
Iranian Journal of Operations Research
Vol. 3, No. 1, 2012, pp. 31-45

An Application of the ABS LX Algorithm to
Multiple Sequence Alignment

S. Lalwani1,* , R. Kumar2 , E. Spedicato3 , N. Gupta4

We present an application of ABS algorithms for multiple sequence alignment (MSA). The
Markov decision process (MDP) based model leads to a linear programming problem (LPP),
whose solution is linked to a suggested alignment. The important features of our work include
the facility of alignment of multiple sequences simultaneously and no limit for the length of the
sequences. Our goal here is to avoid the excessive computing time, needed by dynamic
programming based algorithms for alignment of a large number of sequences. In an attempt to
demonstrate the integration of the ABS approach with complex mathematical frameworks, we
apply the ABS implicit LX algorithm to elucidate the LPP, constructed with the assistance of
MDP. The MDP applied for MSA is a pragmatic approach and entails a scope for future work.
Programming is done in the MATLAB environment.

Keywords: Multiple sequence alignment, ABS algorithm, Dynamic programming, Markov
decision process.
Manuscript received on 8/06/2011 and accepted for publication on 8/08/2011.

1. Introduction

 Multiple sequence alignment consists of aligning three or more sequences of DNA, RNA, or
protein at the same time. Multiple alignments arrange a set of sequences in a scheme, where
positions believed to be homologous are written in a common column. MSA is of a central
importance to bioinformatics and computational biology for the sequences identifying regions of
similarity which may be a consequence of functional, structural, or evolutionary relationships.
Although a large number of algorithms for computing MSA have been designed, the efficient
computation of highly accurate multiple alignment is still a challenge [4].

 The most widely used programs for global multiple sequence alignment are the Clustal series of
programs [3]. ClustalW [19] incorporates a number of improvements to the alignment algorithm,
and is based on a sensitive dynamic programming algorithm. ClustalW has given rise to a number
of developments, including the ClustalX [18] which is the latest member of Clustal series.
Although the alignments produced by ClustalX are the same as those produced by the latest release
of ClustalW, the user can evaluate alignments better in ClustalX. ClustalW, version 1.8, is the most
popular alignment program with excellent portability and operativity.

 Other popular multiple sequence alignment methods are T-coffee [9] MUSCLE [5] and MAFFT
[7]. The T-coffee method is broadly based on the popular progressive approach to multiple
alignments. The data set of all pair wise alignments among the sequences is pre-processed using T-
Coffee. Elements of the MUSCLE algorithm include fast distance estimation using kmer counting,
progressive alignment using log-expectation score, and refinement using tree dependent restricted
partitioning. MUSCLE uses two distance measures for a pair of sequences: a kmer distance (for an

*Corresponding Author.
1 Birla Institute of Scientific Research, Jaipur-302001, India. Email: slalwani.math@gmail.com
2 Department of Electrical Engineering, Malaviya National Institute of Technology, Jaipur, India. Email: rkumar.ee@gmail.com
3 Department of Operation Research, University of Bergamo, Italy. Email: emilio@unibg.it
4 Department of Mathematics, Malaviya National Institute of Technology, Jaipur, India. Email: n1_gupt@yahoo.com

32 Lalwani, Kumar, Spedicato and Gupta

unaligned pair) and the Kimura distance (for an aligned pair). MAFFT method for multiple
sequence alignment is based on the fast Fourier transform (FFT), which allows rapid detection of
homologous segments in pairs of sequences.

 To the best of our knowledge, all the popular methods including ClustalW are based on
constructing pairwise sequence alignment first. Then, as the classical dynamic programming
algorithms perform pairwise sequence alignments, the results are combined to find multiple
sequence alignment [6]. Unfortunately, this approach is impractical for alignments of more than a
few sequences, due to its high computing cost. Therefore, several heuristics have been proposed to
compute nearly optimal alignments, based on minimization of the total cost, so that large sequences
may be aligned effectively.

