n/a 

 10--30 n/a Inf 133987.62 165487.62 10624.62 n/a 7241.64 10974.34 n/a 
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 20--30 1,3, 4, 10 286648.32 145624.31 176947.62 9978.64 62.00 8468.32 13674.67 10.42 

 Average n/a    n/a  7131.66 10.42 

                      

HHBSAA 5--5 1, 2, 3, 4, 5, 10 259603.27 96806.47 135375.19 32619.79 91.77 102.43 576.67 0.00 

 5--10 1, 2, 3, 4, 5, 10 259603.27 84785.32 161420.13 56205.30 60.82 589.47 809.35 0.00 

 5--20 1, 2, 3, 4, 5, 10 259603.27 102765.35 125097.69 13183.93 107.52 3573.54 3704.32 0.00 

 Average 259603.27    86.70   1696.78 0.00 

                      

Exact - 1, 2, 3, 4, 5, 10 259603.27 - - - - - 13649.24 - 

           

Algorithm 
M-N 

q=0.05                 

  Lbest ξbest ξmin
 

M
  σ GAP1 CPU-SAA (s) Total CPU (s) GAP2 

SAA 5--5 n/a Inf 98075.96 105318.57 6180.92 n/a 115.14 1043.14 n/a 

 5--10 n/a Inf 118738.26 138246.13 13648.06 n/a 764.23 1384.62 n/a 

 5--20 n/a Inf 132478.64 144036.13 7399.73 n/a 4562.41 6747.58 n/a 

 5--30 n/a Inf 137845.64 149967.51 8671.68 n/a 8265.24 12079.48 n/a 

 10--20 n/a Inf 137194.35 149448.34 7942.34 n/a 7465.24 11846.82 n/a 

 10--30 n/a Inf 147473.95 153178.69 6947.62 n/a 9194.00 16946.31 n/a 

 20--30 n/a Inf 150447.64 159448.35 8164.35 n/a 11467.28 22849.36 n/a 

 Average n/a    n/a  10413.90 n/a 

                      

HHBSAA 5--5 1, 3, 4, 10 405649.64 98075.96 105318.57 6180.92 285.16 115.14 872.49 10.05 

 5--10 1, 2, 3, 10 387947.32 118738.26 138246.13 13648.06 180.62 764.23 1206.14 5.25 

 5--20 1, 2, 3, 6, 10 368596.28 132478.64 144036.13 7399.73 155.91 4562.41 4945.24 0.00 

 Average 387397.75    207.23   2341.29 5.10 

                      

Exact - 1, 2, 3, 6, 10 368596.28 - - - - - 16437.62 - 

Table 2. Continued. 
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Algorithm 
M-N  

q=0.1                 

  Lbest ξbest ξmin
 

M
  σ GAP1 CPU-SAA (s) Total CPU (s) GAP2 

SAA 5--5 n/a Inf 122346.61 126497.54 9432.81 n/a 162.64 1456.71 n/a 

 5--10 n/a Inf 126947.34 131647.29 8794.36 n/a 1102.37 2697.62 n/a 

 5--20 n/a Inf 128649.67 134957.49 7649.26 n/a 5064.36 9649.34 n/a 

 5--30 n/a Inf 137697.29 145649.57 10452.72 n/a 9226.42 14645.91 n/a 

 10--20 n/a Inf 142947.82 149649.64 8465.36 n/a 8194.63 12346.25 n/a 

 10--30 n/a Inf 152649.76 158935.62 8064.92 n/a 10064.53 18423.14 n/a 

 20--30 n/a Inf 161697.83 168346.34 10312.62 n/a 12764.26 25043.59 n/a 

 Average n/a    n/a  12037.51 n/a 

                      

HHBSAA 5--5 1, 3, 4, 10 497643.69 122346.61 126497.54 9432.81 293.40 162.64 1154.61 16.91 

 5--10 1, 3, 5, 10 467943.16 126947.34 131647.29 8794.36 255.45 1102.37 2006.52 9.94 

 5--20 1, 2, 3, 10 445643.72 128649.67 134957.49 7649.26 230.21 5064.36 6243.91 4.70 

 5--30 1, 2, 3, 5, 6, 10 436749.34 132697.29 140649.57 10452.72 210.52 9226.42 7814.62 2.61 

 Average 461994.98    247.40  4304.92 8.54 

                      

Exact - 1, 2, 3, 6, 7, 10 425649.76 - - - - - 20037.62 - 

           

Algorithm 
M-N  

q=0.15                 

  Lbest ξbest ξmin
 

M
  σ GAP1 CPU-SAA (s) Total CPU (s) GAP2 

SAA 5--5 n/a Inf 129946.35 133647.54 6784.24 n/a 181.64 1614.31 n/a 

 5--10 n/a Inf 134647.84 138456.05 4352.16 n/a 1615.01 3314.24 n/a 

 5--20 n/a Inf 141947.52 145346.47 8345.25 n/a 8674.15 11456.71 n/a 

 5--30 n/a Inf 15079.14 155974.29 9745.64 n/a 10593.16 15435.46 n/a 

 10--20 n/a Inf 149003.54 154364.24 7943.24 n/a 9945.14 16972.64 n/a 

Table 2. Continued. 
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 10--30 n/a Inf 163874.36 168792.04 8146.21 n/a 11746.15 23006.34 n/a 

 20--30 n/a Inf 170467.16 175924.19 8879.34 n/a 13456.12 28479.43 n/a 

 Average n/a    n/a  14325.59 n/a 

                      

HHBSAA 5--5 1, 4, 5, 10 678462.34 129946.35 133647.54 6784.24 407.65 181.64 1307.46 34.44 

 5--10 1, 4, 5, 10 614325.71 134647.84 138456.05 4352.16 343.70 1615.01 2876.45 21.73 

 5--20 1, 2, 3, 7, 8, 10 572345.16 141947.52 145346.47 8345.25 293.78 6974.15 8246.34 13.41 

 5--30 1, 2, 3, 5, 7, 10 521345.13 15079.14 155974.29 9745.64 234.25 5793.16 10245.64 3.31 

 Average 596619.59    319.84  5668.97 18.22 

                      

Exact - 1, 2, 3, 5, 7, 10 504649.76 - - - - - 24615.31 - 

Table 2. Continued. 
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Figure. 4. Comparison of HHBSAA and SAA with several test instance sizes (N) and failure 
probabilities (q) regarding the CPU times 

 

 

 

Figure. 4. Comparison of HHBSAA and SAA with several test instance sizes (N) and failure 
probabilities (q) regarding solution quality as optimality gap (GAP2) 
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