 The method of using an MDP approach for LPP is an efficient approach, as the multiple
sequences can be aligned simultaneously, saving time and space for aligning a large number of
long sequences [6]. We applied the implicit LX method [14] of ABS class of algorithms [1] to
solve the LPP, constructed with the assistance of the MDP. Several computational experiments
have confirmed that ABS methods can be implemented in a very stable way. Moreover, on
vector/parallel machines, they are usually faster than the standard methods [2]. The computational
results show that the best ABS methods are competitive. Additionally, ABS methods are reliable
on ill conditioned and rank deficient problems.

 We implemented the method for a family of human protein kinase sequences. Protein kinase is a
key regulator of cell function constituting one of the largest and most functionally diverse gene
families. Kinase human sequences were downloaded in FASTA format from:
http://www.uniprot.org. We aimed to achieve statistically significant accuracy improvements
comparable to one of the existing top performing aligner ClustalW2 from:
www.ebi.ac.uk/ClustalW2/.

 The remainder of our work is organized in 5 sections. Section 2 reviews some necessary
concepts of ABS algorithms, the Implicit LX method and MDP. After defining the formulation of
LPP using MDP in Section 3, we present the use of the ABS algorithm for MSA in Section 4.
Section 5 presents our results obtained from the algorithm, verified with those produced by
ClustalW2. We conclude in Section 6.

2. Definitions and Basic Concepts

 Here, we give some necessary definitions and concepts given by Abaffy and Spedicato [1],
Puterman [10] Sharma [12] and Ross [11].

2.1. ABS Algorithm

 The ABS algorithm was introduced in 1984 by Abaffy, Broyden and Spedicato [1] to solve
determined or underdetermined linear systems, and later extended to linear least squares, nonlinear
equations, optimization problems and Diophantine equations (see [16] and [17]). The latest works
deal with stochastic, infinite and fuzzy systems. The class of ABS methods unifies most existing
methods for solving linear systems and provides a variety of alternative ways of implementing a
specific algorithm [1, 15, 16, 17]. These methods result from collaboration of a number of
mathematicians from most of Europe including Italy, Hungry and UK, as well as from China and
Iran. Here, we use the ABS implicit LX method for solving LPP and some new applications as
well. The steps of the basic or unscaled ABS class of algorithms for solving a linear system of the

An Application of the ABS LX Algorithm 33

form 1, (,...,) ,T m n
mAx b A a a R ×= = ∈ are:

1 1() , , , , 1.n n na Set x R arbitrary H R arbitrary nonsingular i×∈ ∈ =

() , .T
i i i i i i ib Compute the vector s H a and the scalar t a x b= = −

If 0is ≠ then go to (c), the ith equation is linearly independent from the previous equations,
else if ti=0 then remove equation i, which is dependent on previous equations, set

1 1,i i i ix x H H+ += = and go to (f), else stop (the system is inconsistent and lacks solution).

() , , 0.T n

i i i i i i ic Compute the search direction p H z z R arbitrary save that z H a= ∈ ≠

1() , .i
i i i i i T

i i

td Update the estimation of the solution by x x p with
a p

α α+ = − =

1() ,

0.

T
i i i i

i i i T
i i i

n T
i i i i

H a w He Update the Abaffian matrix H by H H
w H a

where w R is arbitrary save that w H a

+ = −

∈ ≠

()f If 1, mi m then stop x += solves the system, else let i=i+1 and go to (b).

Remarks: The Huang or implicit Gram-Schmidt algorithm is defined by the
choices 1 , .i i iH I z w a= = = The ABS algorithm determines the unique solution of least Euclidean
norm of an underdetermined system, if it is started with an arbitrary vector 1x proportional to 1a ,
usually the zero vector. If 1 0,x = then the solution is moreover approached monotonically in norm
from below. Additionally, the search directions ip are orthogonal. The algorithm’s stability can be
improved in several ways. Usually one does a reprojection on the search direction, i.e.,

 ().i i i ip H H a= (1)

and then defines the update as

 1 .
T

i i
i i T

i i

p pH H
p p+ = − (2)

This modification is called the modified Huang algorithm.

We use here the implicit LX algorithm [14], the best suited algorithm for solving LPP.

2.2. Implicit LX Method

 For the implicit LX algorithm, we need to define the choice of the parameters in steps ()a and
()b of the ABS algorithm as follows:

 1 , , i

i

i

k
i k i T

k i i

e
H I z e w

e H a
= = = , (3)

where, ik is an integer, 1 ,ik n≤ ≤ such that

 0.
i

T
k i ie H a ≠ (4)

34 Lalwani, Kumar, Spedicato and Gupta

 We assume that A has full row rank. There is at least one index ik such that (4) is satisfied. For

stability reasons, ik is selected such that
i

T
i k i ie H a=η is maximized.

 The implicit LX algorithm has the same operational cost as the Gaussian elimination but it does
not require pivoting and has less intrinsic storage cost. Thus, it can be regarded as the
computationally best known algorithm of the standard type for solving a general system [14, 17].
The implicit LX method has a natural application to LPP [13], say

min
s.t.

0.

Tc x
Ax b
x

=
≥

 (5)

 In the simplex method, a column of an original index *N from the matrix NA is interchanged
with a column of an original index *B in the matrix BA . The column in NA is often taken as the
column with a minimal relative cost. In terms of the ABS formulation, this is equivalent to
minimizing, with respect to mi N∈ , the scalar iη , defined by

 .T T

i ic H eη = (6)

 The column in BA to be exchanged is usually chosen with the criterion of the maximum
displacement along an edge such that the basic variables remain non-negative. The scalar wi is
defined by

 */ ,T T T

i i i N
w x e e H e= (7)

where, x is the current basic feasible solution. Then, the above criterion is equivalent to
minimizing w, with respect to the set of indices Mi B∈ , such that

 * 0.T T
i N

e H e > (8)

The H-matrix is then updated by

 ()* * * * *' / .T T
B B N N BH H He e e H e He= − − (9)

 Equation (9) is an important relation in itself as well as for its application to the simplex
method.

 Finally, we refer to some numerical experiments on the implicit LX algorithm. ABS algorithms
have been tested extensively on sequential and vector-parallel machines (Alliant, IBM 3090) versus
codes from the NAG, LINPACK, LAPACK and MATLAB packages. The ABS codes were written
in FORTRAN 77, except those produced for running on CERFACS Alliant FX80 with 8
processors, where a CERFACS version of FORTRAN 90 was used. The implicit LX method was
tested on a digital workstation on 21 families of problems with the size of n up to 800, entries being
exactly represented and treated as full problems [8, 17]. It was shown that the implicit LX
algorithm is more accurate than the implicit LU, the modified Huang and the LAPACK LU solver,

An Application of the ABS LX Algorithm 35

specially for the relative solution error defined by x x b+= −η . The superiority is more
evident on ill conditioned problems. Over all the problems, the implicit LX algorithm in double
precision was better in 41 problems, MATLAB was better in 14 problems and accuracy differences
were less than one percent in 5 problems. In single precision, the implicit LX algorithm was better
in 25 problems, LAPACK was better in 17 problems and accuracies were less than one percent in
18 problems.

 The method used here for MSA has shown to be better than the other classical approaches, as all
the long multiple sequences are aligned at the same time. The problem was obtained using MDP.

2.3. Markov Decision Process

 MDP, also known as stochastic dynamic programming, named after Andrey Markov, provides a
mathematical framework for modeling decision-making, in situations where events are partly
random and partly under the control of a decision maker. MDP is an extension of Markov chain;
the difference is in the addition of actions (allowing choice) and rewards (giving motivation).
Conversely, while ignoring rewards, if there were only one action (or if the action to take were
fixed for each state), an MDP would reduce to a Markov chain.

 MDPs are practiced to study a gamut of optimization problems solved via dynamic
programming and reinforcement learning. MDPs constitute a basic framework for dynamically
controlling systems that evolve in a stochastic way [10]. The evolution of the system is as shown in
Fig. 1. The formal definition can be given by a 4-tuple set (S, A, P (-,-), R (-,-), as presented
in Table 1.

Table 1: A Markov decision process

S A finite set of states
A A finite set of actions

(, ')aP s s Probability that action a in state s at time t will lead to state 's at time t + 1

(, ')aR s s The immediate reward received after transition to state 's from state s with
transition probability (, ')aP s s

 Let ts denote the state at time {0,1,...}t∈ and ta denote the action chosen at that time. If

ts s S= ∈ and ta a A= ∈ , then the system transitions from state s to state 1 'ts s S+ = ∈ with
probability (, ')aP s s , and a reward of (, ')aR s s is obtained. The dynamic Bayesian network is
shown in Fig. 2. Once the transition to the next state has occurred, a new action is chosen, and the
process is repeated. The conditional probabilities defined in the process are:

Transition probability: 1(| ,).t t tP s a s+ (10)

Reward probability: (| ,).t t tP r a s (11)

Policy: (|) (|).t t t tP a s a sπ= (12)

36 Lalwani, Kumar, Spedicato and Gupta

Figure 1: An MDP “standard” model

Figure 2: A dynamic Bayesian network for MDP

 We obtained the solution of the MDP by formulating the problem in the canonical form of LPP,
where the states, actions and corresponding rewards were used to formulate the constraints and the
objective function of the LPP. The mathematical formulation of the problem is, as described below.

3. MDP Employed for LPP

 The algorithm adduced in our work is supported by MDP, which constitutes LPP by
articulating the probability matrix. LPP can be expressed in a canonical form as

 Maximize Tc x (13)

 s.t. .Ax b≤ (14)

Equations (14) are the constraints specifying a convex polytope, over which the objective function
is to be optimized.

a1 a2

s0 s1 s2

r0 r1 r2

a0

π

……

Action t-1

Reward t-1

State t-1 State t

An Application of the ABS LX Algorithm 37

The frequency of transition from one state to another for a particular action was computed

using the following formula:

 (, ,)() .
(,)ij

n i j aP a
n i a

= (15)

After having the transitional probability matrix and scores for each sequence, we formulated the
linear function as

 (,)jaj a

Maximize y R j a∑ ∑ (16)

with the constraints for the given LPP as

 1 ,

1jaj a
y

α
=

−∑ ∑ (17)

 (), 0, , ,ja j ja ij jaj j a

y b y P a y j a= + ≥ ∀∑ ∑ ∑α (18)

where, a denotes the action, i represents the initial state, j is defined as the final state, jay means

how frequently action a is opted from state j when the maximum total score is jb , and jb is the

initial distribution of states, which is set to m/1 , with m being the number of states in the
sequence. The steps for forming LPP using MDP are:

Step 1: Assign states to every column of multiple sequences.

Step 2: Assign actions for each state of all the sequences.

Step 3: Compute the transitional probability matrix for the state against the action.

Step 4: Compute the reward by using the BLOSUM62 matrix for every state and action.

Step 5: Formulate the objective function and the corresponding constraints.

 Hence, after formulating the problem as a linear program, the solution is obtained by applying

the implicit LX method of the ABS algorithms.

4. Using an ABS Algorithm for MSA

 The ABS methods has been broadly used for solving linear and nonlinear systems of equations
comprising large number of constraints and variables, thereby saving time and effectively dealing
with resulting complexities. Computational results are presented here using programs developed in
MATLAB environment. The key challenges experienced by us were:

38 Lalwani, Kumar, Spedicato and Gupta

• Creating the transitional probability matrix.
• Calculating rewards using the Blosum62 matrix.
• Formulating the LPP.

 The algorithm used in this work is endorsed by MDP which constitutes LPP by
articulating the probability matrix. We targeted on aligning four sequences, so that there
were 16 different possibilities of combining gaps and letters. These possibilities are
represented in the form of ‘0’ and ‘1’. A gap is represented by ‘0’ and a letter by ‘1’ (Table
2). Also, each column of the aligned sequence represents a state s, which is defined by a
number. For example, if testing is done on 4 sequences, each of length 17, i.e.,

- M H I P V E P P T T R R F T P P

- M N E P Q S G P D F S K Y I L D

- M T D Q E S L I E S F T K R I A
- M S E K Q S V K Q Y I Q G K L D

then each column of the aligned sequence represents a state s , which is defined by a number as
shown in Table 3.

Table 2: Representing actions

 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

Action ‘a’ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3: Representing states and actions
 - M H I P V E P P T T R R F T P P
 - M N E P Q S G P D F S K Y I L D
 - M T D Q E S L I E S F T K R I A
 - M S E K Q S V K Q Y I Q G K L D
State ‘s’ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Action ‘a’ 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

In Table 4, ‘a’ denotes the action, i represents the initial state, and j is defined as the final

state. As a citation for the above example, the algorithm creates a matrix as shown in the table.
These frequencies are stored in a matrix known as the transitional probability matrix, which is
further used in solving the formed LPP. The score for every next upcoming state is calculated using
the Blosum62 matrix [12], which is represented by (,)R j a . Transition from state j to another state
with action a is represented by (,)R j a . For calculating this score, a pair of sequences is selected
from the data set and then the corresponding Blosumn62 score is selected for that pair.
Corresponding to the action, if there appeared a gap, a deletion penalty, d, is deducted, and if an
extension with gaps is encountered, an extension penalty, ,e is deducted, as exemplified in Fig. 3.

An Application of the ABS LX Algorithm 39

 Table 4: Transitional probability matrix

i j
ijP ijP (a) a

1 2 1 1 16
2 3 1 1 16
3 4 1 1 16
4 5 1 1 16
5 6 1 1 16
6 7 1 1 16
7 8 1 1 16
8 9 1 1 16
9 10 1 1 16
10 11 1 1 16
11 12 1 1 16
12 13 1 1 16
13 14 1 1 16
14 15 1 1 16
15 16 1 1 16
16 17 1 1 16

0
0

(,) (,) (,)
, 0 4

(,) (,) (,)
0

B l e e B l M e d B l M e d
R

B l e e B l M e d B l e e
M

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

−
−

− − − − + − − − + − − −
− =

+ − − − − + − − − + + − − − −

1
, 1

1
1

(,) (,) (,)
4

(,) (,) (,)

H
N
T
S

B l H N B l H T B l N T
R

B l T S B l H S B l N S

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

+ +
=

+ + +

⎡ ⎤
⎢ ⎥
⎣ ⎦

Figure 3: Reward for next upcoming state

As discussed, jb is the initial distribution of states, which is set to 1 m , where, m is the

number of states in the sequence, taken to be 17 for the matrix of Table 2. Hence, Fig. 4 shows the
initial distribution for the cited example.

40 Lalwani, Kumar, Spedicato and Gupta

0.0588
0.0588

.

.

.
0.0588

j
b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

Figure 4: Initial distributions jb

 The deletion penalty and the extension with gap penalty are defined to be 4d = and 2,e =
respectively, and the range for α is defined as 0 0.9≤ ≤α . We set 0.5=α .

 Finally, we obtained the LPP as shown in the form of equations (16)-(18), constructed using
MDP, and computed by the ABS LX method to incur the optimal and numerically stable results,
with the aid of MATLAB.

5. Results

 The proposed algorithm was tested on the data set of human protein kinase sequences taken in
Fasta format (Link: www.uniprot.org/uniprot/, the p45 sequences). The results obtained from the
algorithm were compared with those produced by ClustalW2; our results were consistent with
those of ClustalW2. We randomly selected 4 sequences from the Fasta file and checked the
execution time and accuracy of the obtained results.

 Table 5: Comparison of execution time, sensitivity, PPV and F-measure

Length of the largest sequence (L) L<200 200<L<300 300<L<400 400<L<500

Sensitivity Proposed Algorithm 1 0.955 1 1

PPV Proposed Algorithm 0.889 0.955 1 1

F-measure Proposed Algorithm 0.941 0.955 1 1

Time
(Seconds)

ClustalW2 31.04 27.67 37.84 41.01

Proposed Algorithm 33.18 31.04 38.01 42.67

 Table 5 presents the comparison of the execution time, sensitivity, PPV and F-measure between
ClustalW2 and our proposed algorithm. The alignment is performed 120 times (30 times for each
group of length) and the averages of the obtained values were noted. The result obtained by
ClustalW was assumed to be correct, since the protein sequences were not experimentally
validated. Hence, the sensitivity, PPV and F measure for ClustalW were assumed to be 1.

 The results show that our proposed algorithm is comparable with ClustalW2. Thus, the
proposed algorithm is considered to be a viable new approach for aligning multiple sequences
simultaneously.

An Application of the ABS LX Algorithm 41

 For sequences of length 407, the number of equations as the constraints for the LPP was 407
and the number of variables was 6, 512.

 The sequence size being so large, the screenshots of the actual sequence cannot be viewed in a
single window. Thus, the results obtained by the algorithm for the matrix of Table 2 are shown
using the screenshots of the ClustalW2 and MATLAB windows (figures 5, 6 and 7). The solution
for LPP is:

2,16 3,16 4,16 5,16 6,16 7,16 8,3 9,16 10,16 11,16

12,16 13,16 14,16 15,16 16,16 17,16 18,14 0.0588.

y y y y y y y y y y
y y y y y y y
= = = = = = = = =

= = = = = = = =

 This represents the states and actions regarding the positions of the aligned amino acids. The
remaining variables are all zero and represent no alignment.

 An interpretation for the obtained results can be given as follows: for the variable 2,16y it means

that for state 2, action 16 is defined, and all nucleotides are aligned without any gap. Similarly, 8,3y
is meant for state 8, with action 3 taken, and inserting gap in all sequences except the third one.
Hence, the optimal alignment is:

M H I P V E - P P T T R R F T P P

M N E P Q S - G P D F S K Y I L D

M T D Q E S L I E S F T K R I A -
M S E K Q S - V K Q Y I Q G K L D

After shuffling corresponding to ClustalW2 format, alignment can be written as follows:

M N E P Q S - G P D F S K Y I L D
M S E K Q S - V K Q Y I Q G K L D
M T D Q E S L I E S F T K R I A -
M H I P V E - P P T T R R F T P P

In this format, the results are the same, and only the order of the sequences has changed.

42 Lalwani, Kumar, Spedicato and Gupta

Figure 5: Screenshot of inserting the sequence in ClustalW2

Figure 6: Screenshot of obtained alignment from ClustalW2

An Application of the ABS LX Algorithm 43

Figure 7: Screenshot of output using MATLAB

6. Conclusions

 We devised a flexible software platform, allowing the user to align sequences, with cost
functions and trained data of their choice and using the ABS implicit LX algorithm. In the
literature, ABS algorithms have shown to be numerically more stable and efficient than many
classical algorithms, especially when performed on parallel computers. The MDP approach for
LPP is efficient to perform the simultaneous alignment of multiple sequences. The state of the art
methods create pairs of sequences and then merge the results, and hence require excessive time and
space. In our approach, the length of the sequence has no bar and there is no need to take pairs of
sequences while aligning. The program aligns all the input sequences at a time. The user is allowed
to give a long sequence; e.g., if the number of sequences is 4, then the number of actions will
always be 16 and the number of states will have an upper limit of a total of 21 amino acids. The
computing results showed our proposed approach to be effective in reducing expense encountered
by dynamic programming based algorithms in aligning large numbers of sequences.

Acknowledgements

 We gratefully acknowledge the kind support of Prof. Ghosh, Executive Director, Birla Institute
of Scientific Research and Dr. Krishna Mohan, Head, R & D, Birla Institute of Scientific Research.
We are thankful to BTIS-sub DIC, supported by DBT (Govt. of India) and Advanced
Bioinformatics Centre, supported by Govt. of Rajasthan at Birla Institute of Scientific Research for
providing us the infrastructure facilities for the present work. We acknowledge Priyanka
Choudhary, six month project trainee at Birla Institute of Scientific Research, for her assistance in
programming. We are particularly thankful to Nezam Mahdavi-Amiri, the Editor-in-Chief of IJOR
for full reading of the manuscript and suggestions for improving the presentation.

44 Lalwani, Kumar, Spedicato and Gupta

 References

[1] Abaffy, J. and Spedicato, E. (1989), ABS Projection Algorithms: Mathematical
Techniques for Linear and Nonlinear Equations, Ellis Horwood Ltd., Chichester,
England.

[2] Bertocchi, M. (1989), Numerical experiments with ABS algorithms for linear systems
on a parallel machine, Journal of Optimization Theory and Applications, 60(3), 375-
392.

[3] Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and
Thompson, J. D. (2003), Multiple sequence alignment with the Clustal series of
programs, Nucleic Acids Research, 31(13), 3497-3500.

[4] Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998), Biological Sequence
Analysis, Probabilistic Models of Proteins and Nucleic Acids, Cambridge University
Press, United Kingdom.

[5] Edgar, R. C. (2004), MUSCLE: a multiple sequence alignment method with reduced
time and space complexity, Nucleic Acids Research, 32(5), 1792-1797.

[6] Hunt, F.Y., Kearsley, A. J. and O’Gallagher, A. (2003), A linear programming based
approach for multiple sequence alignment, Proceedings of the Computational Systems
Bioinformatics (CSB’03), IEEE, 532-533.

[7] Katoh, K., Misawa, K., Kuma, K. and Miyata, T. (2002), MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids
Research, 30(14), 3059-3066.

[8] Mirnia, K. (1996), Iterative refinement in ABS method, Report DMSIA 32/96,
University of Bergamo.

[9] Notredame, C., Higgins, D. G. and Heringa, J. (2000), T-coffee: a novel method for
fast and accurate multiple sequence alignment, Journal of Molecular Biology, 302(1),
205-217.

[10] Puterman, M. L. (2005), Markov Decision Processes: Discrete Stochastic Dynamic
Programming, Wiley-Interscience, John Wiley & Sons.

[11] Ross, S. M. (2007), Introduction to Probability Models, 9th edition, Academic Press,
Elsevier.

[12] Sharma, K. R. (2008), Bioinformatics Sequence Alignment and Markov Models,
McGraw-Hill Professional Publishing.

[13] Spedicato, E., Xia, Z. and Zhang, L. (1995), Reformulation of the simplex algorithm,
Preprint, University of Bergamo.

[14] Spedicato E., Xia, Z. and Zhang, L. (1997), The implicit LX method of the ABS class,
Optimization Methods and Software, 8(2), 99-110.

[15] Spedicato, E., Xia, Z. and Zhang, L. (2000), ABS algorithms for linear equations and
optimization, Journal of Computational and Applied Mathematics, 124(1-2), 155-170.

[16] Spedicato, E., Bodon, E., Popolo, A.D. and Mahdavi-Amiri, N. (2003), ABS methods
and ABSPACK for linear systems and optimization: A review, 4OR, 1(1), 51-66.

An Application of the ABS LX Algorithm 45

[17] Spedicato, E., Bodon, E., Xia, Z. and Mahdavi-Amiri, N. (2010), ABS Method for
continuous and integer linear equations and optimization, Central European Journal of
Operations Research, 18(1), 73-95.

[18] Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997),
The CLUSTAL_X windows interface: flexible strategies for multiple sequence
alignment aided by quality analysis tools, Nucleic Acids Research, 25, 4876-4882.

[19] Thompson, J.D., Higgins, D. G. and Gibson, T. J. (1994), CLUSTALW: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice, Nucleic Acids Research, 22,
4673-4680.

	1-10
	11-30
	31-45
	46-60
	61-88
	89-103
	104-111-1

